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Abstract: A new algorithm for radar decision by Neyman-pearson criteria based on fuzzy test of hypothesis
has been introduced. First, classical (crisp) hypotheses testing in radar decision system 1s presented. Then,
three important tests of crisp hypotheses for radar decision system have been presented to show how the crisp
hypotheses for small changes in signal values can make the decision to be changed; this change is too severe
because the decision changed. Third, the steps for the new algorithm are presented. The same three examples
are again solved but from fuzzy point of view, which give more scientific results. Finally, a comparison between
crisp and fuzzy hypotheses is presented to illustrate the advantages of fuzzy hypotheses in radar decision

systems.

Key words: Fuzzy hypothesis, radar decision enhancement, fuzzy test statistic

INTRODUCTION

Radar detection is a particular kind of binary decision
problem. Tnitially, an assumption that the space consists
of only two hypotheses and requires the receiver to
determine in the presence of channel disturbance whether
to accept or reject the null hypotheses (Skolmlk, 2008).
Traditionally, all statisticians assume that the hypotheses
for which we provide a test are well defined. Thus
limitation sometimes forces statistician to make decision
procedure in unrealistic mammer. To relax this rigidity we
mtroduce a fuzzy test of hypotheses for radar detection.
This article has two main contributions. First, a new
algorithm for testing fuzzy hypotheses is mtroduced.
Second, we apply this new algorithm to radar decision
criteria. Also, show how fuzzy hypotheses are important
in radar detection because it gives the advantage of
accepting or rejecting the null hypotheses with certain
degree.

Researchers have studied fuzzy hypotheses, such as
Amold (1996) mntroduces an approach to fuzzy hypothesis
testing. Arnold (1998) mtroduces testing fuzzy
hypotheses with crisp data. Grzegorzewski (2000)
represent the statistical hypotheses with vague data.
Wu (2005) introduces statistical hypotheses testing for
fuzzy data. Hryniewicz (2006) represents the possibility
decisions and fuzzy statistical tests. Wu (2009) introduces
Statistical confidence intervals for fuzzy data. Taheri and
Arefi (2009) represent testing fuzzy hypotheses based on
fuzzy test statistic. Taheri and Behboodian (2001) have

applied Bayesian approach to fuzzy hypotheses testing.
Filzmoser and Viertl (2004) represent testing hypotheses
with fuzzy data: The fuzzy p-value. Parchami et al. (2010)
have considered fuzzy p-value in testing fuzzy
hypotheses with crisp data. Torabi and Behboodian
(2007) have studied the likelihood ratio method for testing
fuzzy hypotheses. Falsafain and Taheri (2011) represent
Buckley’s approach to fuzzy estimation.

Many researchers have mtroduced their fuzzy work
in pure mathematical algorithm and not applied it in
specific  application except a few researchers like
Parchami et al. (2011) have applied their p-value testing
hypotheses on soil study. Elsherif ef al. (2014) represents
testing fuzzy hypotheses with fuzzy data based on
confidence interval in radar detection criteria.

In this study, we will extend the fuzzy testing
hypotheses in order to make more reasonable decision in
radar detection.

PRELIMINARY CONCEPTS

Some concepts on fuzzy hypothesis testing have
been introduced.

Fuzzy number: A fuzzy subset K of real number R with
membership function p: R~(0, 1) 1s a fuzzy number if 1t

satisfies:

s Kisnormal, ie., suppg(x)=1
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¢ K isconvex, ie.:
Mg (20 + (1= D)%) = g (X)) 4 e (355, ¥, x5 € R, T [0,]]
+  Support K is bounded

Fuzzy hypotheses testing: Any hypothesis of the form
“H:0 is H(0)” 15 called fuzzy hypothesis, where “H:0 is
H(B)” implies that is in fuzzy set of ® (the parameter
space) with membership fimction H(0) 1.e., a function from
B to[0,1].

