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A Multi-item, Multi-echelon Inventory Allocation Model for Aircraft Spare
Parts Based on VARI-METRIC
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Abstract: To maximize the system availability for a fleet of airlines, aircraft with optimal spares investment, a
inventory model based on VARI-METRIC is proposed according to the process of use, transport and repair

which is based on system approach for determining aircraft spare parts stock level in a multi-echelon system.
First of all, the relationship of availability and backorders is proved and negative binomial distribution is chosen
to describe the backorder distribution when the value of mean-to-variance ratio 1s more than one. Then, with
the target of minimum the total expected backorders for spare parts and cost constraint, the marginal analysis

method optimization is applied. Finally, two examples were given and proved that the model using negative

binomial distribution 1s reasonable and engineering applicative.
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INTRODUCTION

Equipment-mtensive industries such as airlines,
nuclear power plants, play an even more important role in
modemn society. The availability of such systems may
strongly affect daily operations. As a consequence, it 1is
require large quantities of spare parts to guarantee their
availability which in turn results in excessive cost. The
aviation industry, for example, it must camy about
hundreds billion dollar each year to stock the spare parts
they need to keep their airplanes flying. So, it 18 very
important for airlines to determine the stock level with
reasonable inventory mvestment.

An airline company usually keeps a central inventory
of parts m its depot. Additionally, it also keeps smaller
‘outstation’ inventory at the other airports bases where
its aircraft have regularly scheduled landings and
departures. Our object 13 to determine the inventories of
those expensive but low-usage spare parts, m such
multi-echelon maintenance organization with minimum
cost.

The importance of service parts management has
mcreased mn the past decades. Many models for these
kinds of stock allocation problem have been developed.
They can be classified into two streams. The works of
Yanagi et al. (1997), Wong et al. (2002) and Van Harten
and Sleptchenko (2003) belong to the first stream. They
model the problem as a multi-dimensional Markovian
problem. All research in the second stream is based on the

well-known METRIC model (Multi Echelon Technology
for Recoverable Items Control) proposed by Sherbrooke
(1968) for the US airforce which was largely focused on
aircraft spare parts inventories and was considered as one
of the first system approaches that aiming at a high
availability of complete technical systems, as opposed to
more classical inventory management approaches that are
primarily directed towards a high availability of individual
items. Compared to the models in the second stream, the
models m the first stream give more exact results than the
METRIC type moedels. However, they are more difficult to
solve because of the huge multi-dimensional state spaces
involved. Due to the complex nature of awcrafts' repair
process, the METRIC model is chosen to solve the
problem which can be evaluated and optimized within
reasonable computation times.

On the early version of the METRIC model, the failure
arrival process of demands was assumed to be constant
and then a Poisson model was used but later on, many
studies indicated that it wasn't so (Slay, 1984; Graves,
1985; Sherbrooke, 1986, 2004; Zamperini and Freimer,
2005). Slay (1984) devised an unprovement to METRIC
that he called VARI-METRIC and Graves (1985) published
a simple derivation of this approximation. Graves showed
that in 11% of cases, the METRIC stock levels differ by at
least one umt from the optimal results; the VARI-METRIC
levels differ in only 1% of cases. Sherbrooke (1986)
employed the negative binomial distribution to more
accurately reflect the variance in part failure processes in
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the VARI-METRIC model. The model is successfully
used in commercial version by American Navy and
Arrforee.

There are several studies focus on this 1ssue at home
(Sun et al., 2008; Sun and Zuo, 2010) these years but they
still applied Poisson probability distribution to describe
the demand arrival process in their model. In the model, a
negative binomial distribution and some of the mnsights
obtained through experiments are used.

