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Abstract: The Kalman Filter (KF) known as an optimum adaptive algorithm based on recursive estimation, has
been widely used to estimate the State Of Charge (SOC) of the lithium-ion batteries. To improve the performance
of SOC estimation, the parameters of battery model in the KF method should be chosen correctly. Nevertheless,
the battery parameters, such as the OCV-SOC, capacity and resistance are significantly depended on the battery
SOC, temperature, current and ageing. In this study, these dependencies and their variation over the
temperature, current and ageing are investigated on a Samsung ICR18650-22P-typed lithium-ion battery with
LiNi,Co Mn,O, cathode which offers guidance to model modification of SOC estimation. The experimental
results show that the OCV-SOC relationship are strong consistent under the conditions of 0--60°C but it varies
when the temperature remains below zero degrees Celsius. The capacity varies considerably with the
temperature and cycles and slightly with the current of below 3C. The Ohmic resistance varies slightly with
charge current but considerably with discharge current and SOC. Based on the experimental results, some

suggestion for model modification of SOC estimation 1s put forward.
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INTRODUCTION

With the soaring energy shortage and environment
deterioration, Electric Vehicles (EVs) have been rapidly
developed in recent years (Gong et al., 2013; Tian et al.,
2013). As the main part of energy carrier and power
source, power battery affects both the economic and
driving performance of the EVs. Lithium-ion battery is
widely used for its lugh performance in energy density,
power density, life cycle and so on (Cho et al., 2012). The
performance of lithium-ion battery 1s seriously affected by
the cathode material, such as LiFePO,, LiCoO,, LiMn,O,
and LiNi,CoMn.O, (x+y+z = 1). Compared with other
material, LiNi,.CoMn,O, has the advantages of high
energy density, excellent consistency, mild thermal
stability, low cost and low toxicity (Guo et al, 2009
Pan et al, 2013). Due to these characteristics,
LiNi,CoMn,O, lithtum-ion battery has a promising
widespread application on EVs. In order to improve the
safety and capability of the battery, a Battery
Management System (BMS) is required. As one of the
most umportant functions, SOC estimation should be
mcluded to prevent the battery from being over-charged
and over-discharged and to manage the energy flows of
the EVs. Several methods, such as Ampere-hour (Ah)
counting (Lu et al., 2013), Open-Circuit Voltage (OCV)

(Lee et al, 2008), Artificial Neural Network (ANN)
{(Charkhgard and Farrokhi, 2010, Capizzi ef al, 2011,
Kang et al., 2014) and Kalman Filter (KF) (Lee ef al., 2007,
He et al, 2011; Dai et al., 2012, He et al, 2013,
Kiong et al., 2014, Sepasi et al., 2014, Xing et al., 2014)
have been proposed to estimate the battery SOC. The KF
algorithm has been widely employed for online SOC
estimation due to its high performance under dynamic
driving conditions. KF 13 a model-based method
(Song et al., 2012; Ma et al., 2013) and as a result, the
model parameters should be chosen correctly to unprove
the estimation performance. However, the parameters of
the battery model, such as the OCV-S0C, capacity and
resistance are significantly depended on the battery SOC,
temperature, current and ageing.

There have been some efforts to resolve these
problems. The various OCV-SOC relationships caused by
the difference in capacity among cells were discussed
(Lee et al., 2008). The difference in internal resistance
among cells was dealt with by choosing the internal
resistance as a state-variable (He et al, 2013). The
different equilibrium potentials during charge and
discharge process at the same SOC were considered and
the OCV was defined as the average value of the
equilibrium potentials of charge and discharge process to
simplify the model (He ef af., 2011). In this study, it can
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be seen that only a single parameter variation was taken
into consideration, besides, the parameter variations with
temperature and ageing are often neglected.

