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Abstract: In this study, a class of coupled memristive neural networks of neutral-type with stochastic
perturbations via., pinning adaptive control in order to achieve synchronization is studied. The analysis in this
study employs the differential inclusions theory, linear matrix mequalities and the lyapunov functional method
and some criteria are obtained to guarantee coupled memristive neural networks of neutral-type with stochastic
perturbations can achieve synchronization. Furthermore, numerical examples are given to show the

effectiveness of our results.
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INTRODUCTION

Memristor 1s a resistor with memory which was firstly
postulated by Chua (1971). It 1s the fourth fimdamental
electronic component along with resistor, inductor and
capacitor. Tn 2008, the Hewlett-packard lab realize the
memristor prototype (Strukov ef af., 2008). Memristor has
the distinctive ability to memorize the passed quantity of
electric charge. Therefore, the non volatile nature of
memristors makes them an attractive candidate for the next
generation memory technology. Recently, Wu and Zeng
(2012) and Wang ef al. (2014) have concentrated on the
dynamical nature of memristor based neural networks in
order to use 1t in applications, such as pattern recognition,
assoclative memories and learning in a way that mimics
the human bramn.

The random uncertainties usually make the neural
networks change states suddenly. IL.iand Cao (2008)
and Li et al (2010) have proposed the stochastic
perturbations on neural networks since a real system 1s
usually affected by external perturbations which in many
cases are even of great uncertainties and hence such
perturbations may be treated as fluctuations from the
release of neurotransmitters and other probabilistic
causes. And Wang et al. (2013) have added stochastic
perturbations to complex networks models. Adding
stochastic noise perturbations to our model makes the
results obtamed in this study more general and realistic.

In the case where the network cannot synchronize by
itself, many control techniques have been developed to

drive the network to achieve synchronize, such as linear
state feedback control, state observer based control and
impulsive control. All of them have the feature that the
controller needs to be added to each node. But in practice,
it is too difficult to add controllers to all nodes in a large
scale network. To reduce the number of controlled nodes,
pinning control 1s introduced, m which controllers are
only applied to partial nodes. Pinning control has been
shown that a single controller can ensure that the whole
network synchronizes asymptotically with large enough
coupling strength and without any prior knowledge of the
sttucture of the network topology. In addition, the
pinning  adaptive control method Thas received
considerable research attention which 1s utilized to get the
appropriate control gains effectively. By using the
adaptive pinning approach, the robust synchronization of
a class of nonlinearly coupled complex networks is
investigated by Jin and Yang (2013). An adaptive pinning
control method 13 proposed to synchromze a delayed
complex dynamical network with free coupling matrix.
Yang and Cao (2010) provide the adaptive pinning
synchronization for complex networks with non delayed
and delayed couplings and vector form stochastic
perturbations.

In real world, it is natural and important that systems
will contain some information about the derivative of the
past state. This kind of neural networks 1s termed as
neutral-type neural networks. In recent years, there has
been a growing research interest in the study of delayed
neural networks of neutral-type (Park et al, 2008,
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Samli and Arik, 2009). However, the synchronization of
coupled memristive neutral-type neural networks with
stochastic  perturbations under adaptive pinning
controller has not been analyzed so far.

This study aims to fill the gap on synchronization of
coupled neutral-type memristive neural networks with
stochastic perturbations. And the adaptive pinning
control strategy has been used. Some criteria are obtained
to guarantee coupled memristive newral networls of
neutral-type with stochastic perturbations converge to
the desired states which can be used in applications, such
as pattern recogmition, assoclative memories and learming
in a way that mimics the human brain better.

PRELIMINARTES

Based on the physical properties of memristor, the
memuristor based neural networks of neutral-type can be
describedby Eq. 1 i=1, 2,..., n):

£,(0)- DXL~ 7(0) = ~Cx, (0 + 22, (x (LG, (0) +
) ()
Db, (x, ()8, (Tt + T(1)

where, x(t) is the veltage of capacitor C,. a,(x,(t)), b,(x(t)
represent memristor based weights:

W ) W, .
al](Xl (t)) = ﬂx ngu’ b1] (X1 (t)) = ﬂx ng1]
Cl Cl
Li=j
. _
S = ni=
in which Wy, Wy denote the memductances of

memuristors R, R,. And Ry, R, represent the memristors.

