http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 13 (14): 2269-2276, 2014
ISSN 1812-5638 / DOL 10.3923/1t).2014.2269.2276
© 2014 Asian Network for Scientific Information

A Self-configuration Compression Algorithm for Mass Data Processing

Zeng Jie and Wei Nie
College of Information Engineering, Shenzhen University, Shenzhen,
Guangdong, 518060, China

Abstract: This study presents a self-adaptive intelligent single particle optimizer (AdpISPO) for DNA sequence
data compression codebook design. Featured with the crucial self-adaptive optimization process, AdpISPO is
capable of attaiming better fitness value than most existing PSO variants with no specific parameters required.
A novel DNA sequence data compression algorithm, namely BioSqueezer, is proposed in this study.
Introducing all the unique data features m constructing the compression codebook, BioSqueezer compresses
DNA sequences by replacing similar fragments with the index of its corresponding code vector. For attaning
higher compression ratio, the AdpISPO is employed in BioSqueezer for the codebook design. Experimental
results on benchmark DNA sequences demonstrate that, BioSqueezer attains better performance than other

state-of-the-art DNA compression algorithms.

Key words: Data compression, codebook design, PSO, ISPO

INTRODUCTION

Contaimng complete genetic mformation of
organisms, the DNA sequence data is used in many
frontier subjects, 1e., biomformatics and molecular
biology and have significant value for scientific research.
To obtain the genetic information of various creatures,
huge amount of DNA sequence data have been produced
which has brought a lot pressure on storage and
transmission (Cochrane et al, 2009). DNA can be
expressed as an ultra-long string made of four symbols
from the alphabet of {A, T, G, C}. General-purpose
compression algorithms failed to attain substantial size
reduction when applied on DNA sequence data due to its
intrinsic biological nature (Srinivasa et ., 2006). Thus
new techniques specific for DNA sequence data
compression are mtroduced.

Many achievements have been made since the
problem was proposed. Grumbach and Tahi (1994)
presented a novel algorithm of BioCompress-2. The
algorithm 1s capable of compressing the mformation
contained in DNA and RNA sequences efficiently by
detecting the umque regularities of the sequences such
as complementary palindromes and sinilar fragments.
Chen et al. (2000) improved the algorithm by introducing
approximate repeats mn sequence encoding. Significant
performance mmprovement suggested that the approximate
repeats are one of the main hidden regularities in DNA
sequences. Matsumoto ef al. (2000) proposed CTW+LZ
algonthm by mtroducing improved context-tree weighting
compression in characteristic structures of DNA
sequences. Korodi et al. (2007) presented an efficient

DNA compression algorithm called GeNMIL which
combined specific strategies ncluding Normalized
Maxmmum Likelthood (NML) model in fragments
compression. The algorithm was shown to achieve much
higher compression ratio in a limit of time.

Most of the existing algorithms exploit statistical
redundancy in such a way as to represent the DNA
sequence data more concisely without mformation loss,
in which a compression codebook 1s 1nvolved
duplications encoding. Codebooks of existing algorithms
are usually constructed by using conventional text
compression techmiques, 1.e., slidng window in
BioCompress-2 and context-tree weighting algorithm in
CTW+LZ. Performance of these algorithms is degraded
for not taking the unique data features of DNA
sequences, i.e., special repeat patterns and approximate
duplications, mto fully concern (Salomon et al., 2006). To
overcome this drawback, a novel DNA data compression
algorithm is proposed, namely BioSqueezer which
employs all the umque data features m constructing the
compression codebook. A self-adaptive intelligent single
particle optimizer (AdpISPQ) is introduced to optimize the
codebook design.

Intelligent Single Particle Optimizer (ISPO) (T1 et al.,
2010) is a variation of the Particle Swarm Optimization
(P30) algorthm (Kennedy and Eberhart, 1995) that has
been shown to be much more effective than PSO in many
optimization problems. Performance of ISPO relies heavily
on the settings of mput parameters which should be given
manually for each independent problem. This makes the
algorithm difficult to be used in many situations. To solve
thus problem, in AdpISPO the crucial parameters of ISPO

Corresponding Author: Zeng Jie, College of Information Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
2269

Inform. Technol. J., 13 (14): 2269-2276, 2014

are optimized along with the process of evolution and
adjusted dynamically. Experimental results on benchmark
functions demonstrate that, AdpISPO, with no specific
parameters required, 1s capable of achieving better
performance than the counterpart ISPO and other
conventional PSO variants.