In order to obtain more accurate SOC estunation by
modification of the battery model, in this study,
aforementioned dependencies and their variation over the
battery SOC, temperature, current and ageing are
mvestigated on an ICR18650-22P-typed lithium-ion
battery with LiNi,CoMn,O; cathode produced by
Samsung. Several experiments are implemented to obtain
the battery characteristics. Based on the experimental
results, several correction factors and suggestion for
modification of the battery model are put forward.

BATTERY MODEL AND SOC ESTIMATION

A battery model is crucial to SOC estimation using
the KF algorithm. Various models have been proposed
to simulate the electrochemical characteristics of a
lithium-ion  battery. The equivalent cucuit model,
consisting of resistor, capacitor and inductor performs
well in describing the dynamic characteristics and as a
result, 1t 18 usually used in battery SOC estimation
(Huetal,2012; Liet al., 2013). A simple equivalent circuit
model is shown in Fig. 1, where, OCV, I, R, and V,
represent the open-circuit voltage, cuwrrent, Ohmic
resistance and terminal voltage of the battery,
respectively and OCV varies with SOC.

Based on Fig. 1, the space-state functions of the
battery model can be derived as shown in Eq. 1 and 2:

SOC(k):SOC(k—l)—M (1)

V, (k) = OCV[SOC(k-1)]-R,I(k-1) )

where, Qy is the normal capacity of the battery.

Usually, Q and R, are selected as constant which
results in large model error due to the fact that they are
significantly depended on the battery SOC, temperature,
current and ageing. These dependencies will be studied
in the following part of this study.

EXPERIMENTAL RESULTS AND DISCUSSION

Experimental configurations: The LiNi CoMn,O,
lithium-ion  batteries used i the experiments are
Samsung [CR18650-22P type with a normal capacity of
2200 mAh (0.2°C discharge at temperature of 25+5°C), a
minimum capacity of 2150 mAh (0.2°C discharge at
temperature of 25+5°C), a normal voltage of 3.6 V, a
charging voltage of 42 V and a discharge cut-off

—_—
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°
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}
() OCV (SOC) v,
0]

Fig. 1. A simple battery model

voltage of 275 V. The experimental equipment is
consisted of a power supply, an electric load, a constant
temperature and humidity chamber, an Electrochemical
Impedance Spectroscopy (EIS) instrument, a control
board and a Personal Computer (PC), as shown in Fig. 2.
In the experuments, the temperature was set in the range of
-20, +60°C which 1s the storage temperature suggested by
the battery specification.

Voltage SOC characteristics

Terminal voltage variation with different capacity test: At
the temperature of 2542°C, the battery was charged with
a constant current of 100 mA until the charging voltage of
420 V and the termmal voltage was recorded
simultaneously. Then the battery was rest for 2 h to reach
the steady state. Afterwards, the battery was discharged
with the same constant current of 100 mA until the cut-off
voltage of 2.75 V. The measured terminal voltage
variations with the charge and discharge capacity (Q) are
shown in Fig. 3.

It can be seen that the terminal voltage vanation at
the charge process is similar to that at the discharge
process. However, they have different values at the same
SOC or rather the terminal voltage at the charge process
is higher than at the discharge process. This difference in
terminal voltage 1s the reason that the different OCV-30C
relationship during the charge and discharge process.
And this difference should be taken into account when a
battery model is built. For example, the OCV is redefined
as the average value of the charging and discharging
equilibrium potentials to improve the SOC estimation
accuracy and simplify the battery model, meanwhile, the
OCV measured as a function of the SOC was obtained by
the quadratic curve fitting method (He et al., 2011).