Given that the ordinary hypothesis H;:0€®, 1s a fuzzy
hypothesis with membership function H(0) = 1 at 6e®,
and zero at 0 ¢0,.

One-sided fuzzy hypotheses: Let the fuzzy hypothesis
“f:0 is H(0)” be such that:

e« His a monotone function of 6

*  There exists 0,60 such that H(Q) for 0:0, (or for
0<0))

»  The range of H contains the interval [0,1]

Two-sided fuzzy hypotheses: Let the fuzzy hypothesis
“f:0 is H(0)” be such that:

e There exists an interval (8, 6,)=® such that H(0) for
Be(0,,0,) and inf {6:0e0}<0,<0,<s5up{0:0eB}

¢ H is increasing function of 8 for 606, and is
decreasing for 0:0,)

¢ The range of H contains the interval ]0,1]

For the addition, subtraction, multiplication and
division (Kaufmann and Gupta, 1985).

CLASSICAL HYPOTHESES TESTING

Based on Neyman-Pearson criteria the decision is
made by maximizing the probability of detection under a
constramnt, which 1s the probability of false alarm does not
exceed a certain value (Papoulis, 1991; Kreyszig, 2006).
The achievable combination of detection probability and
false alarm probability are affected by the quality of the
radar system and the design of a signal processor.
However, as we all know, for fixed system, if we increase
detection probability, probability of false alarm waill
increase as well (because of type II error being
decreased). The radar system designer will confirm the
probability value of false alarm depending on radar type,
such as, for normal surveillance radar, the probability
value of false alarm is in the range of 107" to 107°. The
radar makes tens or hundreds of thousands, even millions
of detection decision per second. To have a complete

decision rule, each point in the space (each combination
of N measured data values) must be assigned one
decision, H, (" Target absent") or H, ("Target present").
Then when the radar measures a particular data set
(observation of received power signal), the system
chooses either "target absent” or "target present'. In
radar detection problem the prior probabilities density
function are unknown, but for theoretical study we can
consider it as a normal density function:

s "Probability of false alarm" = « = probability of
(type I) error = Probability (reject H /H, true)

+  "Probability of miss" = p = probability of (type II)
error = probability (accept H /H, true)

s "Probability of detection" = 1-p

The hypothesis is given by:

s  H, pzp, Noise alone)
o H. pep, (Signal+Noise)

Example 1: Let x,,..., x5, be a 101 random sample of a
received power signals, having normal probability density
function (by central limit theorem) with unknown u, o°, we
test the hypothesis with P, = ¢ = 5x107"

¢+  H, u=0(Noise alone)
»  H; p=0(Signal+Noise)

Assume the experiment 15 done twice with sample
means X, =0.56 microwatt and X, =0.57 microwatt and
sample variance s’ = 2.8,

For %, =056 microwatt:

f, =—=33633<1,,, =339

A

Then, we accept H, (received signal due to noise).
Where t; is the critical value for %, =056 and t, , is the
t-Distribution value atn-1 = 100 and P, = o=5x10"".

For X, =0.57 microwatt:

t, = —2
8

Vi

~34233 <t =339

Then, we reject H, (received signal due to signal).

Example 2: Tet x,,..., X5, be a 101 random sample of a
received power signals, having normal probability
density function (by central limit theorem) with
unknown u, ¢°, we test the hypothesis with
o = 0.05;
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e H,:0°<2.5 (Same target):
H,: 0%=2.5 (Different target)

This test measure if the echo signal is due to the
same target or different target because different target
returns different received power, so the value of the
variance get larger when it returns from different target.
And the value 2.5 depends on the radar’s type and
position.

Assume the experiment 1s done twice wit-h sample
variances s, = 3.1 and s, = 3.2.

Fors®, = 3.1:

2 (n—1j-sf
=

1

=124 <y =124342

n-1,o

Accept H, (the received signal from the same target).
Where 7, is the critical value for s*, = 3.1 and y°., .

is the y¢*-Distribution value at n-1 = 100 and « = 0.05.
Fors®, =3.2:

; _(n=1)-s

I o

=128 >y, =124.342

Reject H, (the received signal from the different
target).