With compression codebook fully comsidered the
unique data features in DNA sequences and employing
AdpISPO in optimizing the codebook design, the
proposed BioSqueezer can attain higher compression ratio
than other state-of-the-art DNA data compression
algorithms.

DNA SEQUENCE DATA COMPRESSION

DNA 1s the double-helical biological polymer for
long-term hereditary information storage in living
creatures. DNA sequence data which is the bioinformatics
abstraction of DNA molecules, can be expressed as
strings over a four symbol (base) alphabet of Ademne
(A), Thymine (T), Guanine (G) and Cytosine (C).
Theoretically, if the appearance of bases in DNA
sequences 1s totally random, two binary bits should be
used for representing each base, 1.e., 2 Bits Per Base
(BPB). However, the DNA sequence data, contaiung
enormous genetic information, actually is not random and
exist numerous duplications.

In DNA sequence data compression algorithms,
these duplications, also called as code vectors, are
searched and constituted into a compression codebook.
Substituting the duplicate fragments with short code
vector indexes will considerably reduce the storage space
of the sequence data. As shown in Fig. 1, assume that the
original DNA sequence data contains duplicate fragments
“ATCCG”. These fragments are used as the ith code
vector mn constructing compression codebook. Thus the
DNA data can be compressed by substituting all the
duplications of “ATCCG” with its corresponding code
vector index 1 which normally takes only few bits.

The process of DNA sequence data compression 1s
sinilar as that on common text strings. Thus conversional
string data compression techniques are usually employed
in DNA sequences compression algorithms. However,
unlike ordinary string data, duplications m DNA
sequences are widely known to have unique patterns
(Gupta et al., 2006). As illustrated in Fig. 2, besides the
duplicate
fragments could also in mirror repeat pattern and
according to the base pairing rules of {A-T} and {G-C},
there also exist pairing repeat pattern and inverted repeat

most common direct repeat pattern, the

pattern. For the example in Fig. 2, given a reference code
vector “ATCCG”, the direct repeat 1s exactly the same as

Orignal sequence data

Compression @ Codebook

|1| |1| | E

Compressed sequence data
compression using a

Fig. 1. DNA sequence data
codebook

@

i.--..--.....-------;---

ibEc-

Fig. 2(a-d): Repeat patterns in DNA sequence data,
{a) Direct, (b) Mirror, (c¢) Paring and
(d) Inverted repeat

] _'_ll

| S ey S gy

“ATCCG” while the mirror repeat is the symbols reversed
“GCCTA”. The pairing repeat “TAGGC” iz the
complementary sequence of the code vector and the
inverted repeat “CGGAT™ 15 the reversion of the pairing
repeat. In BioSqueezer all the repeat patterns are involved
in codebook design.

Duplications m DNA sequence data appear more in
approximate form rather than exact repeats (Tran et al.,
2004). Base differences including insertions, deletions and
substitutions can be found in most of the duplicate
fragments. As an example shown m Fig. 3, given a code
vector “ATCCG”, the fust duplicate fragment 1s
considered to have a base difference of symbol “G”
inserted in position 2. Similarly, the second fragment has
a base “T7 deleted from position 2 and the third fragment

2270

Inform. Technol. J., 13 (14): 2269-2276, 2014

Code vector A ? CIC Ia > |AI% C LIE Fragment 1 (Insertion)

AlIT:

Cl|IC |-E| Fragment 2 (Deletion)

|A CilC |G| Fragment 3 (Substitution)

Fig. 3: Base differences in DNA sequence data

have a base “T” on position 2 substituted into “A”.
Number of base differences between code vector and its
duplicate fragments is called edit distance. For the
situation in Fig. 3, the edit distance of all three fragments
is 1, for each of them can be translated from the code
vector using only one symbol operation. Sequence data
duplication with base differences, also known as the
approximate repeat, could occur on fragments in all four
repeat patterns.

