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Abstract: Super resolution reconstruction estimates the high resolution image from a set of low-resolution
observations of the same scene. Most of the reconstruction methods are very sensitive to their assumed model
of data and noise, which limits the utility. This study reviewed some of these methods and proposed an
alternative approach using iterated conditional moedes to deal with different data and noise models. This
computationally inexpensive method is robust to errors n motion and blur estimation and results in 1mages with
sharp edges. Simulation results confirmed the effectiveness of our method and demonstrated its superiority to

other super resolution methods.
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INTRODUCTION

High-resolution (HR) umages are essential for
enhanced diagnosis and analysis in medical imaging,
biometrics identification, satellite imaging and so on. To
increase the images resolution, we can either reduce the
pixel size by sensor manufacturing techmques or increase
the chip size of sensors, which are severely constrained
by the physical limitation of imaging systems. Therefore,
one should turn to algorithmic techniques to achieve
resolution enhancement. Super-resolution (SR) algorithms
attempt to generate a single HR image from one or more
Low Resolution (LR) images of the same scene
(Ren et al., 2013). The main challenge 1s to recover the
high-frequency information that was lost in the process of
generating the low-resolution inputs. If the low resolution
images were directly captured by a camera, for example,
this information was eliminated by the band-limiting filter
of the photographic process due to mmperfections in the
optics and integration over the pixels of the sensor. If the
low resolution images were the result of software
down-sampling, this information was lost through the
filtering process of anti-aliasing. The goal of the SR
algorithms 1s to recover this missing information in a way
that approximates the original high-resolution image as
closely as possible. This is an important problem in
several communities and has applications which include
object  recognition, transmission,  lmage
compression, etc.

For the super resolution algorithms, there are
frequency domam and spatial domain algorithms. In the

video

frequency domain, a learning-based SR method to
synthesis an HR video sequence was introduced and
DCT coefficients for feature vector components and
design an example selection procedure to construct a
compact database were adopted. An extension of the
combined Fourier wavelet deconvolution and denoising
algorithm for the multi-frame SR application has been
presented (Le Meur ef al., 2013). They use a fast Fourler
based multi-frame image restoration method to produce a
sharp, but noisy estimation of the HR image and then
apply a space-variant non-linear wavelet threshold
technique that addresses the non-stationarity inherent in
resolution-enhanced fused images. In spatial domain, one
based on a Bayesian formulation employing the
expectation maximization algorithm (Babacan et al., 2011)
and another based on a MAP formulation solved
iteratively by cyclic coordinate descent (Shen et al., 2007).
In their approach, noise variance, regularization and
registration are all treated as unknown parameters and are
estimated jointly using all the available data.
Shen et al. (2007) also proposed a joint formulation based
on the MAP framework, which judiciously combines
motion estimation, segmentattion and SR together.
Robmson et al (2010) proposed a model that can
represent the Thyper spectral observations from
different wavelengths as weighted linear combinations
of a small number of basis image planes. Their
method  fused information from  multiple
observations and spectral bands to improve spatial
resolution and reconstruct the spectrum of the observed
scetle,
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A major drawback of most super resolution methods
15 that they employ a number of unknown parameters that
need to be tuned This tuning process can be
cumbersome and time-consuming since the parameter
values have to be chosen differently for each mmage and
degradation condition. Moreover, the algorithmic
performance depends significantly on the appropriate
choice of parameters, such that generally a long
supervised process is needed to obtain useful results.

In this study, we propose a novel iterated conditional
modes super resolution methods which address both of
the above mentioned issues. Parameters are estimated
optimally in a stochastic sense, which provides high
reconstruction performance. We show that the proposed
methods are very robust to ermrors in initial motion
estimates due to adaptive parameter and motion
estimation. We demonstrate with experimental results that
the proposed methods provide HR images with high
quality and accurate motion information and compare
favorably to existing SR methods.

IMAGE OBSERVATION MODEL

To comprehensively analyze the multi-frame
reconstruction problem, first of all it is necessary to
formulate the mmage formation model that relates the
high-resolution image to the low resolution images.
Several observation models have been proposed in
the literature (Pelletier and Cooperstock, 2012;
Kner et al., 2009) and they can be broadly divided into the
models for still images and for video sequence. To present
a basic concept of SR reconstruction techruques, we
employ the observation model for still images in this

Low resolution image 1

Low resolution image 2

Low resolution image 3

Low resolution image n

article, since it is rather straightforward to extend the still
image model to the video sequence model. Consider F(x,
y) is the desired high resolution image. As i3 showed in
Fig. 1, the observed low resolution images usually
sampled below the Nyquist rate from the ideal high
resolution image.