PROBLEM DESCRIPTION

In the study, the airline company’s LRUs inventory
problem is used to describe the problem. Generally, after
an aircraft has landed at a base, engineering inspection 1s
carried out prior to the next departire. When a LRU on an
aircraft becomes defective, it should be removed and
replaced by a serviceable one from the local stock (if
available). If there i1s no available one in the local
mventory for the replacement, a backorder 1s established
and the aircraft will remain on ground and will be delayed
until an incoming flight brings a replacement part from the
depot. The failed part can be repaired at the base for some
minor problems but for the more serious problems it
should be sent to the depot or to a special repair facility.
At the same time, a functioning LRU is sent from the
depot to the base. But if the depot is empty, a depot
backorder 1s established. This does not necessarily imply
that an aircraft is grounded but the risk of backorders at
the bases increases.

The transportation time T for a defect LRU from a
base to the central depot 1s assumed to be deterministic
and known and the same is assumed for the
transportation time from the central depot to a base. For
simplicity, it’s assumed that there is no difference
between the bases 1n this respect.

The repair time for a defect LR at depot is assumed
to be a random variable with expected value v. An
umportant assumption (approximation) m the model 1s that
these repawr times are independent and equally
distributed. According to Palm’s theorem, the number of
LRUs in the workshop, at a randomly chosen time, is a
Poisson random variable with expected value Av.

Define the following variables for the models:

Index of LRU type i, i=1,..., I, where T denotes
the total No. of LRUs in the system

Ai = Average amual demand of the LRU 1 at base

j = Index of base j, j = 0..., ], where 0 denotes the
depot and J denotes the total number of bases

vy = Average repair time (in one year) of the LRU 1 at

base ]

p; = Probability of repair of the LRU i at base j

W; = Average pipeline at base j, represents the
average demand for the LRU 1 under repair or
resupply

T; = Average order and ship time from the depot to
line base j for LRUT 1

p(1) = Probability that the demand for a given LRU 1

during a predefined time
MODEL TECHNIQUE

Optimization formulation: Availability A, 1s the expected
percent of the aircraft fleet that is not down for any spare.
An aircraft will be available only if there is no backorders
for any of the occurrences of LRUs. Treating failures of
LRU 1 in different installed locations as independent, the
probability that no randomly selected element is missing
an LRU s:

z
A=100]] {I-EBO(si)} (1)

N7,

log(A/100)= EI: Zlog {%‘;@)} ~ EI: EBOE YN  (2)

N 1is the number of aircrafts; Z i1s the number of the LRU
1 that installed on an aircraft; [ 1s the munber of LRU type;
so the relationship between availability and EBO is:

max(A)=min(sun(EBO)) and now the optimal
mathematical statement for LRU 1 1s:
mini EBO(s,) i ¢s, <C (3
i=1 i=1

C is the total system cost targets; ¢, the cost of LRU i; s,
the stock level of LRU 1.

Expected backorders: At a given randomly chosen time,
there 1s a balance equation that 1s the basis for all of our
analysis to come:

s = OH+X-BO (4)

s is the stock level; X is the number of LRUs coming from
repair and resupply; OH is the number of LRUs currently
available in the inventory (on hand); BO is the number of
backorders. They are all natural random variables which
can only take on non-negative integer values, Moreover,
at each time at least one of BO and OH 1s zero.

Therefore, BO and OH can be expressed as the
following functions of X and s:
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BO = (3{-s)" = max {0, X-s} &)
OH = (5-X) = max {0, s-X} (6)

Suppose X 18 a Poisson random variable. The
expected number of backorders, EBO(s), 1s thus:

EBO(s)= Y, (- 9p(x) (7

x =8+l

And the Recursive expression of Eq. 7 is:

EBOM)= 3, (6-9p(0) = 3 [X-(5-Dlp(o)

(&)

x=s

—i p(x) = EBO(s-1)— [1— sz:: p(x)}

The problem will be solved in two steps:

*+ For a smgle LRU, develop the theory for optimal
allocation of stock levels between the bases and the
depot, 1e.