Axi(D) = (ayx (1)) weand Blx{t)) = (b (x(1)) .qre
memristive comnection weights which represent the
neuron interconnection matrix and the delayed neuron
interconnection matrix, respectively.

In the artificial neural networks, the memristors
worked as synaptic weights. The commection weights
A(D) = (@MW) and Blx(t) = (byx{t))..
change according to the state of each subsystem. If
AGD) = @5 and BE®) = (bx(®) .are
constants, the system (1) will reduce to a general network.
D = diag(d,,..., d)»0 and C = diag(c ..., ¢ }0 are self
feedback connection matrices. f(x(t)) = [f(x,(t),..., =z, O]
and g(x(t)) = [g(x,(t),..., g(x,(t)))]" are the neuron activation
functions; Tt) comesponds to the time-varying
transmission delay and I(t) = (T,(t), T)(t),..., J(t)) is the
constant external mput vector.

When N memristor based neural networks of
neutral-type are coupled by a networlk as shown in Eq. 2:

d[x, (1= D%, (= 2] = [-0x, (0 + 3, (5, (0 (5, () -
i=1 2

+ Zn: by (x, (D) (x, (t—T)))+ Z Pm,I'x, () + T(t)]at

where, x,(t) = (x,(t), x,,(t),..., x,(t)7 is the state variable of
the ith memristive neural network. Suppose each
memristive neural network is a node and information
between two nodes is transmitted via, an edge.
M = {(my)y. represents the coupling matrix and if there is
an edge from memnistive neural network j to 1, thenm, = 1,
otherwise, m; = 0 and:

my=— > my

i=1j=1

P represents the coupling strength. The positive definite
diagonal matrix I' stands for the inner coupling between
two connected memristive neural networks.

In this study, we use the following assumptions and
definitions.

Definition 1: Forti and Nistri (2003) supposed that EcR™
Then x—F(x) 1s called as a set valued map defined on E, if
for each pomt x of E, there corresponds a non empty set
F(x)<R" A set valued map F with non empty values is said
to be upper-semicontinuous at x,€E 1if, for any open set N
containing Fix,), there exits a neighborhood M of x, such
that F(M)<N. F(x) 1s said to have a closed image for each
x€E, F(x) 15 closed.

In this study, solutions of all the systems considered
in the following are intended in the Filippov’s sense,
where [--] represents the interval Let 7, =max{d3,},
a, =min{d,,d,}, b, = max{b,,b,}, b, =min{b,,b,}, A=(g,),,..B= (E)j)m
fori=1,2,...,n cofu v} denotes the closure of a convex
hull generated by real numbers u and v or real matrices u
and v.

For matrices X = () Y = ()or ad Z = (2}
internal matrix [X, Y] means that x;<y, and Z € co{X, Y}
umnplies min(x,,y,) <z, <max{x,,y)i=12--,n.

We get:

df.(x.(t
a,.sgin, 41—~ (x,(0) _& <0
! Toodt dt
L AR ) dx(t)
cofa, (5, ()} = {[a,,, ] sgin, —- = - = =2 =0
df t
a,,sgin, 1~ () _ () =0
! R dt
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b,,sei

b spin BTN @)

! ! dt dt
| e -TO) dx ()
cofl, (x,(1))) = 1[b. by ] sein, —— =0
b sgin, BOUTO)
4 kl dl dt

Based on defimition 1, by applymg the theory of
differential melusion, the memristor based neural networks
of neutral-type can be written as the following differential
inclusion Eq. 3:

d[x,(t)—Dx, (t—t(t))] € [-Cx, (t) + co{A, K}f(x1 (th)

+c0{E,§}g(X‘ t—tt+ i quij {t)+ J(t)]dt

=1

At time t, from Filippov, we know that the
differential inclusion Eq. 3 means that there exist
Acco{A A).Beco{B B}, as showninEq 4

d[x, () - Dx,(t — ()] = [-Cx, () + Af(x,(t)