Let t={(f, f, f,,..., f_y *fLone) denotes the HR image,
where L M, *xL,M, represents the HR image size. Let
L= oo Lopoan) be the kth LR image, where
k=1, 2., N with N is the number of the low resolution
image. So, the SR 1image observation model as follows
Eq. 1:

I,=DH, W f+n, (1)

where, D is the down sample matrix with the size of
MM, =L M,L,M,, W, 1s the motion matrix with the size of
LM LM, =L, ML, M,, H, represents the image blurring
matrix of size T, M,L,M,xL,M,L.M,, n, is the noise vector
of size M M,.

Blurring may be caused by an optical system (e.g.,
out of focus, diffraction limit, aberration, etc.), relative
motion between the imaging system and the original
scene and the Point Spread Function (PSF) of the LR
sensor. In single image restoration applications, the
optical or motion blur i1s usually considered. In the SR
image reconstruction, however, the finiteness of a
physical dimension in LR sensors is an important factor of
blur. In the use of SR reconstruction methods, the
characteristics of the blur are assumed to be known.
However, if it 1s difficult to obtain this information, blur
identification  should be mecorporated ito the
reconstruction procedure.

Project to HR gird [ Teeeeeemeees 1

i HR reconstruction

Fig. 1: Schematic diagram of the super resclution reconstruction
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The subsampling matrix D generates aliased LR
images from the warped and blurred HR image. Although,
the size of LR mmages 1s the same here, in more general
cases, we can address the different size of LR images by
using a different subsampling matrix. Although the
blurring acts more or less as an anti-aliasing filter, in SR
umage reconstruction, it 1s assumed that aliasing 1s always
present in LR images.

To obtain different looks at the same scene, some
relative scene motions must exist from frame to frame via
multiple scenes or video sequences. Multiple scenes can
be obtained from one camera with several captures or from
multiple cameras located in different positions. These
scene motions can oceur due to the controlled motions n
umaging systems, e.g., images acquired from orbiting
satellites. The same 13 ttue of uncontrolled motions, e.g.,
movement of local objects or vibrating imaging systems.
If these scene motions are known or can be estimated
within sub-pixel accuracy and if we combine these LR
images, SR image reconstruction is possible. Shown in
Fig. 1 is the super resolution
reconstruction.

The goal of the image restoration is to recover a
degraded (e.g., blurred, noisy) image. In fact, restoration
and SR reconstruction are closely related theoretically
and SR
second-generation problem of image restoration. The
differences among the several proposed works are subject
to what type of reconstruction method 15 employed, which
observation model 1s assumed, in which particular
domain (spatial or frequency) the algorithm 1s applied,
what kind of methods is used to capture LR images and so
on.

schematic of the

reconstruction can be considered as a

MATERIALS AND METHODS
Tn this section, we explain the proposed method.

Sub-pixel motion estimation: For the problem of
sub-pixel (Dempsey et al, 2011,
Guizar-Sicairos et al., 2008), the mput image f(x, y), can be
reconstructed numerically from measurements of the
magnitude of the Fourier transform of gix, y). In this
context, a reconstruction gx, y) is considered successful
even if it has a global coordinate translation (x,, y,) or is
multiplied by an arbitrary constant €. The quality of the
reconstruction must then be assessed through an error
metric that is invariant to these operations. Normalized
Root-Mean-Square Error (NRMSE) between Tp(x, y) and
g(x, y) 13 used to obtain the sub-pixel movement, defined
by Eq. 2:

estimation

> logx—x,, Y=y, ) - f(x, y) f
G, Xp, ¥
>k v
¥

min

max | (%, y,)
*0. Fo

-1-
>lex Y Ifx nf

(2)

where, summations are taken over all image points (x, y):

r(XU’ Yo ) = Z f(X’Y)g*(X — X ¥ YU)
3)
=Y F(u,v)G'(u, v)exp {iZn [% - %H

WV

Ts the cross correlation of f(x, y) and g(x, y), N and M
are the 1mage dimensions; g* represents complex
conjugation of g; F denotes the DFT of f, as given by the
Eq. 4

F(u,v)= Z% exp {—1211 [% + %ﬂ 4

Thus, evaluation of the NRMSE by Eq. 2 requires
solving the more general problem of sub-pixel image
registration by locating the peak of the cross correlation
1%y, ¥o). We incorporate the algorithm that refines the
initial estimate using a nonlinear optimization conjugate
gradient routine to maximize [r(x,, v,)|° that significantly
improve performance without sacrificing accuracy. Its
partial derivative with respect to x, 18 (Eq. 5):