Example 3: Assume two auxiliary similar antennas with
180°C in position and rotating together with 360°C as
shown in Fig. 1, the two ones having wide beam width
and bandwidth. The radar transmitter must be powered off
to avoid burning the two receivers. We make a test to
determine which direction contains more noise (jamming),
in order to make the radar receiver taking it in
consideration while testing the hypothesis about the
mean as in example 1 in order to increase or decrease the
threshold level. Assume ¢ = type T = 0.05 we test:

. H:p=p, =y —u,=d=0 (Same amount of noise)
. H iy #py = p —p, =d =0 (Different amount of noise)

Let x,,..., X, be a 101 random sample of a received
power signals from the first antenna, having normal

Antennna 1

\ Antennna 2

Fig. 1: Two antennas with 180 in position

probability density function (by central limit theorem) with
unknown p,, 0°, and v,...., y,,; be a 101 random sample of
a received power signals from the second antenna, with
normal probability density function (by central limit
thecrem) with unknown p,, o’

Assume the experiment is done twice with sample
means x, =03 microwatt X, =031 with the same variance
=05 and¥,=¥,=0.1 uW not changed with the same
sample variance sl =06.

For x, =028 & =05and 7,=018, =06

(, =— N 19164t , =1.972
if

b 2 2 =
3, 77
L2

non

Accept H, (same amount of noise).
Where t,, is the critical value for (% =0.36 and

¥, =01

t tzuu,u.uzs =1972

a2

is the t-Distribution value at n,+n,-2 = 200 and ¢ = 0.05.
For x,=031, ¢ =05and 7,=0.1,s=06:

.
(=2 Y2 201224t _=1972
] 2 2 df

5 .5

n, m

Reject H (different amount of noise).

These three given examples show that even a slightly
change in signal value can make different decision based
on crisp testing hypotheses. So, we have to think of more
realistic algorithm in testing hypotheses to solve this
problem. Fuzzy mathematics has been mtroduced to

address this challenge.

FUZZY HYPOTHESES FOR RADAR DETECTION
SYSTEM BASED ON FUZZY TEST STATISTIC

Suppose that, we are interested in testing the
following fuzzy hypotheses:

s H,:0=0, (B is approximately8,)
e H,:9=6, (0 is not approximatelyd

The new algorithm for testing fuzzy hypotheses with
crisp data:

¢ Calculate the membership function for the
hypotheses parameter 0 (mean, variance...), for
simplicity consider it as triangular shaped fuzzy
number (a, a,, a,):
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Table 1: Calculation method for different types of hypotheses

Left-sided test Right-sided test

Two-sided test

Q"O

t-distrubution

t-distrubution

t-distrubution

> >
a b
a Qn-l. 1a b a QM.“ b in, 1 "‘T Q..l_ﬂ_
L Quaa 8 quch that: b0, 1 Le _ b Qi guch that: a<Qus 1 L, +Lg 1, -e ol 1.<[b-o
L. b-a L. b-a L. LI =12
L L, L L
It b<Q, k=1 If a5Q, , =1 ]fa>Q_ LoL =0 also 350 i Ltle
Ly L. 12 LA
If a>Q“,“,m.-.L—L=0 Ifb<QHu.-.L—R=0 I b<Q o Lx=0akopbeg uLLJrLR 1
| Lr ’ Ly >3 w112 Lo
Fa>Q , mdpeg _ tls g
n-l, — o
'z 3 L.

