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Abstract: Recent works have characterized the fundamental Diversity-Multiplexing Tradeoff (DMT) i various
relay channels. However, the analysis of the DMT of the Multiple Access Relay Channel (MARC) in prior work
is constrained to the case of only one relay in the system due to the difficult description of the cutage event.
In this study first a Multiple Access Slotted Amplify-and-Forward (MA-SAF) scheme is proposed for MARC
consisting of arbitrary mumber of relays, then derive the achievable DMT assuming that the relays are 1solated.
The results show that, at high multiplexing gains, MA-SAF achieves the DMT upper bound obtained from the
max-flow min-cut theorem while at low multiplexing gains, it provides each user an interference-free transmission
n term of the DMT as if other users were not transmaitting at all.
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INTRODUCTION

Recently, cooperative transmission has drawn more
and more attention since A. Sendonaris ef al. (2003) and
Laneman et al. (2004)’s study. The DMT, fist introduced
by Zheng and Tse (2003), describes the fundamental
tradeoff between the data rate and the error probability
and is widely used to evaluate the performance of
relay in  high SNR regime. The two main
relaying protocols that have been proposed are
Amplify-and-Forward (AF) and Decode-and-Forward
(DF) by Laneman et al. (2004). This study focus
on the AF relaying mode where the relays simply
amplify the received signals according to power
constraint and forward the amplified version of the
signals to the destination. The AF scheme with single
source-destination link and single relay proposed by
Laneman et al. (2004) 1s shown to achieve the maximum
diversity order of 2 while it 13 only 1 if no relay 1s used.
However, the scheme proposed by Laneman et al. (2004)
requires orthogonal transmission of the sowrce and the
relay whiuch suffer from a significant loss of performance
in ligh multiplexing gains. The Nonorthogonal AF (NAF)
scheme (Azarian et al., 2005) proposed is shown to be
optimal for the half-duplex single-relay channel. However,
if multiple relays are available, NAF still fails to exploit the
potential spatial diversity gain in the high multiplexing
gain region. Yang and Belfiore (2007) propose a class of
Slotted AF (SAF) where the design criterion is to let the

schemes

transmit signal in as many slots as possible be forwarded
by the relays in the simplest way. The DMT of SAF tends
to the Multiple Input Single Output (MISO) upper bound
obtained from the max-flow min-cut theorem when the
mumber of slots goes to infinity.

However, Laneman et al. (2004), Azarian et al. (2005)
and Yang and Belfiore (2007) only consider single
source in the single-destination system which is not the
case in practical. The MARC was first introduced by
Kramer and van Wingaarden (2000) where multiple
sources commumcate with a single destination in the
presence of a single relay. Chen et al. (2008) propose a
strategy called the Multi-access AF (MAF) assuming two
users and one relay in the system. The DMT of MAF
shows that, at high multiplexing gains, it works just like a
multiple-input  single-output system while at low
multiplexing gains, each user can acquire the same
diversity-multiplexing tradeoff as if there 1s no competition
between the relay and the other users.

The analysis is extended to the MARC with one relay
and multiple users in the systems by Chen et al. (2006).
The results of Chen et al. (2006, 2008) however, are
constrained to the case of only one relay in the system
due to the difficult description of the SNR exponent of
[v,-v,* that occurs in the expression of the outage region,
where v, v, are two variables with the same distribution
function. In this study, the MA-SAF scheme 13 proposed
for MARC with arbitrary nmumber of users and relays in the
system which includes SAF of Yang and Belfiore (2007),
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MAF of Chen et al (2006, 2008) as special cases. In
MA-SAF the users transmit in all slots as if
non-cooperative multiple access channel while the relays
take turns, from the second slot, one m each slot, to
amplify and retransmit what they received in the previous
slot. The DMT in MA-SAF is derived by firstly
simplifying the outage region and then noticing the fact
that the SNR exponent of 1+SNR|v,-v,|* is the same as that
of 1+8NRJv,|* when |v|>|v, and as 1+SNR|v,} when
[v,|<l¥,]* . The analysis shows that, unlike SAF where the
DMT tends closer to the MISO upper bound when the
number of slots become larger, the DMT of the symmetric
MARC where all users have the same rate requirement
achieves the MISO upper bound at high multiplexing
gains. The results also show that, at low multiplexing
gains, MA-SAF provides each user an interference-free
communication with the destination in terms of the DMT
as if other users were not transmitting at all.