* Combine all LRUs on a system using marginal
analysis. It's easy to see how to construct an optimal
cost-backorder curve for a single LRU

Pipeline and backorders at depot: From the given
conditions, it follows that defect LRUs arrive to the depot
according to a Poisson process with intensity:

Ao =200, 0-p,) ©

As the repair times have been assumed independent,
1t follows from Palm’s theorem that the average number of
LRU 11n the pipeline at base j, X, 13 a Poisson random
variable with:

my; = B[X,] = L, 10

The expected number of backorders at depot, with the
same recursive equations as Hq. 8 is:

5p-1

EBO(s,) = {EBO(S,0 1 {1 -3 Poissontk, )| (1)
k=0

Referring to the definition of variance, the variance of

backorders 1s:

VBO(sy) = E[BO*(s,))-{EBO(s,)]’ (12)

The Recursive expression of Eq. 12 is:

VBO(s,) = VBO(s,5-1)-EBO(8,,)-EBO(5,0-1)-[EBO (5,0 ) '+
[EBO(s,-1)T (13)

Pipeline and backorders at bases: As noted earlier the
VBO to EBO of Poisson distribution is not always one.
The typical behavior 1s for the ratio to mcrease as a
function of s to a maximum at a value of s slightly larger
than the mean and then decrease asymptotically to one,
as shown in Fig. 1.

So, use the negative binomial distribution to describe
the backorders distribution. But the function has an
added work that requires two parameters r; and p; which
can get from the mean and the variance:

g = /] Var(s;) -, | (14)

p1] = “ij/var(su) (15)

The fraction of all demands at the depot for LRU 1
that 1s resupplied to base J:

) (16)
! ?\'H]

The pipeline quantity of LRU 1 at the base j consist of
three parts: LRU i under repair at the base j, LR i on
order and LRU 1 waiting at the depot for backorders:

By =2y [pijvxu +(1-py)y ]* FEBO(s, ) a7)

The expression for the variance of the pipeline
quantity at the base j 1s:

VEI(SIJ) = }l‘1][p1]\’7iﬂ+(1 _pij)Tij]+ﬁ](1 _fij) EBO(S1U)+FijVBO(S1U)
(18)

4.0
3.59 15
3.0
2.5
- T~ T
1.5—/

1.0+

0.5 1
0.0 T T T T T 1

VBO(s)/EBO(s)

Fig. 1: VBO(s)/EBO(s) for various mean values of the
Poisson
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For computational purposes it is useful to have
recursion formulas. So, it’s derived below:

-1 _
negx) - [X” }p’a—p)“ D gy
c x!(r-1)!
F+r-D*x+r-2 =x+r—1 _ _
WP (-p~{1-p) - (1-pineg(x -1)

(19)

Then get the Recursive expression of the negative
binomial distribution:

neg(k) =0 pYnegl-1) (20)
neg(0) - p'

where, O<p<1 and r cannot be integer.
The expected backorders for LRU i at base j:

EBO(s,)= i {k—s,)*neg(x) (21)

x=gH

Calculating and optimization procedure:

Step 1: Calculate the depot pipeline from Eq. 10 and the
expected and variance of backorders
Eq. 11-13 of the depot for any stock level

Step 2: Calculate the average pipeline and vanance for
each depot stock level at base j from Eq. 17-18.
Then the two parameters rand p are gotten from
Eq. 14-15

Step 3: Start with a depot stock level of zero

Step 4: Calculate the expected backorders for each level

from

of bases from Eq. 20-21. Repeat for each base

Step 5: Use marginal analysis to combine the base
backorder functions and obtain the minimum
backorders for each number of units at bases

Step 6: If the level of depot stock 1s large enough, go
to step 7, otherwise, increase the depot stock
level by one and go to step 2

Step 7: Find the mimmum value on each diagonal
representing the same number of units of stock

Step 8: Repeats steps 3-7 for each LRU

Step 9: Use marginal analysis to combine the LRU
solutions, where the first differences must be
divided by the LRU costs

To prove that marginal analysis produces optimal
solutions, it’s need to prove EBO function is convex for
any probability distribution:

AEBO(s) = EBO(s+1)- EBO(s) =1*P(DI =5+ 2) +
2*P(DI=58+3)+ -1*P(DI=s+1)-2*P(DI=5+2)— (22)
3*P(DI=5+3)—..=-P(DI=5+1)-P(DI=5+2) -
P(DI=§+3)-..<0

AEBO) =P(DI=5+3N+2PDI=5+H+.- -
2*P(DI=5+2)-4*P(DI=5+3)-6*P(DI =
s+d)—---+P(DI=s+1})+ 2*P(DI =5+ 2) + (23)
I*P(DI=s5+3)+4*P(DI=s+4)+...=

P(DI=s+1)=0

The first difference of EBO 1s less than or equal to
zero and the second difference is greater than or equal to
zero which is according with the definition of the convex
function.

Since, the expected backorder function is convex,
the marginal analysis values {EBO(s-1)-EBO(s)i/c
are non-mncreasing. The system backorders are convex
also.

NUMERICAL EXAMPLE

Example 1: A real sample of spares demand is showed
below. And examples of Poisson and negative Binomial
distribution adjusted to it are Table 1-2.

From Fig. 2 it’s easy to see that negative bionomical
distribution reflects the sample more accurately.

Table 1: A real sample of spares demand

Spares Spares

Month (x) demand (¢) -mean)® Month (x) demand ¥)  (v-meany
1 0 0.111 14 0 0.111
2 1 0.444 15 0 0.111
3 0 0.111 16 1 0.444
4 0 0.111 17 0 0.111
5 0 0.111 18 0 0.111
6 0 0.111 19 0 0.111
7 0 0.111 20 0 0.111
8 0 0.111 21 0 0.111
9 0 0.111 22 0 0.111
10 4 13.444 23 3 7.111
11 0 0.111 24 0 0.111
12 0 0.111 25 0 0.111
13 0 0.111

0.9 —&— Sample frequency

0.8 —— Possion

0.7 - —@— Negative

0.6 1

0.5 1

0.4 1

0.3 1

0.2 1

0.14

0.0 . ; —ft—

0 1 2 3 4

Fig. 2: Comparison of Poisson and negative distribution
adjust to the sample
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Table 2: Poisson and negative distribution adjust to the sample

Table 4: Optimal expected backorders for any stock level

Demand Occurrence Sample frequency Poisson Negative
0 30 0.833 0.717 0.809
1 3 0.083 0.239 0.116
2 1 0.028 0.040 0.041
3 1 0.028 0.004 0.018
4 1 0.028 0.000 0.008
Table 3: Value of variables for any depot stock level

S0 EBO (sip)  VBO (5p) 1 (s) Var(s,) Py Iy

0 1.600 1.600 0.600 0.600

1 0.802 1.115 0.400 0.420 0.953 819
2 0.327 0.523 0.282 0.294 0.958 6487
3 0.110 0.180 0.228 0.232 0.981 11.828
4 0.031 0.050 0.208 0.209 0.994 37.460
5 0.008 0.012 0.202 0.202 0999  163.267
[ 0.002 0.002 0.200 0.200 1.000  B854.245

| Base 1 | | Base 2 | | Base 3 | | Base 4 |

Fig. 3: Level of the orgamzation

Example 2: In this example, there are two organizational
levels, two types of LRUs (Fig. 3).

The mput data for LRU;: A, = 20 demands/year,
v, = 0.0 years, p; = 0.2, 1; = 0.0] years, ¢, = 5,
vy, = 0025 years; LRUy; Ay = 10 demands/years,
v, = 0.01 years, p, = 0.1, T, = 0.01 years, ¢; = §
v, = 0.02 years.

Perform step 1-2, then get EBO and VBO of depot and
p and Var for four bases, just taking base 1 for example,
for any depot stock level (Table 3). Use the value of
VMRs also can find that the VMRs are always larger than
one.