In concerning the umque repeat patterns and base
differences, duplications m DNA sequence data can be
compressed by using following encoding format Eq. 1:

v = {cid, pid, [basediff]} (1

in which cid is the index of corresponding code vector
and pid is the repeat pattern code. For the example in
Fig. 1, duplications of “ATCCG™ can be encoded as
i1, “D™}, where 115 the code vector index and “D” denotes
direct repeat pattern. The basediff part encodes
approximate repeat information which defines as follows
mEq 2

basediff = {{pos,,eid,, base, },{pos,.eid,,base, },...})

where, pos; 1s the position of the jth base difference, eid,
is the difference type code, i.e., “T” for insertion, “D” for
deletion and “S” for substitution and base; is the correct
base symbol n the duplication. Given the example in
Fig. 3, the basediff part of the first fragment can be
encoded as {2, “T”, “G”}, indicating that there is a base
“G” inserted (eid = “T7) in position 2. Similarly,
fragment 2 and 3 can be encoded as {2, “D”} and
{2, “S7, “A”}. More base differences the duplication
contains, the edit distance is larger and more data
bits should be used in recording basdiff information.

The performance of DNA compression algorithm 1s
determined by the quality of its compression codebook.
Constructing a codebook that more base symbols can be
substituted with its corresponding code vector indexes
and fewer base differences i the duplications enhance
the compression ratio of the algorithm. In BioSqueezer,
the codeboolk is optimized using AdpISPO algorithm.

SELF-ADAPTIVE INTELLIGENT SINGLE
PARTICLE OPTIMIZER

AdpISPO 15 an effective improvement of ISPO
algonthm. Unlike most of the existing PSO variants, ISPO
uses only one particle in optima searching and each
dimension of the particle position 1s optimized separately
in every generation. The update equations of ISPO are
shown as follows Eq. 3-5:

V;+l:i><r+bXL: (3)
nP
X X4+ i fitness (X™) > fitness(X™) (4)
b if fitness (X"} = fitness (X"")

=11 (5)

W if fitness (") > fitness (X"
Ln+l -
‘ if fitness (X") = fitness (3{"*)

3

where, V is the velocity and X is the position of the
particle. Vector L, namely learming factor, 1s introduced in
regulating the evolution process of each dimension.
Variable r 15 a random number with umform distribution in
the interval of (-0.5, 0.5), n is the number of iterations and
d denotes dimension of the vector. The update equations
take four parameters: a 1s the diversity factor, b 1s the
acceleration factor, p is the descend factor and s is the
shrink factor. With little effect on the algorithm
performance, factors b and s are usually set to b = 2 and
s = 4. Experimental results demonstrate that the
optimization performance of ISPO 1s promising with proper
settings of the crucial parameters a and p. Yet these
parameters could only be given mamually for each
independent problem.

To overcome the drawback of overly dependence on
the settings of crucial parameters, n AdpISPO factors a
and p are modified dynamically along with the process of
evolution. Realizing that selecting crucial factors values
for ISPO can also be treated as an optimization problem,
update equations of ordinary P3O algorithm are employed
1in searching the optimal parameters settings.

2271

Inform. Technol. J., 13 (14): 2269-2276, 2014

As shown in Fig. 4, in AdpISPO parameters a and p
are encoded mnto 2-dimension particles and constituted
into a particles swarm, namely Crucial Factors Swarm
(CFS) which 1s updated using following Eq. 6-7:

U™y g = wxU' e x(Pbest - Y Hoy <r < Gbest- YY)
()

Ymkd = Ytk,d_’_U-ﬂlk,d N

where, U, ; and Y, ; are the velocity and position value of
the kth CFS particle on dimension d. Variable t is the
number of CFS generations. Position vector Y, 1s encoded
from a pair settings of parameters a, and p, (Eq. 8):

[®)

Y=

Variable w 1s the inertia weight, ¢, and ¢; are the learming
factors, r, and r, are two random numbers with uniform
distribution in nterval (0, 1). Pbest is the best position a
particle ever reaches and Gbest is the global optimal
position of the particles swarm. Fitness value of CFS on
the tth iteration is denoted by the optimization result of
ISPO searching using particle position Y as parameters
mput Eq. 9:

Fitness CFS=ISPO (X, a=Y,p=Y,) (9

Table 1: Procedure of AdpI8PO algorithm

where, ISPO(X, a, p) is the ISPO searching process with
imitial position vector X using a and p as parameters
settings. By introducing CFS in optimizing the factors a
and p and using ISPO evolution results as the fitness
evaluation, AdpISPO can attain better performance with
no crucial parameters settings required.

Procedure of AdpISPO is illustrated in Table 1, in
which ps is the particles size of the swarm, M is the
maximum generation of [ISPO evolution, D 1s the mumber
of dimension and N is the iteration times for updating
each dimension. Termimation condition of AdpISPO i1s
usually set as the maximum number of fitness function
calls (FEs) being reached.