in a

Notations: Boldface lower case letters are used to denote
vectors, boldface capital letters to denote matrices. [.]",
[.]* denote the matrix transposition and conjugated
transposition operations, respectively. ||| is the
Frobenius norm. (x)"=max(0, x). The cardinality of the set
S is denoted as |S]. mod (n, M) is a projection of n to the
interval (0, M] satisfying n = aM+mod(n, M) where a is
an mteger and O<mod (n; M)<M. Note that mod (aM; M)
= M 1n this study. diag {v} means a diagonal matrix with
elements vector v being diagonal element. Exponential
equality is denoted by =, i.e., f(SNR) = SNR™ when:

logf(SNR)
logSNR

llmSNR%m

where, v is called the SNR exponent of f{SNR). The
relations < and > are defined sumilarly.

SYSTEM MODEL DESCRIPTION

Illustration of channel model: Consider a multiple access
relay channel consisting of N, users S,,.., S, N, relays
ry,..Tw, and one destination d, sketched in Fig. 1. The
physical links between termmals are modeled as
independent and identical distributed (1.1.d.) quasi-static
Rayleigh channels, i.e., the channel gains do not change
during the transmission of a cooperation frame. The
channel connecting 3 and d 18 denoted by b, « Similarly,
h, ; and hy ; denote the channel between 1, and d and that
between s, and 1, respectively. Tt is assumed that the
Channel State Information (CSI) can be tracked atthe
receiving end but not known at the transmitting end and
the destination has knowledge of all CSI including those
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Fig. 1. A sketch of the MARC with N, relays and N,
users, where the links between the nodes are
omitted

of the user-relay links. The relays work in half-duplex
mode, i.e., they can not transmit and receive at the same
time.

Tllustration of the MA-SAF scheme: Tn this study, a
Multiple Access Slotted Amplify-and-Forward (MA-SAF)
scheme for the considered system is proposed. Tn a M+1
slot MA-SAF, the users transmit in all slots, where M is
an positive integer and assurned to be no less than Nr, 1.¢,,
M=N,. A cooperation frame is composed of M+1 slots
of Fy; symbols for each user. Because there is no
difference 1n data processing for different symbols
within the same slot, it is assumed Fy = 1 without loss
of generality. From the beginning of the second slot,
there is one and only one relay forwarding a scaled
version of what it received in the previous slot, similar
to that in SAF of Yang and Belfiore (2007). Tn such a
way, M slots out of M+1 slots of the signals transmitted
by the users are forwarded by at least one relay. The
simple Round-Robin scheduling strategy is adopted
for the relays m MA-SAF, 1.e, m the kth slot the
relay required to assist in the transmission is r,,, where
M = mod(k-1, N), 2<k<M+1. Then the received signal at
1, and d in the kth slot, dencted by v, , and y, ,, can be
written as:

Ny
Var =2 JSNRh, %, + b oX Wy,
- (1)
Yex = ; vSNRh sl,r,k,,lxg,k + Yrﬂk,:“k,,lxr,k +Wo,

where, X, , 1 the unit-power symbol transmitted by s;; wy,
and w, , are independent Additive White Gaussian Noise
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(AWGN) with zero mean and umit variance; v, «, i the
channel gain from the relay r,, to the relay r,,,,; x, , is the
signal transmitted by r, in the kth slot, x, , = by, .., for
k>2and x,_, = 0, where b, is the processing gain at r,;
SNR is the power constraint imposed on each transmitting
end, where the notation SNR is used due to the
assumption of umt variance of AWGN.

