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Abstract: In this study, according to the mverse transformation principle and the affine transformation principle

of Rijndael S-box, a new approach to generating the multivariate quadratic equation system over GF(2) is

proposed and the generation process 18 given explicitly. According to the algebraic expression of the new

Rijndael S-box, an equation system over GF(2%) is proposed to describe Rijndael. By comparing with other

existing systems, this system has stronger resistance against algebraic attacks. So, the equation system of the

new Rijndael 3-box 1s much securer than other existing equation systems.
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INTRODUCTION

Since, Ryndael (Cheon and Lee, 2004; Demuirei et af.,
2013), the SPN-Structure block cipher algorithm
designed by Vmcent Rymen and Joan Danmen was
chosen by NIST as the Advanced Encryption Standard
(AES) on October, 2, 2000, many schemes have been
proposed to attack it (Zhang ef al, 2011; Kim ef al,,
2007; Chen et al., 2011). Tt has been proved that Rijndael
has the security agamst differential attack and lnear
attack which are the most well known attacks on block
ciphers. Because of the simple algebraic structure of
Rindael
algebraic attack which may be an efficient method. As
the only nonlinear component of Rijndael, S-box is a

S-box, meany cryptanalysts focus on the

crucial element and it determines the performance of
Rindael.

Many researchers devote time to design and improve
the algebraic cryptanalysis scheme (Zhang et al., 2007,
Ghosh and Das, 2012; Cheon and Lee, 2004). Courtois and
Pieprzyle (2002) analyzed the overdefined system and
proposed XSL attack on Rindael. Hussam et af. (2013)
analyzed the algebraic structure of Rijndael S-box and
proposed a new S-box structure. Much study has
concentrated on Rijndael S-box, however they did not
explicitly give the approach to generating its multivariate
quadratic equation system over GF(2). Murphy and
Robshaw (2002) showed that the Rijndael preserves
algebraic curves and that it can be expressed as a very
simple system of multivariate quadratic equations over
GF(2"). Cheon and Lee (2004) proposed a new system of

multivariate quadratic equations over GF(2%) to describe
completely Rijndael in 2004. There have been few research
results of the equation system optimization in recent
years.

In this study a new approach to generating the
multivariate quadratic equations of Ryndael S-box over
GF(2) is given explicitly and an equation system over
GF(2% is proposed to describe the new Rijndael S-box.
This study is organized into sections: Principle of Rijndael
3-box, new approach to generating multivariate quadratic
equation system of Rijndael S-box, the optimization of
Rijndael S-box equation system and conclusion.

PRINCTPLE OF RIJNDAEL
S-BOX

Looking upon 8-bit bytes as elements in GF(2%),
Rijndael S-box is a combination of an inverse function
I(x) which 13 the multiplicative inverse modulo the
irreducible polynomial *+x*+x+x+1 and an affine
transformation function A(x). The I(x) and A(x) are as
follows:

s The inverse function I(x) is defined as:

_ ()«1)25‘1 Xx#0
I(X)_{o x=0

s The affine transformation finction A(x) i1s defined
as:
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1111100 ofx] [o
0111110 0|x |1
00111 11 0fx| |1
A(X=Laxx+'63' = o oot xg 0
10001 1 1 1|x,/| |0
11000 1 1 1|x| |0
1 11000 1 1fx/| |1
1 11 100 0 1]x] [1]

where, x(1 = 0,.., 7) are the bits of the byte x and x, 1s the
most significant bit. Therefore, Rijndael S-box can be
denoted by:

S(x) = Aol = A(I(x))

From the construction principle of Rijndael S-box, the
algebraic expression of Rijndael 5-box can be derived as
follow:

S(x) = 05x " 00 THF OB+ 25 HF 4 +H01 x5+
B5xP+8Fx"+63

NEW APPROACHTO
GENERATING MQ EQUATION SYSTEM OF
RIJNDAEL S-BOX

Rindael 3-box 1s a composition of the “patched”
inverse in GF(2") with O mapped on itself with a
multivariate affine transformation GF(2H)—GF(2"). We
call these functions, respectively g and f and we call
S = fog. We note x an mput value and y = g(x) the
corresponding output  value. We will
2= S(x) ~ fiy) — fg(x)).

