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Abstract: Agamst the limitations of demand independence hypothesis of traditional revenue management
models, adopting preference order to describe passenger choice behavior, taking ticket control strategy vectors
as decision variables, a dynamic programming model was constructed to maximize the expected revenue of
dedicated passenger line according to Bellman principles and then approximately solved by virtue of heuristic
decomposition algorithm. The results show that under the different transfer purchase probabilities, the expected
revenues obtained by the choice model are all more than those obtained by demand independence one.
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INTRODUCTION

In the 1970s, due to the relaxation of the aviation
regulation and price control, RM began to popular in
American airlines and now has been indispensable for
airline, hotel, rental and many other industries to obtain
competitive advantage. According to statistics, the
enterprise using RM often has an improvement of 2-8% in
revenue (Smith et al., 1992).

Application of RM to railway started late. Amtrak 1s
a pioneer in this area, in contract with Sabre, who
established the first RM system in railway in 1991, namely
the ARROW ticket booking system which achieved a
rational allocation of transport capacity and a floating of
price. According to statistics, in 2006 the company’s
railway passenger traffic increased by 23% and
revenue increased by 27.2%. In the early 1990s, SNCF the
national railroad of France developed railway ticket
booking, distribution and integrated decision support
system-including RM system (RailRev), schedule plan
system  (RailPlus) and seat management system
(RailCap)-1in partnership with SABRF which corresponds
to an approximate two percent increase in revenue every
year. GNER the Great Britain’s Northeast Railway
developed IRIS Technology Solutions m 2004 and then in
the same year, the revenue increased by 16.6 million
pounds which was 40 times compared to 2003.

In addition, DBAG the German railway company
developed a new fare system in the late 1990s and
established “RM department”. The Dutch railway travel
industry proposed different dynamic pricing strategies
based on the smart card, such as the direction-based

pricing strategy according to different traffic in both
directions, the time-based pricing strategy according to
different demand elastic in the peak and off-peak period
and so on which largely alleviate the revenue increase
bottleneck. The above operating experience of Umnited
States, France, Britain, Germany and other national railway
compames show that RM is an effectively way to optimize
the transport structure and resource allocation and to
enhance competitiveness and revenue of railway.

Research of RM in railway also began late. Strasser
(1996) summarized some common characteristics of
railway similar to airline and proposes applying RM to
railway to balance demand and improve profit. Kraft et al.
(2000} explored the common and different characteristics
between railway and airline and further demonstrated the
necessity to study theoretically RM in railway. Abe Itaru
(2007) showcased several empirical RM examples in
railway m Japan and Portugal and analyzed the
adaptability of RM applying to railway.

Bharill and Rangaraj (2008) discussed the elastic
pricing strategy of railway when facing competition from
other transportation modes such as arrline, road and so
on. Based on the developing trend of Chinese railway
passenger ticket pricing and the summary of western
researches, Shi et el (2002) discussed the optimal
dynamic pricing policy and developed a practical pricing
policy. Shuai and Sun (2006) established a system
dynamics model to describe the high-speed railway
pricing mechamsm. Ciancimine et al. (1999) regarded
railway RM as a single-fare and multi-leg problem, then
explored how to control seat capacity under deterministic
and stochastic O-Ds” demand by using a deterministic
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linear programming modal and a probabilistic nonlinear
programming model, respectively. You (2008) proposed a
constrained nonlinear integer programming model to deal
with seat allocation for a railway booking system which
assumed that demand for each trip in the network can be
divided mnto two segments, namely a full fare segment and
a discounted fare segment. Lan and Zhang (2009)
constructed a RM optimization model to maximize the total
operation revenue for high-speed passenger railway
which 1s an integrated model that can synchronously
optimizes seat inventory allocation and train departure
schedule. By transforming the contimuous random
variables into discrete random variables in the existing
seat control model, Xuedong and Yin (2011) optimized
operation revenue of the multi-leg and multi-fare railway
with less solution difficulty.

The works, especially the models mentioned above
provide theoretical support, reference and methodological
guidance for implementing RM to raillway. However, they
make a common simplifying assumption that demand for
each ticket is completely independent of the controls
applied by the raillway firm which are common in the
context of traditional RM models. Cooper and Gupta
(2006) demonstrated that using strategies which ignore
customer choice behavior repeatedly can drive revenue
down and result in a phenomenon called the “spiral-down
effect”. Zhang and Lan (201 2) explored the application of
RM to lugh-speed railway and proposed a RM model with
considering customer choice behavior in the case of
multi-fare and multi-trein railway. Numeral experiments on
simulation data show that the total revenue of the model
15 higher than that of demand mdependence model and
the gain increases with the number of the fare classes.