]

Then starting with a depot stock level of zero, the
expected backorders and EBO(s) are calculated. And so
does the marginal analysis value and EBO(s-1)-EBO(s)
(AEBO) applying negative binomial distribution. From
step 3 to step & in pervious section, the optimal backorder
table for stock levels at any base are calculated as shown
in Table 4.

The Table 5 presents final result that is the quantity
required of each LRU type by depot and the four bases
for total cost.

The curve of Fig. 4 uses the data of Table 5. This can
be converted mto an optimal system availability-cost
curve in the same manner also. This makes this model a
very powerful tool for comparing different support
orgamzations. For example, one may compare solutions
with central vs. regional warehouse.

For example, when choosing between two
components performing the same fimction, s it more
economical from a cost perspective to select the

Base
5 1 2 3 4 Depot  EBO AFBO
0 0 0 0 0 0 4.000
1 0 0 0 0 1 2.404 1.596
2 0 0 0 0 2 1.454 0.950
3 0 0 0 0 3 1.020 0.433
4 1 0 0 0 3 0.819 0.202
5 1 1 0 0 3 0.617 0.202
i} 1 1 1 0 3 0415 0.202
7 1 1 1 1 3 0.213 0.202
8 1 1 1 1 4 0.114 0.099
9 1 1 1 1 5 0.084 0.030
10 2 1 1 1 5 0.067 0.018
11 2 2 1 1 5 0.049 0.018
12 2 2 2 1 5 0.031 0.018
13 2 2 2 2 5 0.013 0.018
14 2 2 2 2 3] 0.007 0.006
15 2 2 2 2 7 0.005 0.001
16 3 2 2 2 7 0.004 0.001
Table 5: Marginal anatysis for each LRU
Type Base
] 1 2 1 2 3 4 Depot  EBO
0 0 0 0 0 0 0 0 584
1 1 0 0 0 0 0 1 4.24
2 2 0 0 0 0 0 2 329
3 2 1 0 0 0 0 1 2.27
4 3 1 0 0 0 0 3 1.83
5 3 2 0 0 0 0 2 1.51
i} 4 2 1 0 0 0 3 1.31
7 5 2 1 1 0 0 3 1.10
8 6 2 1 1 1 0 3 0.90
9 7 2 1 1 1 1 3 0.70
10 8 2 1 1 1 1 4 0.60
11 8 3 1 0 0 0 2 0.50
12 8 4 1 1 0 0 2 0.39
13 8 5 1 1 1 0 2 0.29
7
vl
14}
£
S 54
4]
z4q°
]
T 2 ®e
3 LY
& 11 e,
55} LIPS °
0 T T T T lm-.-l
0 20 40 60 80 100 120
Cost ($000)

Fig. 4: Optimal system cost-backorder curves

expensive component with low failure rate, or a cheap one
with a higher failure rate? Just input their data and see the
total backorder result.

SUMMARY

In this study, it’s proved that negative binominal
distribution 18 more suitable than Poisson for the
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backorders. The marginal analysis is used to optimize the
expensive LRUs inventory with state dependent repair
and failure rates. Computational results show that the
proposed approach 1s efficient in determining the optimal
choice of spares for the multi-echelons repairable
inventory system. In particular, researchers are interested
in determining the efficient curve which relates the cost of
spare parts (horizontal axis) to the system-related service
measwre, total expected backorders of the Line Repairable
Units (LRUs) (vertical axis), when the LRUs are allocated
in an optimal way. Further research can be focus on lateral
translation, because 1t can obviously reduce the
backorders by pooling the inventory at the same level.

Our model is not only suitable for initial sparing but
also good for optimal reallocation and/or replenishment of
existing spares assortments can be performed.

Further, the VARI-METRIC models suffer from a
mumber of limiting assumptions (such as a zero
condemnation rate and the negligence of the presence of
consumable parts within larger assemblies). In particular,
spare parts management during the exploitation period
should be further investigated.
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