COMPRESSION CODEBOOK DESIGN USING
AdpISPO

In BioSqueezer, the AdpISPO algorithm 1s employed
to search the optimal compression codebook. As shown

Particle position Parameters input

CFS particles o

ISPO
evolution

Crucial Factors Swarm (CFS) Finess evaluation

Fig. 4: Crucial parameters selection in AdplSPO

1 BEGIN
2 Generate Crucial Factors Swarmm (CFS) randomly with ps particles;
Each particle is encoded by a pair settings of parameters a and p;

Initialize pbest position for each CFS particle and gbest position for the particles swarm;

3
4 Randomly initialize ISPO particle position X;
5 Do until termination condition reached:
6 Fork =1 tops:

7 Update CFS particle position Y, based on Eq. 6-7;

ok ekt kk ok sk ok kbt TOPO) Bvolution Procegs s ® ks dtshetohedeook ek o o

8 Initialize crucial parameters a = Yypand p="Y;
9 Initialize the maximum number of generations M and the maximum iteration N for updating each dimension;
10 Form=1to M:
11 Ford=1toD:
12 Tnitialize leaming factor T. = O
13 Forn=1toN:
14 Update ISPO particle position X based on Eq. 3%4;
15 Update learning factor I. based on Eg. 5;
16 End for
17 End for
18 End for
St o A oo oo A S S o S o
19 Evaluate CFS fitness value on position Yy based on Eq. 9,
20 Update pbest, and gbest if necessary;
21 End for
22 Loop
23 END

2272

Inform. Technol. J., 13 (14): 2269-2276, 2014

in Fig. 5, connecting each code vectors in the codebook
from end to end constitutes the particles position X
mvolved m ISPO(X, a, p) evolution, in which X, 1s the
position value on dimension d.

For a codebook with h code vectors and each of them
contains 1 base symbols, the particle X is in D = hxl
dimensions. As the positions are continuous values
while the code vectors are discrete symbol strings, a
simple value mapping is performed when translating the
particle into compression codebook. The mapping
equation used in BioSqueezer 1s shown as follows in
Eqg 10

nar o if —ySXd<—%

ngr o if - Lex, <0
s - 2 (10)

"or o if 05X, <%

"I E %sxd <y

where, 5, is the mapped base symbol of position value .
Searching region of the particle positions 15 (-y, y).
Expermmental results shown that the optimization
performance between different y values selection is not
statically significant. Tn BioSqueezer 7y is normally set
to 10.

Translating particle position X into compression
codebool, the fitness value is evaluated using following
Eq 11:

: (an

Fitness _BioSqueczer = Covers —Erors
where covers 1s the overall base number in duplicate
fragments that can be substituted by codebook indexes
and errors denotes total symbol differences (edit distance)
the duplications contain. Larger covers value and smaller
errors value, leading to better fitness result, implies that
more base symbols is encoded and fewer base differences
need to be recorded and the compression ratio 1s higher.
Thus better fitness value denotes better codebook
design. In BioSqueezer, the AGREP fast fuzzy string
search algorithm (Wu and Manber, 1992) is employed in
finding code vectors’ duplications and their base
differences.

Procedure of BioSqueezer compression codebook
design is illustrated in Fig. 6. In each fitness calculation of
AdpISPO, particle position X is mapped and constituted
mto compression codebook. By searching approximate
duplications of each code vectors using AGREP
algorithm, the Covers and Frrors are figured out and
calculated mto fitness value. Optimizing particle position

Compression Codebook

Code vector 2

Optimization partilce
Code vector 2 | |

=>

Code vector 1

Fig. 5: BioSqueezer optimization particles structure

- DNA sequence data
Adly {—=[Tatccd__Jrccq]
optimization
Fitness value

& AGREP
search

Discrete mapping

[B sy e

Compression
codebook

Fig. 6: Procedure of BioSqueezer compression codebook

design
Table 2: Parameters settings for AdpISPO
ps M N W [[
10 10 30 0.5 2 2
¥ gradually improves its fitness wvalue and the

compression ratio attained by using the translated
codebook is enhanced. Encoding with the codebook can
significantly reduce the size of DNA sequence data in
BioSqueezer.