In China, dedicated passenger line runs with high
density, public transport, flexible organization and other
characteristics which results mn a variety of optional
tickets between the same Origin and Destination (Q-D).
Facing many optional tickets, a passenger will pick some
tickets as his/her purchase intentions according to his/her
travel demand and then rank them according to his/her
preference-the first is the favorite, followed by the second
favorite, the third favorite and so on, to form a list which
is called a preference order (Van Ryzin and Vulcano, 2006;
Chen and Homem-de-Mello, 2010). When purchasing
ticket, if and only if the first option in his/her preference
order 1s not available, the passenger moves to the second
option with some probability. If the second option in
his/her preference order can’t be obtained either, he/she
moves to the third option with some probability and so
forth until either the passenger has no other choice but to
leave or his /her request is accepted, where the
probabilities can be viewed as the transfer purchase
probabilities within a preference order.

The concept of preference orders is an effective way
to describe passenger choice behavior which embodies
the principle of utility maximization and takes “buy-up”
into account as well. Indeed, the number of preferred
orders will be increase rapidly due to the increasing
number of tickets. However, in reality, it 1s reasonable to
distinguish passenger choice behavior by selecting
appropriate munber of preference orders, on the base of
market segments according to the similarities and
differences of passengers’ demand and preference. Thus
in the study, we study RM in dedicated passenger line
with multi-segment, multi-trip and multi-fare based on
adopting preference order to describe passenger choice

behavior.
MODEL DESCRIPTION

The dedicated passenger line consists of M+l
stations (No.1dontes the original station and the rest are
numbered successively) and K tains to serve one single
direction. The initial seat capacity of traink (k=1, 2,..., K)
onlegm (m =1, 2,..., M) (between station m and station
m+1) is denoted by c . Let C = [colem De the seat
capability matrix.

The dedicated passenger line totally provides n
tickets (a ticket 13 defined by an O-D and fare
combination), each ticketj (j =1, 2,..., n) has an associated
fare £. Define the incidence matrix B [by],.«. If ticket j take
the seat of train k, by, = 1, otherwise, by, = 0. The incidence
matrix between tickets and legs is denoted by Y = [y, ] .
Tf ticket j take the seat on leg m, y,., = 1, otherwise, v, = 0.
Let A, be the incidence matrix of ticket j associated with
trains and legs and it is easy to get A, = B'Y;, where B,
and Y, are the jth columns of B and Y, respectively.

As we know, the spare seats m a train may be sold
during the run but their values reduce gradually as the
train runs forwards and lose completely if they cannot be
sold at the last station before the destination. That is to
say, for the same train, different station has different
presale terminal time. The presale terminal time of train k
at station m is denoted by t,,. The presale initial time of
the dedicated passenger line is denoted by t,, thus the
whole presale range is [t;, tyy,]. Paralleling to a practice
often used in dynamic control, we divide [t;, tiy] Into T
periods so reasonably that at most a passenger arrives
within each period-the probability of more than an arrival
is negligible. Period I(1 =1, 2.,..., 1) stands for [t,,, t,], where
t = e

Let %, be the available seat capacity of train k on leg
m in period 1 When train k departs from station m, the
value of all the spare seats will lose on leg m and train k
can no longer meet any subsequent demand of O-Ds
associated with leg m, so we might as well appoint that
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the available seat capacity of train k on leg m is 0, i.e.,
when t <t ,, X, = 0. The available seat capacities of each
train on each leg m period 1 are denoted by X = [x.]cem
which 1s called the network state of the dedicated
passenger line. The available seat capacity matrix of ticket
Jis X and it is easy to know that X = [by y;,.X,,]. When
Xz A, if one unit of ticket j 1s sold, the network state of
the dedicated passenger line is updated to X-A,.

Assume that the passengers are divided into S
segments. The preference order of segments(s =1, 2,...,
3) 18 denoted by U, which contams n, tickets, where
1<n.<n. Let ¢, represent the transfer purchase probability
from ticket h to ticket h+1 in the preference order U,
where 1 <h<n-1. When h = n,, we can get g%, = 0 from the
definition of preference order. Because we only focus on
constructing the RM model, ¢, are just regarded as the
input parameters of the model, whose estimation methods
can refer to Sven-Eric (1998) and Algers and Beser
(2001). Assume that the order of ticketjin U, is w,. Let
B, = {zeU|w,<w,} be the set of tickets which is ranked
before j in U,

Assume that passengers’ arrivals obey Poisson
distribution. In order to simplify the model, assume that
the possibility of an armival of segment s 1s independent of
period 1 and denoted by A, Tet 4 = X°, _ A, O<A<l.
Further assume an arriving passenger books at most a
ticket and won’t cancel the ticket.