For inverse transformation y = g(x), obviously xy =1

also note

whenx = 0. 1e.;

(gt g 0
i=0 i=0 mcy 571

Expanding the Eq. 1, we have:

7

. 7
D Y ey hy = 2,067 41 (2)
b k=1

i=0i=0

where, m(t) = t*+*+++1.

Comparing the both sides coefficients of t(0<k<R) in
Eq. 1, we can obtain the 8 multivariate quadratic equations
of inverse transformation. Since, ¥ 2 1s linear, we can
obtain & multivariate quadratic equations of Rijndael
S-box.

Now, we give the generation principle of Rijndael
S-box equation system. Multiplying x by y and the
multiplication result modulo m(t), we can obtain the
coefficients c,,.., ¢, of t{(0<k<8). Firstly, we give the
computation process of the coefficients c,,..., ¢,

We note (X4,..., %) = X, (Vs Vo) =y and (2., 75) = 2.
e,

X:ixiﬁ, y= ET‘lyiti and Z:i:zlti
i=0 i=0 i=0

We have:

X®y = X?Y?'tl4+(X7Y6+X6Y7)'t13+(XTYS+XaYa+X5Y7)'t12+

(37 F2aY syt Yot Gy Y Py T Yt ey
ot (XY R Y XY R YRy Xy et
(X7Y1+XﬁY2+X5Y3+X4Y4+X3Y5+X2Y5+X1Y?)'t8+
(%Y XYy E XYy X Y XYy P Y, Yty ot
(XY o Xay T HRaY ey XYY s XoYs)
'tﬁ"'(X5Yn+x«1y1+X3Y2+X2Y3+X1Y4+X0Y5)'t5+

(X4YU+X3Y1+X2Y2+X1Y3+XUY4)'t4+(X3YU+XZY1+X1Y2+Xuy:s)
't3+(X2Yn+X1Y1 X3 )'t2+(X1Yn+XDY1)'t+XDYn

The multiplication result modulo m(t) one by one and
we give the process in detail as follows:

Step 1: x®y modulo:
Xyt bt iy ety et oy et = R
Step 2: R1 modulo:

(XTY6+X6YT).t1 3+(X7Y6+X6Y7)'t9+(X7Y6+X6Y7)'t8+(XTYa+X6Y7)'
vty et = R2

Step 3: R2 modulo:
(X7Y5+X6Y6+X5Y7)'tl2+(XTYS+XaYa+XSYT)'t8+
(Vs Vi s v ot Gy sy sy )UKoy X Yty )

o' =R3

Step 4: R3 modulo:

(X7Y4+X6Y5+X5Y6+X4Y7)'tl 1+(XTY4+XaYS+XSYa+X4Y7)'t7+
(KoY Ry Y Ry Gy sy syt y ot
(XTY4+XaYS+XSYa+X4YT)'t3 =R4

Step 5: R4 modulo:
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(XY Ry Xy Xy by Ay et
ey Py P ys v b v b vy et
(Y ey sy s H Y b Yty et +
(Y5 Ry, ey X Yoy Ay et
(oYY TRy shy sty TRy )et’ = RS

Step 6: R5 modulo:

(X Xy Ty TRy Xy Xy Tyt
X7Y5+X5Y7)'t9+(X7Y2+X5Y3+X5Y4+X4Y5+X3Yﬁ+
Xo Yy XY XY Xy et (y ey
XSY4+X4YS+X3Y5+X2Y7+X7Y7+X7Y6+X5YT)'t4+(X':Y2+
XY Ry XY KoY Xy Xy Xy Xy 7)o
t2+(x7y2+xﬁy3+xsy4+x4y5+x3yﬁ+x2y7+x7y7+x7yﬁ+xﬁy7)-
t=R6

Step 7: R6 modulo:

O e & e A & e A Paw ) fa S
XaY7+XTYS+XaYa+XSYT)'t8+(X7Y1+XaY2+
KoYy X Ve PRy XYt Xy T
X’:Yﬁ+X5Y7+X7Y5+X5Y5+X5Y7)'t4+(X7Y1+