SIMULATION RESULTS

In the first experiment, 6 composition benchmark
functions (CF1-CF6) proposed by Liang et al. (2005) are
used for evaluating the performance of the proposed
AdpISPO algorithm. These high dimensional multimodal
composition functions are considered to be more complex
and more proximate to the real-world applications. The
PSOw (Shi and Eberhart, 1998), Comprehensive Learning
Particle Swarm Optimizer (CTLPSO) (Liang et e, 2006) and
standard ISPO are selected for comparison. All algorithms
are limited to the same maximum number of 1. 55405 fitness
function calls (FEs). In ISPO the crucial parameters a and
p are set to a = 150 and p = 10. Parameters settings for
AdpISPO are shown in Table 2.

The mean, variances, best and worst fitness values
found by all algorithms over 100 runs on the composition
functions are compared in Table 3.

The analysis of variance (ANOVA) results and paired
t-test results of the best algorithm against other ones are
shown in Table 4.

Results in Table 3 demonstrate that, the proposed
AdpISPO can attam higher performance, including

2273

Inform. Technol. J., 13 (14): 2269-2276, 2014

average, best and worst fitness value, on most of the
composition benchmark functions than other algorithms.
Tt is worth highlighting that AdpISPO outperforms
standard ISPO with no crucial parameters settings
required. The ANOVA and paired t-test results in Table 4
suggest that the performance differences between
AdpISPO to other algorithms on most of the benchmark
functions are statistically significant at level of ¢ = 0.05.
Paired t-test results on function CF3 and CF5 show that
the differences between best algorithm CLSPO and
AdpISPO 1s not statistically sigmficant, indicating that the
performance of these two algorithms is similar.

Table 3: Optimization results on é composition benchmark functions

In the
performance of proposed BioSqueezer 1s compared
with the BioCompress-2, GenCompress, CTWHLZ
and GeNML algorithm base on 11 benchmark DNA
sequences(Osborne, 2003). These most commonly used

second experiment the compression

benchmark sequences, belonging to different organisms
and contamning various data features, are downloaded
from the GenBank database (Benson et al., 2008). Details
of the benchmark sequences are tabulated in Table 5.

Tn BioSqueezer the codeboolk size is set to h= 30 and
the code vector length 15 | = 10. Compression ratio
achieved by BioSqueezer and other state-of-the-art

CF1 CF2
Paramneters Mean Var. Best Worst Mean War. Best Worst
PSOw 1.85E+02 8.87E+01 Q.00E+00 4.60E+02 2.29E+02 1.29E+02 2.11E+01 6.52E+02
CLPSO 2.70E+01 5.51E+01 1.02E-23 2.47E+02 5.13E+01 6.48E+01 1.63E-02 4.63E+02
ISPO 2.30E+02 1.79E+02 2.05E-32 5.33E+02 3.41E+02 1.67E+02 3.16E+01 8.41E+02
AdpISPO 1.75E+00 1.23E+01 0.00E+00 8.77E+01 4. 77TEA01 2.40E+01 2.00E-05 8.92E+01

CF3 CF4

Mean Var. Best Worst Mean War. Best Worst
PSOw 3.21E+02 1.40E+02 1.19E+02 7.66E+02 4. 94E+02 1.78E+02 2.99E+02 8.64E+02
CLPSO 1.53E+02 847E+01 7.77E+01 6.99E+02 3.30E+02 6.37E+01 2.76E+02 7.51E+02
ISPO 5.68E+02 2.72E+02 1.32E+02 1.18E+03 6. 59E+02 1.38E+02 3.81E+02 1.10E+03
AdpISPO 1.590E+02 2.54E+01 8.92E+01 1.99E+02 4.31E+02 3.97E+01 3.05E+02 5.00E+02

CFs CF6

Mean Var. Best Worst Mean War. Best Worst
PSOw 2.37E+02 1.70E+02 6. 24E+00 5.68E+02 8 52E+02 1.32E+02 4.87E+02 9.24E+02
CLPSO 4.52E+01 9.67E+01 9.77E-02 8.06E+02 5.93E+02 1.61E+02 4.52E+02 9.4E+02
ISPO 3.89E+02 242E+02 2.87E+01 1.07E+03 8.43E+02 1.40E+02 4.24E+02 Q.17E+02
AdpISPO 5.17E+01 2.78E+01 8.34E-01 9.71E+01 5.55E+02 1.06E+02 4.04E+02 9.89E+02
Table 4: ANOVA and paired t-test results on 6 composition benchmark functions