Let p (1, X) represent the control strategy of ticket j
given the network state is X in period 1. If X;> A, and ticket
Jis onsalein period I, p(l, X) =1, otherwise, p,(1, X) = 0.
Because (1, X) depends on period | and network state X,
for simplicity, we replace (L X) by p, without confusion.
Tet u=(u, W,..., W) be the control strategy vector of the
tickets within period | when the network state 1s X. The
firm’s task is to optimize expected revenue of the
dedicated passenger line by dynamical choosing control
strategy vector p during the whole presale range.

MODEL CONSTRUCTION

Let the objective function, denoted R,(X), be defined
as the optimal expected revenue of the dedicated
passenger line from period 1 through to period T given the
network state m period | 1s X which 1s closely related to
the probability that an arriving passenger buys each
ticket.

Let p,;(u) mean the probability that ticket j is bought
by an ammving passenger of segment s given the control
strategies is p.p (1) can be calculated by:

w1

P (=8, [[A-n)] ] a (1)

zeBy h=0

where, 8, is an indicator variable, if jeU,, then & =1,
otherwise 8,=0.Q%=1,s=1,2,..., 5.

Let p(p) stand for the probability that ticket j is
bought by an arriving passenger given the control
strategies is p. By the formula of full probability, we have:

PiI=2, AP, (0 (2)

Let po(p) represent the probability that an arriving
passenger buys nothing and by total probability:

Pn(u)zlfi)p,-(u)

Within period 1, if there is no amival (with the
probability 1-1), the increased expected revenue of
dedicated passenger line is Ry, (X). If there is an arrival
{(with the probability A), two situations will occur. One 1is
that the ammiving passenger purchases one ticket, for
example ticket j (with the probability p,(w)),
correspondingly, the increased expected revenue is
£+R,.(X-A) and the network state updates to X-A,. The
other 1s that the arriving passenger purchases nothing
(with the probability po(p), correspondingly, the
increased expected revenue is R,,,(X). Thus, according to
the Bellman optimization principle, the expected revenue
optimization problem of dedicated passenger line can be
formulated as the following DP:

R (X)={1- R, (X + max

pefo, 1t

a (3)
{Z Ap,((F, R, (X - AD)+Ap, (R, (X)}

=1

further systemized to:
R,(0)= max {2 3, (1, —ARI(X))}+RM @
pe{0, 1

The boundary conditions are:

R(0)=0,1=1,2,.. T
R (X)=0,vX:0

where, AR(X) Ry s(X)-Ry(X-A)) stands for the
opportunity cost of selling one unit of ticket j given the
network state m period | 1s X and 0 = [0];..

Through selecting optimal control strategy vector in
each period, model Eq. 4 optimizes the expected revenue
of dedicated passenger line from the discrete viewpoint.
By observation, each decision variable in the solution
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space is related to presale period and network state.
Although the presale range of dedicated passenger line 1s
relatively short, the characteristics such as consisting of
multiple legs and serving multiple O-Ds’ demand will lead
to very large model size, so it is necessary to design the
effective algorithm.

MODEL SOLUTION

In order to overcome large scale problem of the
network RM model, we refer to the approximate
decomposition heuristic put forward by Talluri and van
Ryzin (2004a) which has obtained good numerical analysis
results.
Deterministic approximation: Deterministic
approximation is  applicable way to simplify
high-dimensional optimization problems, in which
stochastic quantities are replaced by their mean/expected
values and seat capacity and demand are assumed to be
continuous, then from aggregate viewpoint the total time
(the amount of periods) of each control strategy vector
adopted during the whole presale range is taken as
decision variable to achieve the optimization of objective
value.