Table 2: Degree of acceptance and rejection of H,

Decision is to reject H, or accept Hy with degree equal to

Decision is to accept Ho or reject H) with degree equal to

Li in case of left sided test L in case of left sided test
L i

T LT
L: in case of right sided test 1- Lt in case of right sided test
Lo L.
L+ Le i case of two sided test 1- Lo+ Tx iy case of two sided test

T T
8=[a, +(8,—a,)8,a;—(a, —0,)3] - X(OL)*M:[73_034816_523 1

Calculate the confidence interval of the data (X.7...) .
Data are considered to be crisp

Calculate the confidence interval of the fuzzy test
statistic Q”, based on step 1, ii

As represented in Table 1, calculation method for
different types of hypotheses

The decision as in Table 2

Where L., L and Ly are lengths.

Example 4: Test the hypothesis as same as example 1 but
on fuzzy test of hypotheses:

=fi=0 (Noise alone)

H =0
H =0=0>0 (SignaHtNoise)

For X, =056 pW:

0=fi=[a + (6, ~2,)5a,~ (a, ~6,)8] =[0,0.5]

X+t

s
F(e) =[x -t L —]=[-0.0394,1.1594]
. i

8
S

— - 2 — . E
Sy =[RS DS 000 048018]
n—l,% n—l,l—%

o= §(%H

and:
tmu,sxm" =339
b—
Ly P7Quis 3055
L b-a

T

The decision 1s to reject H, with 30.58% or accept H,
with 69.42%.

For X,=057 pW, the decision 1s to reject H, with
31.17% or accept H, with 68.83%.

Example 5: Test the hypothesis as same as example 2 but
on fuzzy test of hypotheses:

H, :8=0¢ =~ 25(Same target)
H,:6=c">2.5 (Different target)

The fuzzy test statistic 1s given by:

_(n=1)-§o)
& (w)

bl

Ko

For §f =3.1:
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7 =[79.753,208.832] and 2, . =124.342
The decision 1s to reject H, with 65.45% or accept H,
with 34.55%.
For s=32:

7 =[82.3266,215.565] and ¥, . ~124.342

The decision is to reject H, with 68.46% or accept H,
with 31.54%.

Example 6: Test the hypothesis as same as example 3 but
on fuzzy test of hypotheses:

«  Ho:p=p,ou-—p, =d=0 (Same amount of noise)
o H :p=p —op—p, =ds=0 (Different amount of noise)

The test statistic is given by:
i= i1((1)_?1(00_(1

S, S
I11 n2

0.40 (a)

For x,=03,s’=05 and §,=0.1, &£ =06

£, =[-5.6790,4.6103]and ty,p, =1.972, tyy,. = -1.972

The decision is to reject H, with 61.66% or accept H,
with 38.34%.

For %, =031, & =0.5and §,=0.1, s2=0.6

£, =[-55722,4.7176] and ty 0 = 1972ty e = 1972

The decision is to reject H, with 61.67% or accept H,
with 38.33%.

COMPARISON BETWEEN CRISP HYPOTHESIS
AND FUZZY HYPOTHESIS

Comparison between test of hypothesis about the
mean in crisp and fuzzy case: Figure 2 shows that the
critical region of crisp hypothesis about the mean
18 given by straight line, which give a very rigid
decision (accept or reject). While Fig. 2b shows that
the critical region of fuzzy hypothesis about the

pdfoftatdf=100

acc Ho

o
[
S
1
A

pdfoft
(=3
D
>
1

|,
»

070)
0.9
0.8
0.7
0.6
0.5 t distribution (pdf)
0.4
0.3
0.2
0.1

Value of t

Membership function of t-critical

0.0
AN 0

a=-3.0348

t (e = 0.0006)