To make the analysis of the DMT in MA-SAF
feasible, isolated relays is assumed in this study, i.e.,
Vino men DY ignoring the i-hop links for i=1 which can be
explained as that of Yang and Belfiore (2007): The sowrce
signals degrade with the number of hops since the
channel in each hop is faded and that each normalization
at the relays weakens the signal power. Figure 1 is an
example of artificial relay isolation of Yang and Belfiore
(2007) where consecutive relays are separated as far as
possible to approximate the relay-isolation condition.
Then, by is subject to:

SNR
DR A @
\]SNRZlZI\hﬂ,rM\ +
For simplicity of notation, in the following it is
denoted that:

hl, i hsl, s ka - hslvrqm: Sed hlqm: d (3)

Then the received signal at d can be expressed in the
the equivalent matrix form:

Y, = VENRH, + W, + W, (4)
The equivalent channel:
h 0 0 0 0
g h 0 0 0
H=|0 g, h 0 0 (5)
0 0 00 0 g, h

where, O denotes a 1 <N, vector with elements all being

Zero:
g, = bg o[l by,] for K=1..M (6)
and h = [h, ,.hw, ¢]. The equivalent transmit signal:
X=X X Xt I (7

where, x, = [X, .. X, ], k = 1,..M+1. The equivalent noise:
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W= Wy Wyl
W, =[0 blgl,dWr,l-"ngM,dWr,M]T (8)
It can be obtained that the covariance matrix of the
aggregate noise W+ W, is:

5,= 1+diag{[0|blg1,dwr,1‘2'" [raaan d|2]} 9

MATERIALS AND METHODS

Preliminaries: Let C(SNR) = [C,(SNR),.... Cw, (SNR)]
denote a family of codes indexed by SNR such that user
I's codebook C,(SNR) has data rate R (SNR) bits per
channel use. At the destination, the jomt maximum
likelihood receiver that jointly detects the message of all
the users 1s used. Let P,(SNR) denote the error probability
of the decoder. Then the multiplexing gain 1r; and the
diversity gain d in MARC are defined as Tse et al. (2004):

R,(SNR)

_ n JOEP.(SNR)
" siR-e JogSNR

logSNR.

rl and d=- (10

SNR—w

The DMT views the diversity gain d as a function of
multiplexing gain, 1.e., d(rl,..mw,). Zheng and Tse (2003) and
Tse et al. (2004) prove that the error probability is
dominated by the probability of outage. It can be proved
that it is also true for MARC with the same method used
by Zheng and Tse (2003) and Tse et al. (2004). Therefore,
in the rest of the study outage probabilities will be
considered only.

Define:

_—loglh,, §
M4 1ogSNR
~log|h,,F

logSNR

_ -log|f,
e Jog SNR
" _ —log|b, [
5 logSNR

Bla

(11)

where, 1 = 1 N, and k 1,.., M. As stated by
Azarian et al. (2005), assuming that ¢ 13 a Gaussian

Sy

random variable with zero mean and unit variance and
that v = log|c|/log SNR, then, for i.i.d random variables
{v;}",_, distributed identically to v, the probability P, that
(V15e., Vo) belongs to set O can be characterized by:

N

d,= inf V.
O, —,vN)eO+J§ !

(12)

Po=SNR™¥, for
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provided that O, when O" means OMR™ and R™ denotes
the set of real nonnegative N-tuples. So, only considering
o Gy ooy 1=L Noand k=1, M, to be no less
than zero m the following. As that of Azarian et af. (2005),
the constraint on b, given in Eq. 2 implies:

(13)

o, = Injn{otflk SOy 1}

Similarly, choosing b, such that its SNR exponent
becomes:

h
oy =min{a, -

o 0) (14)

Then it can be seen that a, 1s always equal to
zero, ie., by SNR', that the largest and smallest
eigenvalues of X, satisfy 4., = A. SNR". So,
[I+SNRHZX H*| [I+SNRHH*| which mmplies that
omitting the influence of %, does not change the DMT of
MA-SAF, as that done in the following.

Here one lemma is introduced that would be crucial in
the description of the outage event of MA-SAF:

Lemma 1: Let v, and v, be two independent continuous
complex random variables with identical distribution:

14+SNRJv,-v,f = 1+SNRJv [ (1%
if [v,|>|v,| and:
14+SNRJv,-v,f = 1+SNRJv, (16)
if v [<v,
Proof: Assume v, v, |e™,i=12. It can be obtained that:
[vivof = v v 2 vl cos(8,-8,)= (v v, (17)
and:
[vivaf < (v -val)

(18)

Similaras that of Azarian et al. (2005), let | v, ['= SNR ™
and | v, '= SNR™, when |v,[>[v,|, ¢t,<<¢t,. Thus:

o 2-ol

(19)

According to the definition of exponential equality:

AL
| ¥1]

0

SNR.