OCV-80C variation with temperature test: At the
temperature of 25+£2°C, the battery was firstly charged to
the charge voltage of 4.2 V and was rest for 3 h to reach
the steady state. Afterwards, it was discharged with a
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Table 1: OCV (V) at different SOC and different temperature

Fig. 2: Experimental equipment
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Fig. 3: Realtionship between terminal voltage and capacity

constant current of 0.3C A from the fully charged state to
98% of the actual capacity which will be mtroduced in
the following part of this study. Then, it was left in the
open-circuit condition and the terminal voltage was
measured after 3 h. The measured terminal voltage 1s
chosen to be the OCV as the change of the terminal
voltage is negligible and the battery is assumed to already
reach the steady state. Then, the battery was
continuously discharged by a further 95, 90, 80, 70, 60, 50,
40,30, 20, 10, 8, 5, 3, 2, 1 and 0% of the actual capacity
with the same current and the OCV was measured after
3 h, respectively.

These steps were repeated under the same charge
temperature of 25+2°C and different discharge temperature

Temperature (°C)
SOC (0  -20° 0° 10° 25° 40° 60°
100 4.167 4.166 4.168 4177 4.171 4.166
98 4.134 4.135 4.137 4.148 4.140 4.134
95 4.098 4.103 4.104 4.117 4.105 4.100
90 4.056 4.067 4.067 4.080 4.067 4.061
80 3.977 4.004 4.004 4.012 4.001 3.994
70 3.901 3.931 3.931 3.941 3.928 3.925
60 3.834 3.854 3.8660 3.878 3.866 3.862
50 3.736 3.747 3.748 3.764 3.755 3.746
40 3.651 3.663 3.661 3.674 3.006 3.668
30 3.592 3.621 3.620 3.633 3.6028 3.630
20 3.538 3.585 3.587 3.595 3.581 3.573
10 3.540 3.498 3.501 3.504 3.497 3.488

3.515 3.474 3.474 3.484 347 3.468
5 3.504 3.454 3.455 3.468 3.456 3.453
3 3.535 3.443 3.444 3.456 3.445 3441
1 3.505 3.438 3.429 3.436 3.428 3416
0 3.492 3.434 3.411 3.407 3.406 3.378

of [-20, 0, 10, 40, 60]°C, respectively. The measured OCV
at different SOC and different temperature are shown in
Table 1. Furthermore, the corresponding OCV-SOC curves
are shown m Fig. 4.

From Fig. 4, it can be found that at the different
temperature of [0, 10, 25, 40, 60]°C, the OCV-SOC curves
have a sumlar trend. However, the situation becomes
obviously different inder the temperature of -20°C. Based
on these facts, it is suggested that to improve the
accuracy of the battery model, different OCV-SOC
functions
high temperature

should be used under the condition of
and  that of low temperature,

respectively.
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Fig. 4: OCV-30C curves at different temperature

3.414
3.2

3.0 4

oCV (V)

T T T T T T T T T 1

100 90 8 70 60 S50 40 30 20 10 0
SOC (%)

Fig. 5: OCV-30C curve of a typical LiFePQ, battery

Moreover, it can be seen that there is no voltage
platform that exits on the OCV-SOC curve for a LiFePO,
lithium-1on battery, as shown n Fig. 5 (Huna et al., 2014,
Sepasi et al., 2014). As a result, some empirical models
used for other kinds of lithium-ion batteries are no longer
suitable for LiN1,Co,Mn,C, battery. From Fig. 4, it is clear
that a high-order polynomial should be able to describe
nonlinear relationship between the OCV and the SOC of
a LiNi,CoMn,O, battery. However, this will increase the
complexity of the stability and computation cost of the
SOC estimator. To solve this problem, segmented linear
functions (Habtiballah ef al., 2014; Chen et ai., 2014) have
been proposed and each of them can be described as
shown in Eq. 3:

OCV = f(SOC) = b+b,SOC 3)

Capacity characteristics

Discharge capacity variation with temperature test: At
the temperature of [-20, -10, 0, 10, 25, 40, 601°C, the battery
was discharged with a constant current of 0.3C A from the

42 T T T T T

Voltage (V)

2.6

0 400 800 1200 1600 2000 2400
Q (mAh)

Fig. 6: Voltage-Q curves at different temperature

fully charged state to the cut-off voltage, respectively and
the terminal voltage as well as the discharge capacity
calculated by Ah method were recorded simultaneously.
The recorded terminal voltage and discharge capacity are
shown in Fig. 6.