Paired t-test
Parameters Best algorithm PSOw CLPSO ISPO AdpISPO ANOVA
CF1 AdpISPO 1.69E-02 3.98E-02 1.89E-02 - 3.51E-55
CF2 AdpISPO 6.96E-03 6.71E-03 6.56E-03 - 1.53E-140
CF3 CLPSO 2.11E-02 - 1.81E-02 5.38E-01 5.57E-65
CF4 CLPSO 2.28E-02 - 1.68E-02 1.83E-02 4.46E-60
CF5 CLPSO 2.02E-02 - 1.82E-02 5.85E-01 2.32E-52
CF6 AdpISPO 2.31E-02 1.80E-02 2.31E-02 - 4.1 E-40
Table 5: Benchmark DNA sequence data
Sequence Length Summary
CHMPXX 121024 Marchantia polymorpha chloroplast genome DNA
CHNTXX 155943 Nicotiana tabacum chloroplast genome DNA
HEHCMVCG 229354 Human cytomegalovirs strain ATD169 complete genoime
HUMDYSTROP 38770 Homo sapiens dystrophin (DMD) gene, intron 44
HUMGHCSA 66495 Human growth hormone (GH-1 and GH-2) and chorionic somatomammotropin
(C8-1, CS-2 and C8-5) genes, complete cds

HUMHPRTB 56737 Human hypoxanthine phosphoribosyltransferase (HPRT) gene, complete cds
HUMHDABCD 58864 Human DNA sequence of contig comprising 3 cosmids (HDAB, HDAC, HDAD)
HUMHBB 73308 Hurman beta globin region on chromosome 11
MPOMTCG 186609 Marchantia polymorpha mitochondrion, complete genome
SCCHRIIT 316613 S cereviviae chromosome TT complete DNA sequence
VACCG 194711 Vaccinia virus, complete genome

2274

Inform. Technol. J., 13 (14): 2269-2276, 2014

Table 6: Compression ratio on 11 benchmark DNA sequence data

Sequence Bio2 Gen CTW GeNML Biosqueezer
CHMPXX 1.684 1.673 1.669 1.661 1.582
CHNTXX 1.617 1.614 1.612 1.613 1.628
HEHCMVCG 1.848 1.847 1.841 1.839 1.611
HUMDYSTROP 1.926 1.923 1.916 1.912 1.683
HUMGHCSA 1.307 1.097 1.097 1.012 1.527
HUMHPRTB 1.913 1.846 1.844 1.758 1.689
HUMHDABCD 1.882 1.821 1.823 1.713 1.752
HUMHBB 1.881 1.819 1.808 1.79 1.668
MPOMTCG 1.942 1.913 1.907 1.883 1.784
SCCHRII 1.948 1.948 1.945 1.937 1.712
VACCG 1.764 1.763 1.739 1.763 1.532
Average 1.816 1.794 1.787 1.772 1.652
algorithms are compared in Table 6, where Bio2 is (S2013040016857), Fundamental Research General

abbreviation of BioCompress-2, Gen represents
GenCompress and CTW denotes the CTWHLZ algorithm.
The result values are given in the form of BPB.

From Table 6, it can be figured that, the BioSqueezer
achieves smaller BPB than other DNA compression
algorithms on most of the benchmark sequences. Average
BPB value of BioSqueezer is the best among all the
techmques.
maintain stable among all the benchmark sequences which
indicates that BioSqueezer algorithm have high
robustness over different types of DNA data. The
umprovement of compression ratio will defimtely save data

The compression ratio 18 observed to

space for storing and transmitting the highly expending
DNA sequence data. Based on the average BPB value
1.652 achieved by BioSqueezer, a DNA sequences file in
1 GB data size can be compressed to about 211.5 MB.

CONCLUSION

A novel DNA sequence data compression algorithm,
namely BioSqueezer, is proposed in this study. By
mtroducing umque data features of DNA sequences in
compression construction, BioSqueezer
compresses the sequence data by replacing approximate

codeboolk’s

duplications with the mndex of its corresponding code
vector. For attaining higher compression ratio, a PSO
algorithm improvement called AdpISPO is proposed and
employed to optimize the codebook design. Experimental
results on 11 benchmark sequences demonstrate that,
BioSqueezer achieves better performance than other
state-of-the-art DNA compression algorithms.