245

Then:
2
1+SNR|v, v, [21+SNR|v, [1—%} “14SNR | v,
vl
(20)
And:
v 1Y
1+SNR |v, - v, <1+ SNR | v, [H‘LJ Z1+SNR|v, [
vl
(21)
because:
14 Y21 e
[ v1]

Combining Eq. 20 and 21, 1+8NR]v,-v,[' = 1+SNEJv,[.
Similar result can be obtamed when |v |<|v,|. Thus the
Lemma is proved.

Deriving of outage exponent of HS: Assume that the
target data rate of user | is R, = 1 logSNR, 1=1,.., N. As
that of Tse et al. (2004), the outage events is defined as:

in o}
3
The union 1s taken over all subsets S < {1,.., N} and:

&
Og={H:I;=log |1+ SNRHH* |< 3" R}
18

where, H consists of the coluuns of H corresponding to
the users mn S, I, 1s the mutual information of MARC
assuming the symbols transmitted by users that are not in
3 1s provided to the destination by a gemnie.

By allowing the users in 5 to cooperate, the channel
H; 15 equivalent a point-to-point link with |S|+Nr transmit
antennas and M+]1 receive antennas. The following
theorem can be obtained.

Theorem 1: When | 5| =1, the outage probability:
P> 1 1ogSNR) = Pr{log | I+ SNRHH.*[< 31, logSNR)

13 =5

- SNR—dHS(q,IES)

(22)

where, du; (1;, 1€S) is called the outage exponent of Hy and:

_ DA (23)
dHS(rl,leS)(|S+N,)[1 ves
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Proof: Here, Eq. 1 Anupper bound and a lower bound of
the outage exponent 1s derived in subsection and Eq. 2 in
subsection, respectively and prove the theorem by
showing the upper bound and the lower bound
coineiding.

Upper bound of the outage exponent: The upper bound
firstly is derived. For simplicity, let:

%= SNRZ' b, ‘E’Xk = SNRZ| b.g, .. |2 24

=5 =5

Fork=1,., M and:

G, =SNR? [Zh bkgk,dﬂ,k][zh bk,afl,k] (25)

le3 13

and:

Ek = XDXk 7Gk :‘ bkgk,d |2 SNRzZ Z |h1,df1,k 7h_|,df1,k |2 (26)

ie% jeb, s

Denote the matrix constituted by the 1st-(k+1)th rows
and the 1st-(k+1)/S|th columns of Hy as H, and define
D, = [I+SNRHH*,|. With the equation for the calculation
of the determinant of a tridiagonal matrix defined by
Hormn and Tohnson (1985), it can be obtained that:

Dy = QX+ XDy -Gy Dy, (27)

where, D, = 14X, and D, = (14X )4+ X+E,. With the
notation ¢ ; = & {1+X+¥, )-a,,, Gy, for k=3, M, where
e = 1 and oy, = 14+2{+X,, while:

Dy = Q+Xt XDy -Gyl
= O Dy 0 Gy Dt (28)

= o,D-0; G50,

Define A, = (1+X A, +AE,, fork =2, M-1, where
A, =1+X, and A, = (1+X)+E, while:

Dy =24, -3,G,D,
za,A, —3,G A,
=4[+ XA +AX, + AE, +X,E ]-3,G.A
zaA,-a,G A
S (29)
2 aMAM - aMHGMAMd
21+ XAy, + AysEn
M
2+ XM+ 1+ X3 E, =Dy,

k=1

Because the physical links between terminals are
Rayleigh distributed with zero mean and unit variance, as
assumed 1n section II, the jomt Probability Density
Function (PDF) of |h, J, lg. f* and |f, FleS, k= {1,.., N.},
15!

P U0y, ol g Pl P TeSke {1 N ) =

C"P[-El bl -3, [\gk,d LN \]] G0

le3 k=l 13

Note that, for ke{l,.. N} and V1, ¢ty 4y = G o and
Cgy = Cg eane where a = 0,..., [M/N]-1, due te Round-Rebin
scheduling strategy of the relays and the definition in
Eq. 3. Then, the joint PDF of o . ¢y 4 and o; 4, l€S3,
ke{l.. N}, is:

Pu U h Pl g Pl FrleS ke L N

Ny
= exp [—z\ by, fZ(I geal +3 I, |J]
1=3 k=1 15

(31
-exp [72 SNR M - %‘, (SNR“W + %:SNR’“‘“* ]J

=5 k=1

- SN.R—EJES%M-E);"-1(%_d+2ksﬂm,)

where, the exponential equality 13 due to that:

(log (log SNR)
logSNR.