From Fig. 6, it can be seen that the discharge capacity
decreases as the temperature decreases. The decline
becomes significant when the temperature decreases to
under 0°C. At the temperature of -20°C, the discharge
capacity is reduced to about 70% of the normal value. The
discharge characteristic at the temperature of 45°C 1s very
close to that at the temperature of 60°C. It 15 shown that
under the condition of high temperature, the potential
discharge capacity 1s larger. However, high temperature
15 bad for both the life cycle and safety usage of the
battery. Therefore, avoiding of working at high
temperature 1s still essential to the battery.

To compensate the model error caused by capacity
variation with temperature, a correction factor marked as
K;is introduced which is defined as:

K. = Capacity at the temperature of Tx °C
T Capacity at the temperature of 25 °C

The relationship between K and temperature T is
shown i Fig. 7, where, the blue-circles are the measured
data and the read-line is obtained according to a fitting
formula as shown in Eq. 4. It 18 clear that the mtroduced
formula can describe the battery capacity variation with
temperature very well. Thus, such a method can be used
to online correct the model error caused by the ambient
temperature variation to improve the SOC estimation
accuracy.

K, = -5.063 %107 < T%0.00518T+0.904 ()
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Fig. 8: Capacity under different discharging rate

Capacity variation with discharge rate: At the
temperature of 25£2°C, the battery was firstly charged to
the charge voltage of 4.2 V and was rest for 10 min.
Afterwards, it was discharged with a constant current of
0.3C A until the cut-off voltage and the discharge
capacity calculated by Ah method was recorded.

At the same temperature, the foregoing procedure
was repeated with different discharge current of
[1C, 2C, 3C, 10] A, respectively. The results are shown in
Fig. 8. It can be seen that the potential capacity decreases
with the increase of the discharge current. An obvious
decrease turns up at the max discharge current of 10 A.
Hence discharging with a lugh current 13 endeavored to
avoid in practical application to increase the discharge
capacity of a battery.

To compensate the model error caused by capacity
variation with discharge rate, a correction factor marked as
K, is introduced which is defined as:

_ Capacity under different discharge rate

KI N N
Norminal capacity

1.05+ —— Fitted curve
A Measured data
1.00
0.954
N

0.90.]
0.85
0.80

T T T T 1

0 2000 4000 6000 8000 10000

Current (mA)

Fig. 9: Relationship between K, and discharge current

The relationship between K and discharge current 1s
shown in Fig. 9, where, the blue-triangles are the
measured data and the read-line 1s obtained according to
a fiting formula as shown m Eq. 5. It 13 clear that this
formula can describe the battery capacity variation with
operating current very well. Thus, such a method can be
used to online correct the model error caused by the
operating current variation to improve the SOC estimation
accuracy.

K, =-7.571x107%1*9.897 x10 7" ~I"-4.198x10"x[+"1.035
&)

Capacity variation with ageing: At the temperature of
2542°C, the battery was charged with a constant current
of 0.5C A to the voltage of 4.1 V. Atfter rest for 10 min, the
battery was discharged with a current of 1C A to the
voltage of 3 V and then rest for 10 min. It should be
indicated that discharging the battery from 3-41 V
represents 80% DOD (Depth Of Discharge). After this
foregoing cycle repeated for 50 times, the battery was
then charged with a constant current of 0.5C A to 4.2V
and rest for 10 min. Then the battery was discharged with
a current of 1C A to 2.75 V (100% DOD).

The foregoing procedure was repeated for 900 times
to investigate the capacity variation with aging and the
results are shown in Fig. 10, where the red-circles and
blue-line represent the capacity of 100% DOD and that of
80% DOD, respectively.