Let R(p) denote the expected revenue of dedicated
passenger line generated from an arriving passenger when
the control strategies 1s . It's easy to know:

R(u)=i fip; ()

Let Q. (p) denote the probability that the passenger use
a seat in train k on leg m. Obviously:

Qun (13 =20y - ¥ P (W)
j=L

The seat consumption probabilities are denoted by the
matrix Q) = [Qu{W]ca. The total time that control
strategy vector p is adopted during the whole presale
range is represented by t(u) which is allowed to be
contimuous by further relaxation Thus we can construct

the following Choice-based Determimstic Linear
Programming (CDLP):
max Y AR(wt (1) (5)
peln, 1"
st > AQQut (weC (6)
pef0, 1
> otwst (7

pefo, 1

()20, Vpe {0, 13° ®)

where, the inequality Eq. € stands for the seat capacity
constraint, Eq. 7 stands for the ticket booking deadline
constraint, Fg. 8 stands for nonnegative constraint of the
total time. DP model focuses on dynamic matching
between control strategy and presale period while CDLP
model focuses on the total time that each control strategy
vector is adopted. Their starting points differentiate but
their solutions relate, the latter is equivalent to the
integration of the former. Talluri and van Ryzin (2004a)
have proved CDLP to be asymptotic optimality that
enswures its approximation effect.

Solving CDLP by column generation algorithm: As
noted, it is very difficult to solve CDLP Eq. 5 exactly
because the number of its decision variables is 2° which
is far greater than the number of its constraints. Column
generation algorithm has been proved to be an efficient
technique to solve such models. Roughly speaking, we
first choose a limited number of control strategy vectors
(a control strategy vector corresponds to a column of
coefficient matrix) and then solve a reduced CDLP only
using these control strategy vectors. Next we check to see
if any control strategy vector left has a positive reduced
cost relative to the dual solutions of the reduced CDLP. If
so, the control strategy vector with maximal positive
reduced cost is added and the reduced CDLP is resolved.
If there are no such control strategy vectors with positive
reduced cost, then the current solution is optimal.

Denoting the collection of the chosen control
strategy vectors by [ = {l;, ..., B} Where 1<[<2" the
reduced CDLP is formulated as following:

max p ARGULR), st > AQQuUL() < C,

pept pep

St () 20, Ypep'

pep’

Let m = [Nl and 0 be the dual prices for the first
and second constraints, respectively, of the reduced
CDLP. To check to see if these values are feasible for
CDLP Eq. 5, we can solve the following column generation
sub-problem:

ma {m(u)—xiinm -ka(u)}—c )

pef 1} =l m=l

1e.;

8 n K M vyl
maxn{hzhsz(f,-—zznkm-b,-k-y]m)-u,.as,.nafuz)nq; .
[ —) k=l m=l 2€B,; h=0

(10)

If the optimal value of Eq. 10 is non-positive, then
T = [Mlew and o are dual feasible and the current
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solution to the reduced CDLP is in fact optimal for CDLP
Eq. 5. Otherwise let p* be the optimal solution to Eq. 10,
then we add p* to the collection p* = {p,, p,,..., pp} and
repeat the above process until the optimal solution 1s
obtained.

Decomposition heuristic: Let %, be the optiumal dual
solutions obtained from the above sections. At a given
train k and a given leg m, we approximate the objective
function by:

R X)= Rfm (ka)JrZ Z Tci*vxiv (1 1 )

ik wEm

where, R®(x,.,) represent a dynamic (time-dependent) and
non linear approximation of the seat capacity of train k on
leg m, mw*.x, are static (time-independent) and linear
approximation of the value of the else seat capacity. Thus
the opportunity cost of selling one unit of ticket j can be
approximated by:
R,()-R,K-A ) wby, - i (AR () = 7 )42 Dby -y,
ik vEm
(12)

in which AR™, (x_) = R®™, (o -R™, (x,-1). Then by
substituting Eq. 11 and 12 into 5, we obtain:

" 13
Ri™ (%, )= Eﬁn{ZApJ(“)Gka}+Rrﬂ(xm) (13
o | 5

with the boundary conditions:

R&™0)=0, v1
Revi(X) = 0, ¥, 20

Where:

.
b]k Yin T

1=

Gmxn = fj - bjk Yin (ARm(xm)* “:m)’

K
f=|

1

g
iR

Obviously, model Eq. 13 is a one-dimensional DP and
can be solved relatively easy, thus we approximate R,(X)
by:

E e (REND N

k=l m=l ik vem

R(C), the expected revenue of dedicated passenger
line during the whole presale range is formulated
approximately as:

RO s R e E T, (9

1 m=! ik vem

NUMERICAL EXAMPLE

A dedicated passenger line consists of three stations
and runs three trains in one single direction during
morning, noon and evening, respectively. The trains are
numbered in the order 1, 2, 3 and their operation schemes
are different as shown in Fig. 1. Each train has eight
carriages and offers 560 seats on each leg. The firm sells
tickets by 15 davs in advance, the ticket presale terminal
time of each station (not including the destination) is
listed 1in Table 1 and the whole presale range 1s divided
finely mto 3000 periods.