(S} He+H ]3| )

1m
SHR—ew

And that exp{—SNR ™), exp(-SNR "™}, exp(—SNR**}
approach 1 «, >0 e, >0 a, >0, for respectively and e
for o, =00, =00, =0, respectively in that of Zheng
and Tse (2003).

Denote Q = {h . £ J* h oL .[.1J€eS, =i
ke{l,., N} and O be its complementary set. It can be
seen that P,({2) = 1 and P.(8) = 0.Q can be rewritten as:
hx,dfj,k ‘2 - ‘h],dfi,k hi,\if],k‘z < ‘hj,\ifx,k 2}

2)U

(32)
h, £, opa.i ik hyf, [

:U ﬂ {

where, Uc=2®% Op(n, 1, ), k) 1s relation operator and
Op(n, i, j, ke {< >} ¥nl # n2, Op(m, 1, j, k) for at least one
pair (i, j, k), denote:

o,=1 (1 (ht.fopmijk] bt f1- (33

n
i, )E5,
kefl, N}
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Note that £, may be empty for some n. Then:

P.(D,, < SNRY)
=P.(D,,'<SNR' | Q)P,(Q) + P (D,,'< SNR' | )P, ((3)
P.(D,, "< SNR* [ (3)

v (34
=3 P(D,, "< SNR'| QP (0,)

=1

Uc

= 3 P(Dy'<SNR'|QP(0,)

n=1, 3, =0

If €, is not empty, according to lemma 1, on £,
D, '= 1+X,)™ + [1+ Sihy, |2(M‘”]
1le3 (35)

k=L ieS jeijes

M 2
'{E bkgk,dl }SNRZ |:E Z (‘hI.l(n,),],k),dfu(n,i,jj,k |2)}}

where, t,(n, 1, , k) =1, t(n, 1, J, k) =j il |hy o £ fhy o £
and t(n, 1, §, ) = . G0, i, 4, ) = L i€ b, o £ f<lhy o £
Applying lemma 2 in the appendix on Eq. 35, the outage
exponent of P(D,”<SNRQ,) is derived:

K,
dn(q,leS):OinI(E)Z o, Jrz[otghl +3 oafuj (36)
el k=1

With:
O, (.1
i{(M Do, ) <K
=
M-Dl-a, )

+ .
+H2- Tgea ™ ﬂ”hum,ukn.d - ﬂ”fucnm.k)k) = 2 h
15

(37)

a. > .
LCRERATYY Toainjk ”

for leS,ke{l,---, N},
L,je S, j>i}

Tt can be seen that the optimum must satisfies that:

EHHT

e =0 cl’*‘l.a:[l_ M+1

then:

B ElsSrl i (38)
d,(r,l1e8)= (|S+N,)[1M+1

Because P,{Q),) = SNR” and d,(1, 1€3) is independent
of the index n, an upper bound on the outage exponent of
HS can be obtained as:

= ElsSrl i (39)
o (5, 1€8) =] S|+Nr)[1_m

Lower bound of the outage exponent: Next a lower bound
of the outage exponent dug(r) is found. Define:

&
|2 = n.llsasx {‘gk,d|2=|h1,d‘2} (40)

kefl, N}

| B

According to the denotation of Hk:

Hk+1:|:Hk 0:| (41)
v by

where, v, = [0..0 g,], hyeC"® and hy = [hl ], 1€S. Then:

D, =D, |1 +%V§Vk +SNRH}H, |

0

SNR (k3
v IFY ][ L+SNRA)