ACKNOWLEDGMENTS

This study was supported by the National Natural
Science Foundation of China (61103174, 61301182),
Scientific and Technological Tnnovation Project of
Department of Education of Guangdong Province
(2013KICX0162, 20134408120004), Natural Science
Foundation of Guangdong Province (China)

Program of Shenzhen City (JCYI20120613113535357,
JCYT20130329105415963).

REFERENCES

Benson, D.A ., 1. Karsch-Mizrachi, D.J. Lipman, I. Ostell
and D.L. Wheeler, 2008. GenBank. Nucleic Acids
Res., 36: D25-D30.

Chen, X., S. Kwong and M. Li, 2000. A compression
algorithm for DNA sequences and its applications
In genome comparison. Proceedings of the
10th Workshop on Genome — Informatics,
December 14-15, 1999, Tolkyo, Tapan, pp: 51-61.

Cochrane, G., R. Akhtar, J. Bonfield, L. Bower and
F. Demuralp et al., 2009. Petabyte-scale imovations at
the Furopean nucleotide archive. Nucleic Acids Res.,
37: D19-D25.

Grumbach, 3. and F. Tahi, 1994. A new challenge for
compression algorithms: Genetic sequences. Inform.
Process. Manage., 30: 875-886.

Gupta, R., A. Mittal and S. Gupta, 2006. An efficient
algorithm to detect palndromes i DNA
sequences using periodicity transform. Signal
Process., 86: 2067-2073.

I, Z, TR, Zhou HIL. Liao and QH. Wu, 2010.
A novel intelgent single particle optimizer.
Chinese J. Comput., 33: 556-561.

Kennedy, J. and R. Eberhart, 1995. Particle swarm
optimization. Proceedings of the International
Conference on Neural Networks, Velume 4,
November 27-December 1, 1995, Perth, WA, USA |
pp: 1942-1948.

Korodi, G., I Tabus, I. Rissanen and I. Astola, 2007. DNA
sequence compression-based on the normalized
maxinum likelithood model. IEEE Signal Process.
Magaz., 24: 47-53.

Liang, J.J., PN. Suganthan and K. Deb, 2005. Novel
composition test functions for numerical global
optimization. Proceedings of the IEEE Swarm
Intelligence Symposium, June 8-10, 2005, Pasadena,
USA., pp: 68-75.

2275

Inform. Technol. J., 13 (14): 2269-2276, 2014

Liang, I.T., AK. Qin, P.N. Suganthan and S. Baskar, 2006.
Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions. I[EEE
Tans. Evol. Comput., 10: 281-295.

Matsumoto, T., K. Sadakane and H. Tmai, 2000. Biological
sequence compression algorithms. Proceedings of
the 10th Workshop on Genome Informatics,
December 14-15, 1999, Tokyo, Japarn, pp: 43-52.

Osborne, M., 2003. Predicting DNA sequences using a
backoff language model. http://www.ostigov/
eprints/topicpages/documents/record/51 5/3862803.
html

Salomon, D., G. Motta and D. Bryant, 2006. Data
Compression: The Complete Reference. 4th Edn.,
Springer, USA.

Shi, Y. and R. Eberhart, 1998. A modified particle swarm
optimizer. Proceedings of the World Congress on
Computational Tntelligence and TEEE International
Conference on Evolutionary Computation, May 4-9,
1998, Anchorage, AK., pp: 69-73.

Srinivasa, K.G., M. Jagadish, K.R. Venugopal and
L M. Patnaik, 2006. Efficient
non-repetitive DNA sequences
programming. Proceedings of the International
Conference on Advanced Computing and
Communications, December 20-23, 2006, Surathkal,
PP: 569-574.

Tran, T.T., V.A. Emamuele and G.T. Zhou, 2004
Techniques for detecting approximate tandem repeats
in DNA. Proceedings of the International Conference
on Acoustics, Speech and Signal Processing, May
17-21, 2004, Montreal, Quebec, Canada, pp: 449-452.

Wu, S. and U. Manber, 1992, Fast text searching:
Allowing errors. Commun. ACM, 35: 83-91.

compression of
using dynamic

2276

	2269-2276_Page_1
	2269-2276_Page_2
	2269-2276_Page_3
	2269-2276_Page_4
	2269-2276_Page_5
	2269-2276_Page_6
	2269-2276_Page_7
	2269-2276_Page_8
	ITJ.pdf
	Page 1