+]§‘ag(x1 (t—t(t))+ i PmyI'x, (t)+T(t)]dt

If the system has an an equilibrium pomt or an orbit
of a chaotic attractor of system 4, then let et) = x(t)-s(t)
be the synchronization error and s(t) can be the
equilibrium point or the orbit of a chaotic attractor of
system 4, then the error system with stochastic
perturbations under the controller u(t) can be written as
Eq 5

dfe, (1) ~De, (t —t(t))] =[~Ce,(t) + Af(e;(t))+ Ba(e, (t —(t)))

+i Bmul"eJ O+ ()]dt+ o(t,e (t),e (t —T(t)))dw(t)
()

where, fe(t)) = f{x(1))-f{s(t)). glet) = g(x(t)-g(s(t). w(t)
is a m-dimensional Brownian motion defined on a
complete probability space. 0(-,,-) is a Borel measurable
matrix function.

Assumption 1: For t(t) of this study are differential
functions with (t)<T<1 and O<t(t)<T.

Assumption 2: The function f{-) and g(-) satisfy the
Lipschitz condition. That 1s, there exist two positive
constants 1,, 1,, such that:

G-y <%=y
lgG-gyl <lx-y]
Hold, for any x, yeR".

Assumption 3: The noise intensity matrix o(-,-,") satisfies
the bound condition. That is, there exist two positive
constants h, and h, such that trace [a'(t, x, y)o(t, x, y)]<h,
) *+h,]yv]* Hold, for any x, yeR™

RESULTS

In this study, synchromzation for the coupled
memristor based neural networks of neutral-type with
stochastic  perturbations under pmmng adaptive

controller is investigated.

Theorem 1: Under assumptions 1-3, the error system 5 of
the coupled memristor based neural networks of
neutral-type with stochastic perturbations will be
convergent. Let the first 1 nodes be controlled and the
controllers are chosen as Eq. 6:

o [FROE O-De(t—x(tii=121 )
i )7{ 0,i=1+11+2--- N

and k(1) = o, (e, (1) De,{t — ()Y Ple, (1) De,{t—t(1))). Then
the controlled system 5 can be written as Eq. 7:

d[e,(t)— De,{t — T{t))] =
{=Ce, (1) + Af (e, {t)) + Bg(e,{t - T(t)))}
+[3§N: m Te (t) —k,{tie, (t) — De (t - 1{t)))}dt

i=1

+ailt, e, (t), &, (t — T(E)))dw(t),

i=1,2,--, 1, (7)
de,(t)—De(t—t(t)] =

{=Ce, (1) + Af(e,{t)) + Bg(e,{t —T(t)))}
+[3le mTe, (1) -k, (t)(e, (1) - De,(t —t(1)))}d

+6(t, e, (), &, {t — T(t}))dwe(t),
i=1+11+2,- N

If there exist positive constants €,(1 =1, 2, 3, 4), p, &,
£, and positive definite matrices P, Q such that:

+  P<pl,
+ O=[%,%8;%, 2,]<0
* €>E,

2358



Inform. Technol. J., 13 (14): 2356-2362, 2014

Where:

1 o o
Y=y ®(Q+5[—PC—CTP+ € PATAP+ e, PBR'P

+{g Fregl U rph + 2601 N+ PM @PL - K *P

> =%1N ®DTPC+K*®DTP—%M® D'PT

>, =L @-1-T)1Q+ %[e;l D'PAA"PD+ ;' D'"PEB"PD

+(e)' B+ ] 12+ ph, —28 ) H-K *@D'PD

K* = diag{K*,, K*,..., K*, 0..., O}

Proof: Construct the following Lyapunov function as in
Eq &

V(t,Z):%iszzi+i _[: e (s)Qe, (s)ds+z

(8)

where, 7, = e(t)-De,(t-T(t)).
Computing LV(t, 7Z) along the trajectory of error
system 5, as show in Eq. &

LV(t.Z)= > [e" (0)Qe,(t) — (1-T(t))e] {t — T(t)) Qe, (t —T(t)]

i=1

+Z—(k () —k*k (1) + ZZ P[—Ce, (1) + Af{e (1)) +

i1 0

Befe, (t—t(t))+ Z m,Te (1)]— Z k ()Z]P

{e,(t)—De (t—(t)))+ i %trace(cT (t,e,(t),
e (t—t(t)))) Po (t e (t).e(t—T(t)))
&)

Based on assumption 2, one observed as shown in
Eq 10-13:

T A 1 T A |
DPAf(e (th=—¢< e (HPAAPe (t)+—g
e, (DPAf(e () 263() e()+2€ 10)

(e, (NF(e, (1)) < %e? (t)(g, PAATP+ &' 1T, Je, (1)
And:

el (PBale,(t —T(t)) < L 5 el (()PBBPe, (1) an

+= 62 YLl (t—T(t)e, (t— ()

T T 1 2. T
Sl OPPAIEO S S e

+ ; ;' el (t —t(tHDTPAAPDe, (t —T(t))

T T 1 T
—e, (t—t(t))D PBgie,(t —t(t)) = Eei (t—(t)) (13)

(=, D'PBB'PD+ ;! LT Je, (t —t(t))

According to assumption 3 and P<pl, we observed
as in Eq. 14

i—trace(cr {t,e,(t).e (t—t(t))))Po(t,et). e (t—T(t)))
(14)

P[h e; (e, (1) + hye] (t —(t)e, (t —o(t)]

i 1

The adaptive law has the followmng expression as
shown in HEq. 15:

ZO% (k; (1)~ kK, (t)—z;,kl (1)ZP(e, (1)~ De, {t—(t)))

1
= 72 K'(e,(t)—De, (t—t(1)))"P(e, (t)— De, (t — (1)) (15)
Sk el (P, () - 267 (t— ()P (1)
i=1

+el(t—t(t))D PDe, (t—T(1))]

Combing Eq. 9-15, we get Eq. 16:

LV(t, Z,)<Ze (O{(Q+— [ —PC-C"P+ ¢, PA"AP

i=1

+e, PBB™P+ (g + &, I+ ph)I_ De (1) + ﬁzmqprej ()}

—Zl: K'el (1)Pe, (L) + i el (t—T(tN{ (D PC+ 2K DP)

i=1

e, (t)— BZmuD Ple,(t)}+ Ze {t—tt{—(1— ‘c)Q+f
[;! DTPAATPD+ ' D'PBB'PD + (5]' B+ &' &+ ph, )L ]}
e, (t—t(t))— Zl:kj"ef (t—T(t))D"PDe,(t —T(t))

(16)

—e ()L, D(Q+ %ppc —C"P+ ¢ PA"AP+ &, PBB'P
(g Tre, v phy +28 )L D+ PM @PL - K *®Ple(t)

e’ (t— ()1, ®D'PC+ 2K*D P M ® D Ple(t))

el (t— (I, @ (—(1-T)Q+ %[e; D'PAATPD +

! D'PBB'PD + (]! B+ &' 12+ ph, —2E )1, ]

K *@D PD)e(t — (1)) - &e" {t)et) + &,e” (t —t{t)e(t— (t))
=67 (1QB(1) - & e (the(t) + &;e" (t—(t)e(t — (1))
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where, 0(t) = [e"(t), e"(t-T(tN]", e(t) =[e",(1), e",(1),..., eT(t)]
and K* = diag {k*,...,k*, 0,.., 0.
Considering <0, we obtained Eq. 17:

LV(t,Z) <& (De(t) + &e' (t—T(t)elt — (b)) (17)
== (el +m,{e(t - TLy)

where, M,(e(t)) = §ie'(t)e(t) and na(e(t-u(t) = & (t-u(t)
e(t-T(L)).

It can be seen that m,(e(t))>,{e(t-T(t)). Therefore,
applying a LaSalle type invariance principle for the
stochastic differential equation. So, the network 4 with
stochastic perturbations under the controller 6 can be
synchronized with the s(t). We complete the proof.

When the neural network 5 is not neutral-type that is
D =0, we get the following corollary.

Corollary: If the assumptions 1-3 hold the controlled
network 5 with D = 0 can be convergent to 0 for every
initial data. Tf there exist positive constants €1 =1, 2), p,
£, £, and positive definite matrices P, Q, such that:

« Pxpl,
* I,® (%[—PC —C"P+ ¢, PATAP+ €, PER P+ (" I} + ph, +
2ZENLD+PMBPI-K*P=0

. E1>Ez
Where:

1, .
g, :5(621 15 +phy)
and K* = diag{k*,..., k*; 0,..., 0}. We choose the
controller 1s the same with 6 and the adaptive law as
shown in Eq. 18:

K (1) = oel (OPe,(t)i=1 2,---, 1 (18)
NUMERICAL SIMULATION

Here, a numerical simulation example 1s presented to

illustrate the effectiveness of the results obtained above.