> Ay L
b

Fig. 2(a-b): (a) Crisp hypothesis about the mean and (b) Fuzzy hypothesis about the mean
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0.030 (a)

| acc Ho

pdf of chi square at df = 100

/\

o 4| rej Ho |

A

5 e
=3 =3
o =3
S G
1 1

0.0154

pdf of chi square

0.0104

0.0054

pdf of chi-square at df = 100

\

N
A
A

L070)
0.9

0.8
0.7+
0.6
0.5+ chi-square at df = 100
0.4+
0.3
0.2
0.1+
0.0

Value of chi-square

| N

T T T 1
80 100 1208 140 160
chi-square (a0 = 0.05) = 124.3

Membership function of chi-square critical

] T
0 so A 100
4279753

chi-square (o = 0.05) = 124.342

T T 1
150 200 X 250

Fig. 3(a-b): (a) Crisp hypothesis and (b) Fuzzy hypothesis about the variance

Table 3: Comparison between crisp and fuzzy hypothesis

Crisp hypothesis

Fuzzy hypothesis

Test of hypothesis about the mean

X, =0.56 accept Ho -

X = 0.57 reject Ho-

Test of hypothesis about the variance

¥ =3.1 accept H, —

s’ =3.2reject H, -

Test of hypothesis about the difference hetween two mean
% =03, ¢ =05 andy, = 0.1, % = 0.6 (accept H,)

=031, ¢ =05andv; = 0.1, 5% = 0.6 (reject 1)

%, = 0.56 accept H, - with 69.42%
%, = 0.57 accept H, -~ with 68.83%

&% = 3.1 reject H, ~ with 65.45%
5% = 3.2 reject H, - with 68.46%

% =03, =05and ¥, = 0.1, §%; = 0.6 (reject H, with 61.66%)
% =031, 5% =0.5and ¥, = 0.1, 5% = 0.66 (reject H, with 61.67%%)

mean 1s given by membership function, which give a
scientific decision (reject or accept with a certain degree).

Comparison between test of hypothesis about the variance
in crisp and fuzzy case: Figure 3a shows that the critical
region of crisp hypothesis about the variance is given by
straight line, which give a very rigid decision (accept or
reject). While Fig. 3b shows that the critical region of
fuzzy hypothesis about the variance 1s given by
membership function, which give a scientific decision
(reject or accept with a certain degree).

Comparison between test of hypothesis about the
difference between two mean in crisp and fuzzy case:
Figure 4a shows that the critical region of crisp

hypothesis about the difference between two means
18 given by straight line, which give a wvery rigid
decision (accept or reject). While Fig. 4b shows that

the critical region of fuzzy hypothesis about the
difference between two means 18  given by
membershup function, which give a scientific
decision (reject or accept with a  certain
degree).

From the graphs of crisp and fuzzy hypotheses
about the mean, variance and differences between means,
we can see that crisp hypothesis makes rigid decision,
while the fuzzy hypotheses give a decision with certain
degree.

Table 3 illustrates the decisions about the mean,
variance and differences between means m two cases;
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pdfoftatdf=200

0.407(a)

035

rej Ho |

ace Hol /\

»
l Ll

0.301

0.254 t pdfat df =200

N

0.20

pdfoft

"

0.151
0.10

0.054

0.00 T T

v
v

4
l

4 3 ] -1
{(1-0/2 = 0.975) = -1.972

107
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

t-pdfat df =200

Y

0

Value of t

1 3 3 4
1 (/2 =0.025)= 1.972

Membership function of t (critical)

AN

6 X 4

- 1
a=(a/2=0.975)=1.972

% 4

t(0/2 = 0.025) = 1.972

I
b=4.6103

Fig. 4(a-b): (a) Crisp hypothesis and (b) Fuzzy hypothesis about the differences between two mean

crisp hypotheses and fuzzy hypotheses. Which shows
how the slightly change in the sample value can make
different decision in case of crisp hypotheses, whle
changing the degree of the decision in case of fuzzy
hypotheses, which prevent the user to take any severe
decision.

CONCLUSION

The statistical tests based on fuzzy test statistic
are more flexible and give more realistic decision
than the traditional ones. In this study, we 1illustrate
how a slightly change m the sample
change the decision. In radar detection, the decision
based on fuzzy hypotheses very  important
because the decision cannot change completely by
slightly  change in the sample statistics but the
decision degree  changed  And depend on our
application radar (swveillance or tracking) we can

statistics can

is

construct our radar receiver processor to accept or reject
to exact degree.
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