]
<D, {1+ SNRA, +
D, i=2

(kS (42)
=DyD, +SNR || v, [!3 | (1+SNRX,)

i=2
(k)
<D,Dk+ (1+8NR || v, [F)(1+SNR | H, [})*
<D,Dk+ (1+8NR | H,, 5™

where, A, 1s the ith smallest eigenvalue of H* H,, (a) comes
from the fact that V*,V, has only one nonzero eigenvalue
and that for any nonnegative matrix A and B, [A+B]| is
maximized when they are simultaneously diagonalizable
and have eigen-values in reverse order proved by Horn
and Johnson (1985). Among the (k+1)|3| eigenvalues, only
k+1 eigenvalues 1s nonzero and the mmimum eigenvalue
A, =0, so, in (b), the power exponent of |1+SNR||H,[; is
k+1. Then:

D,.,<D,D,+(1+SNRg,.[)*” (43)
Because:

2 P 2

[H e [l ﬁz M+ 1) h [+ E E (I begfi. )
= k=118
M
2 2

ST, P 218y (ad)

M
<Y M+D)|S|lg,. [+ 18] bg,. [
k=1

led =
= B [
where, it is the fact that b, = SNR'. Then, in a recursive
manner it can get:
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|T+SNRHH.*|=D,, < DM+ 1+8NR | g, [
= (1+5NR | g, [

(45)

Because |g, | and |h, , are i.i.d., the PDF of |g,,.|* can
be easily obtained as that of David (1970):

2yl

Ho43-1
ph(gmﬁ){je'*dx} cexp(-lg,. ) (40)

Denote:

_—loglg,.. [
log(SNR.)

Ema

Then the PDF of «,,., is obtained as:

(o, )=SNR e (47)

G,
following the similar derivation of Eq. 31.

Applying lemma 2 m appendix on Eq. 45, a lower
bound of the outage exponent of H, can be obtained as:

Qe (i leS) = inf (S[+N) -0, (48)

Where:

0, (o.r)= {(M o, ) <3t (49)

15

}

It can be seen that the optimum is achieved when:

|
o)

21esrl

M1

while:

ElsSrl

M+1

d,, (. 1e8)= (S|+Nr)[1— (50)

Combining Hq. 39 and 50, 23 can be obtained and end
the proof of theorem 1.

A few remarks on Eq. 35: As pointed by Chen et al.
(2008), to get the outage event set in the high SNR regime,
Iy, .. £ b . £ J should be rewrited in a more convenient
form of positive variables. MARC with two user and one
relay 1s analyzed by Chen et al. (2008), where two new
variables @ and () are defined by:

248

dlhy £, —hoofi 1 sl —hy 8T

®1,2 = » B3 (51)
JE LT JE P +IE, T

Tt is proved that conditioned onf,  andf, , @, ,
and €, are two independent variables that satisfies
0, o = by fHh, . And by, £-hy . £ s equal
to @, [(f, ,HE, ). However, for the case with N1>2 and
Nu=l, it is no use to define directly @, and £; as in
Eq. 51 because ©,; s are correlated in this case and it
cammot obtain explicitly the joint probability function of
©,, is that is crucial in the calculation of the outage
exponent. In Eq. 35, |y , f, h, , f, ) is rewrited with
Mosgaije o fio 1,10 bY applying lemma 1. Because hy g4
s and £, , 4 » are independent variables, their joint PDF
is easy to obtain. By applying lemma 2 on Eq. 35, the

outage exponent of Hy is finally obtained.

Analysis of DMT on the MA-SAF scheme: It can be seen
that in Tse et al. (2004):

P.(0,) <P (0} = Pr(u os)s TERO):P©  (52)

where, S* is the subset of {1,.., N} with the slowest
decay rate, 1.e.:

S*—arg mindy, (5, 1€ S) (53)

dy,(1, 1l€3) 13 with the form Eq. 23 when |S[>1 and with the
form:

R (54)

When |S| = 1 which 1s the conclusion obtamed 1n
appendix of Yang and Belfiore (2007). Then:

Pr (O)= P,. (OS*) = SNR"’;.(!LIES') (55)

According to lemma 3 m appendix, due to the
normalization of the channel use, the DMT of MA-SAF
with Nu user and Nr relay could be concluded in the
following the theorem.