M: 2Tm T(XU,YU)EZEF*(U, V)
%, o M (5)

H U‘XD Vy[l
=*G(u, v)exp {—1211 [H + NIH

With a similar expression for the partial derivative with
respect to y,. This algorithm iteratively searches for the
image displacement (X, y,) that maximizes r (x,, y,) and can
achieve registration precision to within an arbitrary
fraction of a pixel

Bayesian based super resolution:
reconstruction 1s considered as an 1ll-posed problem, thus
1t usually requires some kind of regularization. A set of
low resolution observations must be considered into the
estimation of the HR reconstruction. Considering the
Bayesian formulation which can provide an effective way
of imposing a priori constraints to the estimation. So, that

Super-resolution
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we can estimate the HR image by maximizing the
conditional

(Eq. 6):

probability with Bayesian formulation

F = arg max, {p(F | 1)} (6)
where, F is the high resolution estimation.

TICM based super resolution: The maximization in Eq. (6)
usually demands high computational power. Therefore,
maximization of the local probabilities 1s an alternative.
The TCM algorithm (Meng et al., 2010) uses a greedy
strategy to the local maximization using a MRF prior
model. The algorithm sequentially updates the labels F, of
each pixel I = 1, 2,..., M(M,, by maximizing the posterior
probability (Eq. 7):

p(E | I7Fnh(1)) (7

where, nb(i) is the set of neighbors of pixel i, according to
a neighborhood system.

If considering I is a set of low resolution pixels, from
the Bayes theorem, it follows that (Eq. 8):

p(E |LE,, < p(Il |E)p(E | E,p)) &)

Considering the image formation model in Eq. (2), in
the presence of zero mean independent Gaussian whte
noise, the likelihood distribution 1s given by (Eq. 9):

ka?”2

; 9

2 |t -D
W exp —g‘ o

(2‘1‘562) E

plIF) =

where, o is the noise variance.

High resolution reconstruction: We can estimate the
local conditicnal distribution p(I4F,) by Eq. 10:

ot ) onp |- P (10)

7
=) 2g

where, m denotes the number of LR pixels that lay over
pixel 1. I is the rth low-resolution pixel that lay over pixel
i and D"H" is the corresponding pixel generated by the
estimation .

Moreover, in the ICM algorithm, we also need to
know p(FiF.u). The solution of this probability is given
by Eq. 11:

P(E|Fnh(i))=%eXp{—U(F;|Fﬁ)} (11)

where, the potential function U(F,F,..) is defined as
(Eq. 12):

U(F [Fupy )= S [3[172exp(7(FfFl‘)2 ﬂ (12)

i'enhiiy

In which 7 is called partition function and B can be
viewed as an interaction coefficient.

As discussed above, we can estimate the HR image
by the following steps:

»  Step l: Define a MRF model for the true values of F,

s Step 2: Choose an initial high resolution estimation

»  Step 3: Forifrom 1 to M, *M,, update F, by the value
that maximizes p(I[F,) p(F/[F,uq)

»  Step 4: Repeat step (3) N tumes, where N 1s the
maximum number of iterations

This model is meaningful in texture representation
and 1s easy to process in the image reconstruction
procedure.

Refinement step: The refinement step contains two terms,
the first term tries to deblur the sequence and make it more
robust and the second term is the Bilateral Total Variation
(BTV) filter which was mtroduced by Farsiu. In this study,
a generalized form of the 2-D BTV filter is proposed. The
3-D BTV filter mtroduced n this step can be considered
as a Regularizer (Mochizuki et al, 2011). Since this
problem is an under determined problem, having a
regularizer will help to remove artifacts from answers and
also having sharper edges. The proposed regularizer term
is shown in (Eq. 8):

7= argmin| |GZ—X], + MRy, (2) | (13)

where, 7 is the desired high resolution video sequence, X
1s the current mterpolated video sequence and G applies
Gaussian blur matrix on the sequence. In the second part
of the statement, 4 is the regularizer parameter and Ry (Z)
is the regularization function which is the Bilateral Total
Variation:

F F P
Ry 2)=3 3 3 ool |z -siszsizy| - (14)

1=-P m=-P k=—P

In (Eq. 14), P is the window size and S, ", and S,
shift the sequence Z, 1, m, k pixels i horizontal, vertical
and temporal directions, respectively. Also (i = 0,1,
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O<o;<<1) gives a decaying effect to the summation of
the regularization term. For finding mimmum of the
argmin, gradient of Eq. 13 is computed By wsing
steepest descent method the solution to this problem
would be:

Z,,=7,-8G"sign(GZ, - Z )+ Mkm1] (15

nt

Where:

FemD=3 3 3 deioll_srsrszy  (16)

I=—Fm=-FL=—F

d is a scalar defining the step size in the direction of the
gradient.