From Fig. 10, it can be seen that the capacity loss
resists during the charging and discharging process.
Nevertheless the distinction of capacity loss is not
obvious between that under 100% DOD and that under
80% DOD. After 900 cycles, about 15% of the original
capacity has been lost Thus actual capacity reduction
should be considered to improve the accuracy of SOC
estimation.
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Fig. 10: Capacity variation with ageing
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Fig. 11: Relationship between K, and cycle number

To compensate the model error caused by ageing, a
correction factor marked as K, is mtroduced which is
defined as:

K = Capacity at the cylces of a

a

Initial capacity

The relationship between K, and the cycles a 1s
shown in Fig. 11, where, the blue-circles represent the
measured capacity of 100% DOD and the red-line 1s
obtained according to a fitting formula as shown in Eq. 6.
Obviously, the introduced formula can describe the
battery capacity variation with aging very well. Thus,
such a method can be used to online correct the model
error caused by the aging variation to improve the SOC
estimation accuracy.

K, =-1.225x10"%a*+2.726x10"x
a’-1.980x10 xa’+3.61 0x 10~ xa+0.942 (6)

Ohmic resistance characteristics
Ohmic resistance variation with SOC test: The battery
was discharged with a constant current of 0.5C A until the

0.056 1

—e— 0.5C
—— IC
0.052
_0.048
=)
o
0.044
0.040
0036 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

SOC (%)
Fig. 12: Charge Ohmic resistance

Table 2: Charge Ohmic resistance £ at different SOC and different current

S0C (%)
Current (C) 5 20 50 80 100
0.5 0.0530  0.0471 0.0420  0.0400  0.0450
1 0.0551 0.0463 0.0433 00416 0.0464

cut-off voltage at the temperature of 254+2°. After a rest of
10 min, it was charged with the same constant current of
0.5C A ull the SOC reaches 5% and the Ohmic resistance
was measured after a rest of 3 h. Then, the battery was
charged to 20, 50, 80 and 100% of the normal capacity,
respectively and the corresponding ohmic resistance was
measured after a rest of 3 h. At the same temperature, the
procedure above was repeated with different charge
current of 1C A. The results are shown in Table 2 and
Fig. 12.

From Fig. 12, it can be seen that with the current of
0.5C A, the difference between the highest and the lowest
ohmic resistance is 0.013 Q and the value is 0.0135 Q
under the current of 1C A. The lghest difference between
the ohmic resistance under 0.5C A and 1C A 15 0.0021 Q.
Therefore, a conclusion can be drawn that the charge
current has not obviously effect on the chmic resistance
at the same SOC and SOC is the main factor that leads
ohmic resistance variation as shown in Eq. 6. Moreover,
the Ohmic resistance variation with SOC performs as
V-shape and the highest values appear when the battery
is fully charged.

At the temperature of 25°C, the battery was
charged with a constant current of 03C A till the
charge voltage of 4.2V and the chmic resistance was
measured after a rest of 3 h. Then it was discharged
to the 80, 50 and 20% of the normal capatity,
respectively and the ohmic resistance was measured after
the same rest time. At the same temperature, the
procedure above was repeated with different discharge
current of 1C and 2C A, respectively. The results are
shown in Table 3 and Fig. 13.
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Table 3: Discharge ohmic resistance (12)

SOC (%)
Current (C) 20 50 80 100
0.3 0.0350 0.0385 0.0383 0.0387
1 0.0406 0.0396 0.0383 0.0400
2 0.0426 0.0410 0.0411 0.0436

From Fig. 12, it can be found that the ohmic
resistance increases as the discharge current increases at
the same SOC. Under the condition of different discharge
rate, the biggest difference between the ohmic resistances
is 0.0049 Q. And the current rate has more obvious effect
on the discharge ohmic resistance than that on the charge
ohmic resistance. The variation of chmic resistance with
SOC also performs as V shape and the highest values
appear when the battery is fully discharged. The variation
1s gentle under a low rate.