Theorem 2: The DMT of M+ slot MA-SAF with Nu
users and Nr relay is given by:
(56)

dysge (1) = mind, (5, 1 €'S)

where, the mimimum is taken over all subsets:



Inform. Techrol. ., 13 (2): 242-250, 2014

Scil,., N} and d(r, 1€3) = di (M+1)r, 1€3) (57)
15 shown m Eq. 57. For the symmetric case where:

r,=r/N,1=1,.. N,and N >2 (58)
the DMT simplifies to d, 4,zc(r) shown in Eq. 58.

Take a closer look at the behavior of the users in
MA-SAF, the DMT of each individual user in the
symmetric MA-SAF scheme is:

dipa(T) = dsmarcNT) (59)

As 1n that of Yang and Belfiore (2007), an upper
bound (MISO bound) on the DMT of MA-SAF can be
obtained from the max-flow min-cut theorem. By cutting
around the destination d, the DMT can be upper bounded
by a pomnt-to-point MISO link with NN, transmit
antennas, 1.e.:

Si|

dMARC(Ii’-”’rN“) 3(Nu+ N,)[lf

and:

dgmardD) = (NAN)(1-1) (61)

RESULTS

In Fig. 2, the DMT of MA-SAF under different Nr, Nu
and M for the symmetric case is plotted. In Fig. 3, the
DMT of one individual user 1s plotted. Some conclusions
can be drawn from theorem 2 and the figures when Nu>2:

The DMT of MA-SAF improves with the increase of
Nu, Nror M

The DMT of MA-SAF achieves the MISO bound
when r 13 larger than a certain threshold

As shown m Fig. 3, the DMT of one certain user 1s
the same as that obtained assuming 1t 1s the only user
in the system when r is smaller than the threshold.
However, the threshold decreases with the increase
of N,. The larger N, is, the smaller the range that each
user can have interference-free transmission is

The maximum diversity order that can be achieved by
MA-SAF depends only on Nr and not on N, and M
With the mcrease of Nr the DMT of each user in
MA-SAF mproves too which is reasonable because
the performance improves with the help of more
relays
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Fig. 2(a-c): The DMT of symmetric MA-SAF under
different N,, N, and M (a) N, when N, = 2 and
M = 6, (b) Nr whenN,=6and M =6 and

(c)MwhenN,=6and Nr=2

The influence of M on the DMT of MA-SAF is rather
small. As shown in Fig. 2¢, the DMT increase slightly
when M increases from 4-6

In this study, the MA-SAF scheme for MARC is
studied and the achievable DMT 1s derived assuming that
the relays are:

(S[+NHI-> ), when |S]>1

dS(I'LlES)= M+1
r1)+>

(l-5) +N,1- when

IS|=1
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Fig. 3: The DMT of one individual user in symmetric with

different N, when M =6 and N, =2

1-¢—Nr—(1+M+1Nr)L when O<r<r,
dS—MRC(r): M Nu
(N, +N)l-r), when r,<r<l
Where:
r, = T\Iu2 7Nu
b=
NN N, =MLy

isolated. This analysis clearly shows the role of the relays
in MARC and the performance improvement with the
increase of the number of relays. Tt shows that the DMT
of the MA-SAF scheme achieves the MISO upper bound
in high multiplexing gains and in low multiplexing gains
the DMT achieved by each user is the same as if there
were no other users transmitting in the system. Altogether
the results provide a better understanding of the behavior
of the multiple access relay channel with arbitrary number
of users and relays.

Appendix

Calculation of the DMT: The lemma 2 presented by
Yang and Belfiore (2007) in the appendix is included to
keep the integrity of this study.

Lemma 2 [Lemma 2, 5]: Consider a linear fading Gaussian
channel defined by H for which || +SNRHH?| is a function
of 4, a vector of positive random variables. Then, the
DMT dy of this channel can be calculated as:

4, (r) = Inf =(c) (62)

where, o 13 the vector consisting of elements i,
ai & -loghi/logSNR 1s the SNR exponent of A and A, is the
ith element of AO(w, r) is the outage event set in terms of
and r i the ligh SNR regime and £(z) 15 the SNR
exponent of the PDF of p,(t), 1.e.:
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pu(er) = SNR™ (63)
Lemma 3: The DMT of the MA-SAF scheme with
equiva-lent channel model 5 is:

d(r) = dy((M+1)r) (6h)
This lemma is obvious, similar to theorem 1 of

Yang and Belfiore (2007) due to the normalization of
channel use and can be proved similarly.
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