Ingeneralizing the 2-D BTV (Knoll et a/., 2013) to 3-D
version different decaying parameter have been allocated
to the spatial and temporal shifts. This 15 due to the fact
that the behavior of a video sequence in spatial (x, y) and
temporal (t) domain are different. A video sequence with
fast motion may lose the consistency m time faster than
spatial consistency, because frames have motion in
respect to each other and thus a single pixel may be more
correlated to its adjacent pixels in space than its adjacent
pixels in time. Consequently a>«, seems to give better
results in these sequences. But in a sequence where
motion is very small and frames do not change much with
respect to each other, a single pixel 18 more correlated to
the adjacent frames in time and thus in these cases ¢, >,
1s chosen. Testing different values for ¢, and &, supports
the specified criteria for choosing them. Experimental
results are driven by choosing the best values for
¢ (1= 0, 1) by considering the stated condition.

EXPERIMENT RESULT

For the experimental verification of the proposed
method, we provided several examples to compare high
resolution image between classical super resolution
methods and the proposed method. Table 1 showed the
average PSNR values in the experiments we have
conducted.

For the first dataset which containg 12 LR images, the
results of rotation estimation and translation estimation
are shown in Fig. 2. The accuracy of the registration is
about 0.02 pixels. As is shown in Fig. 3, which provides
the results from different super resolution algorithms, it 1s
clear that the proposed method provide HR image
estimation with sharper and fewer ringing artifacts than
the other methods. One of the 12 LR images is shown in

0.8-(3)

0.0 #Frame rotation
ORotation estimation

'
o
=

0 5 10 15 20

081 e ® ® ®
0.7 1 ® U
0.6 1
0.5

Vertical shift

0.31
0.2 )

0.1 #Frame shift
oEstimated motion

T T T T
0 0.2 0.4 0.6 0.8 1
Horizental shift

Fig. 2(a-b): Example estimated sub-pixel registration, (a)
Rotation estimation and (b) Translation
estimation

Table 1: Average PSNR cormparison for different SR algorithims

Method Calendar T.ab Tena
Bicubic 31.25 28.03 25.36
Fast and robust 23.74 27.51 25.21
TV reconstruction 22.11 29.63 2632
Normalized convolution 21.23 24.81 27.05
Proposed method 20.14 23.51 25.14

Fig. 2a. Figure 2b shows the bicubic interpolation of the
low resoluton image.
reconstructed by the proposed algorithm is shown in
Fig. 2d.

The second dataset consists of 12 LR images taken
from a low resolution video. The reconstructed HR images

The high resolution image

by a factor of 4 resolution increase obtained by nearest
neighbor, bicubic interpolation and SR algorithms are
m Fig. 4. Although, there was a slightly
mis-registration among the frames, the proposed method

shown

still has a good performance.
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Fig. 3(a-f): Example estimated HR estimation from different super resolution methods. Results (3x resolution increase)
by (a) Original low resolution image interpolated by nearest neighbor interpolation, (b) Bicubic interpolation,
(c¢) Fast and robust method, (d) TV reconstruction, (e) Normalized convolution and (f) Proposed method

Fig. 4(a-f): Example estimated HR estimation from different super resolution methods. Results (4x resolution increase)

by (a) Nearest neighbor interpolation, (b) Bicubic interpolation, (c) Fast and Robust method, (d) TV
reconstruction, (e) Normalized convolution and (f) Proposed method

CONCLUSION

We developed an efficient technicue for multi-frame
images super resolution. First, we incorporated the fourier
transform to the sub-pixel registration which 1s efficiency
and accurate. Followmg, a novel high resolution

reconstruction method 1s derived by maximizing the local
conditional probability with iterated conditional modes.
Then, the generalized form of the 2-D BTV filter is
introduced to deblur the HR image. Finally, we conducted
experiments by applying the proposed approach and the
experimental results demonstrate that the new super
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resolution method is computationally inexpensive and
robust to errors in motion and blur estimation and results
in images with sharp edges.
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