From Fig. 12 and 13, it is indicated that the ohmic
resistance of battery 1s not a constant but varies with
current, SOC, etc. Therefore, large error of SOC estimation
1s almost resulted by battery model with a constant ohmic
resistance. To resolve this problem, ohmic resistance is
also selected as a state-variable and estimated in real-time
(He et al, 2013). Unfortunately, it increases the
computation cost obviously. Thus, more efforts have to
be made to improve the model accuracy.

SOLUTIONS FOR ACCURATE SOC ESTIMATION

Based on the experimental results of this study, it is
suggested that two solutions can be used to improve the
accuracy of SOC estimation. The first one is to update the
parameters of battery model, e.g., normal capacity, internal
resistance, etc., based on its operating conditions,
mcluding SOC, temperature, current and agemg. This
method is called static correction method in this study.
For instance, the SOC updating function n Eq. 1 can be
rewritten as in Eq. 7 by using the static correction method.
Furthermore, defining the SOC in term of energy balance

can be more accurate as the energy loss due to the
internal resistance 1s not ignorable under the condition of
high current discharging or charging. And the definition
of SOC can be expressed as i Eq. 8 according to Fig. 1,
where, F, is the average equilibrium potential of battery:

T(k — 1) AL (7)

S0C(K) = SOCKk —1) —
KTKIKEQN

(V, + R XTIk —1)) xI(k —1)x At (8)

S0C(K) =800k -1) -
(KKK, @, )xE,

The second one is called as dynamic correction
method in this study. Tt i1s to employ intelligent algorithms
with superior estimation performance, such as Kalman
filtering, sliding mode observer and their modified method,
etc. Although this method has been widely used in
recently years and reported in many literatures. Tt has
some drawbacks such as dependency on model accuracy,
high requirement for hardware, high computation cost,
etc. Therefore, algorithms with more superior performance
are still required to improve the SOC estimation accuracy
under the conditions of model error, measurement error
and operating condition variation.

CONCLUSION

In order to improve the model accuracy of SOC
estimation, this study based on the characteristics of
Samsung [CR18650-22P-typed hithium-ion battery with
LiNiCoMn, O, cathode that is being applied more and
more in electric vehicles for its excellent performance.
Several experiments have been implemented to obtain the
dependency of OCV-SOC relationship, capacity and
ohmic resistance on the battery SOC, temperature, current
and ageing. The experimental results can be concluded as
follows:

¢ The terminal voltage variation at the charge process
is similar to that at the discharge process. However,
they have different values at the same SOC which 1s
the reason that the different OCV-SOC relationship
during the charge and discharge process. And this
difference should be taken into account when a
battery model 1s built

» At the different temperature of [0, 10, 25, 40 and
60]°C, the battery OCV-3OC relationship has a similar
trend and the cut-off voltage decreases as the
temperature rises. However, the situation becomes
obviously different at the temperature of -20°C. Thus,
it is suggested that different OCV-SOC functions
should be used under the condition of high
temperature and that of low temperature, respectively
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¢ On the OCV-SOC curve of LiNi,Co Mn O, battery,
there 1s no voltage platform that exits on the curve
for a LiFePO, battery. Therefore, some empirical
model used for other kinds of battery 1s not suitable
for LiNi,CqMn, O, battery

*  The discharge capacity decreases as the temperature
decreases. At the temperature of -20°C, the capacity
is even reduced to about 70% of the normal value

*  The potential capacity decreases with the mcrease of
discharge current. Hence, it is suggested that a
battery should be prevented from discharging with a
high current to increase the discharge capacity

* The actual capacity fades with ageing. After
900 cycles of charging and discharging, about 15%
of the original capacity has been lost. This fading
should be taken into account when estimating the
SOC of a long-term used battery

*  The ohmic resistance of battery is not a constant but
varles with current, SOC, etc. and its variation with
SOC performs as V shape. Therefore, large error of
SOC estimation 1s almost resulted by battery model
with a constant ohmic resistance
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