A total of 24 products are offered with their
descriptions shown in Table 2 and passengers are divided
into 12 segments with their characteristics, arriving
probabilities and preference orders shown in Table 3. To
simplify the calculation, we assume passengers’ transfer
purchase probabilities in each preference order are equal.

To test the influence of passenger preference order
on the expected revenue of the dedicated passenger line,
we choose the expected revenue obtained under the
demand independence assumption as the benchmark. In
demand independence case, the optimal dual prices
appled to approximately decompose DP Eq. 4 are
achieved by solving a determimistic linear programming
model (Talluri and van Ryzin, 2004b), in which, the
expected demand of ticket j is calculated by:

DINEEN § AT IR

With the help of MATLAB and CPLEX software, the

expected revenues of the dedicated passenger line

Train 1 Train 2 Train 1 Train 2
m
Train 3 Train 3 Train 3

Fig. 1: Dedicated passenger line network

Table 1: Ticket presale terminal time of stations

Train Station Temminal time
1 1 8:30
2 9:20
2 1 11:50
3 13:10
3 1 18:30
2 19:40
3 20:20
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Table 2: Description of dedicated passenger line tickets

Ticket 0-D Motor car Fare (yuan)
1 1-2 1 60
2 1-+2 1 40
3 1-4 1 225
4 1-+4 1 150
5 2-4 1 150
6 24 1 100
7 1-3 2 120
8 1-+3 2 80
9 1-4 2 225
10 1-+4 2 150
11 34 2 90
12 324 2 60
13 1-2 3 48
14 1-2 3 32
15 1-3 3 90
16 1-3 3 64
17 1-4 3 180
18 1-4 3 120
19 2-3 3 60
20 2-+3 3 40
21 2-4 3 120
22 24 3 80
23 3-4 3 72
24 34 3 48

Table 3: Description of dedicated passenger line passenger segments

Armiving
Segment Characteristics probability Preference order
1 Time-sensitive (1-+2) 0.10 {1, 2}
2 Price-sensitive (1-+2) 0.06 {14, 2,13}
3 Time-sensitive (1-3) 0.09 {7, 8}
4 Price-sensitive (1-+3) 0.06 {16, 8, 15}
5 Time-sensitive (1-+4) 0.15 {3, 4, 9,10}
6 Price-sensitive (1-+4) 0.10 {18,4,10,17}
7 Time-sensitive (2—3) 0.06 {19, 20}
8 Price-sensitive (2—3) 0.06 {20,19}
9 Time-sensitive (2—4) 0.08 {5, 6}
10 Price-sensitive (2—4) 0.10 {22, 6,21}
11 Time-sensitive (3—+4) 0.06 {11,12}
12 Price-sensitive (3—+4) 0.06 {24, 12, 23}

Table 4: Expected revenue under different transfer purchase probabilities

Transfer Expected revenue (yuan)

purchase

probability Preference order Demand independence Gain (%)
0.1 313030 298411 4.67
0.2 325451 309081 5.03
0.3 330778 313379 5.26
0.4 344168 322898 6.18
0.5 347469 322347 7.23
0.6 349680 323629 7.45
0.7 352926 317351 10.08
0.8 356854 312248 12.50
0.9 360716 313642 13.05
1 365393 313653 14.16

assoclated with different transition purchase probabilities
are obtained (as shown in Table 4). We can see from
Table 4 that the expected revenues of the dedicated
passenger line obtained by the taking
consideration of passenger preference order are improved
compared to the demand mdependence model.
Meanwhile, as passengers’ transfer purchase probability
increases, the gain of the model based on passenger

model

preference order related to the demand independence
model is more significant. This does more visually show
the limitations of the demand mdependence assumption
1n traditional RM models. Therefore, in RM practice, we
should fully consider the influence of passenger choice
behavior which will help to fuwther improve the
profitability.

CONCLUSION

By using dynamic programming model, we explored
the RM problem of dedicated passenger line under the
influence of passenger preference order in this study. The
difficulty of large model size was overcome by means of
decomposition heuristic to realize approximate
optimization of the expected revenues of dedicated
passenger line. Results show that the expected revenue
based on passenger preference order is higher than that
based on demand mdependence assumption which
further demonstrates the limitation of the demand
independence assumption in traditional RM models. Our
research enriches the theory results of railway passenger
RM and provides a reference and a new perspective for
implementing RM to dedicated passenger line.
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