Consider a model of coupled memristor based recurrent
neutral-type with stochastic perturbations as follows:

dle(t) - De(t - w(t))] = [~Ce(t) + Af(e(t)) + Bg(e(t— =(t))) (19)
+pMTIe(t)]dt + o(t, e(t), e(t — t(t)))dw(t)

Consider the network consisting of 20 nodes that 1s
N = 20, the time varying delay 1s:

()= %sin(t)

w(t) is a three-dimensional PBrownian motion. Take
fle(t)) = gle(t)) = tanh(e(t)). The adjacency matrix M 1s
produced by a small world network with rewiring
probability is 0.6 and the coupling strength p = 1:

o, 0 0
o(t,e(t),e(t—t(t))= 0 0.5, (t—(t)) 0
0 0 0.1e,(t—t(t))

where, 0,, = 0.5¢,(tH0.2e (t-T(t)).
Other parameters of the error system are given as
follows:

0.1 0 0 14 0 0
D=0 02 0|, C= 14 0
0 0 03 0 14
05 ) 80,
t
ay(e,it)) =
R PO CH(5) S CH O T
dt dt
02 HE) (),
t
A, (eu (t)) =
03, df(e, (1)) de, (1) -0
de de
o1 ) _tes0
a;;(e; ()=
0y dHCO) de®
dt dt
03 HE)_des() g
t
ay (e, () =
04, df(e, (t3) _ de,, (1) _
dt dt
o M) 0,
aple, )=
0.8,— df(e12 (t)) _ de12(t) =0
dt de
06 ) _des) g
t t
(e, ()=
0p ) dey0
dt dt
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RO RXUPS
ay (e13 (t)) =
07, ) 80,
L O RSO
as(e;(t)) =
03 )80
PR RO RN
ay (e (t) = 0a- df(i; o degi(t) .

by (e (1) =

by, (e, (1)) =

bys(e;(t)) =

by (e (1) =

by (e, (t)) =

b23 (612 (t)) =

by (es() =

b32 (ejz (t)) =

04— dgle, (L —(t)) _ degl(t) <0

dt
07 deey(t-T0) de )
dt dt

00, 08,0 -0) e,

dt dt
05, d8(ea(t=20)) de,
dt dt

03 de(E =) des()

dt dt
05, dE(Eu (- T0) _des®)
dt dt

04, dgle, (t—t(t)) de,(t) <0
dt dt

07, dg(e, (t—(ty) de,(t) -0
dt dt

0.0, delen(t-t) de, (O g

dt dt
05, deeat TN des()
dt dt

0.4 dees (=70 dey0)
dt dt

07 Sl T) o, (1)
dt dt

0.4 08(EL(T0) _den(

de de
028, dgle; (t —=(t))) _ de;; (1) -0
de dt

07, dg(e, (t—t(t))  de,(t) <0

dt dt
0.5, dele, =) de, (0
dt dt
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Fig. 1(a-c): State emror curves of system 19 with
controller 6
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Fig. 2(a-c): State error cwves of system 19 without
neutral-type via., controller 6
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dt dt
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" dt dt

Furthermore, we consider the synchronization error
system 19 with the controller 6 and we add the controller
on the first 5 nodes, «, = 0.9.

Figure 1 shows the state error of system 19 with the
controller & are synchronized. Thus we verified theorem 1.

In order to verify corollary 1, we set D = 0, the error
system 19 without neutral-type under the controller 6.
Then we get the error curves in the Fig. 2.
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CONCLUSION

This study used the adaptive pimmning controllers in
order to achieve synchromzation of coupled neutral-type
memristive neural network with stochastic perturbations.
According to the Lyapunov stability method, linear matrix
mequalities and the differential inclusion theory, some
synchronization criteria are successful in ensuring the
convergence of the system. Tt can be well mimic the
human brain in many applications, such as pattern
recognition, associative memories and learning. Finally,
numerical examples are given to illustrate the
effectiveness of the proposed theories.
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