XYt X Yo PR Y PRy Pyt Yot
X’:Yﬁ+X5Y7+X7Y5+X5Y5+X5Y7)'t3+(X7Y1+

G =X Y T XY, TX Y, PV P XY, XY T XY T XY,
TE Y, XY XY TXY, XY, TXYS F XY XY

Co = Xe¥o T X5, T X, ¥, +X¥s TX¥, H X Vs XY + XY
TRY, F XY, H XY T XY TR, XY H XY,

Xs¥s X, ¥ TXY,

G =Xs¥y T XY XY, 1 XV, TX ¥, T XV, XV XV,
TR Yy X Vs TRV, T XY T XY XY, XY, T XY,
TV, T XY XY, T XY,

Cy = X, Yo H XY, XY, X Vs XY, H XY, H X5 XY,
X, ¥y T XYy TRV, T XY, XY F XY PX Y, P XY
Ky ¥y T XYy X Vs P XY, XY F XY Y, (3)

G = X ¥y TXo0 ¥ T XY, T XY TX ¥, H XY XY, XY,
X ¥y H XV, T XY TRV XY TNV, Y XY,
Xs¥s T XYy T XVs F XY TX Y, XY TXY, T XY+
Xs¥s T XYy

Co = X ¥o P X W, T XY + X ¥s T XYy T X5, H X,V F XY,
Ky ¥y T Xg¥s T XY, XY T XY H XY, + XY, XY,

C =X ¥o T XY H ¥ H X Vs T XY, H XY XY, P XY
Xo¥y TEIY F XYy T XY T XY, T XY F XY XY,
X ¥s + X ¥ T XY,

G = X ¥y T XY, TX ¥, TNV, XV, T XV + XY, + XY, +
X Vs T XY, FA Vs T XY H XY

Then, we give the generation process of the 24

D A D R S G multivariate quadratic equations. According to the
XYy Xy Ky ot H (XY Xy sy prnciple of Ryndael S-box, the relationship between z and
KV Ky K Ve K Y Y ey y can be denoted as:

XYYty = R7

R7 = (Xyy ey sy, Py ey gy byt
XY T E YRy s Y T Y T Yy X YT Yo
X4Y7)'tT‘"XﬁYD"’X5Y1+X4Y2+XBYB+X2Y4+X1Y5+Xny{|’
XY TR Yt R Yy TR Ys TR Y TR Yoyt
X5Y4+X5Y5+X4Y5+X3Y7)'tﬁ+(X5Yn+X4Y1+X3Yz+X2Y3+
XYy XY s PRy XY Ty Xy XY PRyt XY
+X3Y7+X7Y2+XﬁYB+XSY4+X4YS+X3Y5+X2Y7)'t5+(X4Yn+
XY XY PR Y XY Yy XY Py Pyt
XY XY T s Yat XY Ty T XY Xyt Xy HXeyo
X5Y3+>(4Y4+X3Y5+X2Y5+X1Y?)'t4+(X3Yn+X2Y1+X1Y2+
L O A A B R b O A S
TR YRR Y TR Y R YK Y Ty Ty X Yt
XY XY XY X Yty O (Y Xy H Ry Xy gy
D A O e ) Cp ) ) P p B A p 9 2 P O\ /i p ) iy € ap 9\ 0Y)
* 2+(X1 Vit X Y1 Yo sy sy P sty Pyt
XYr XY PR Yy XY PR Y TR Y My Py Y Xyt
XY Xy (K Yoy HXe Y T Vs P Y PR Ys PG Yty
XYy Xy P Y v T yy)

Now we obtain the coefficients c,,..., ¢, from R7 as
Eq 3.
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z= Ay+63
We can get:
y=AT'ztA 637 = AT 205

Where:

—_— —_—_— o o o ~
_ e O D D =
= R =
- ==
- o —~ o o = o o
—_ o O = O O = O
—_ 0 O = O = o O
S - o = o O = o

[ = T e T R o B
S S = D D = D e
o= D D = D = D
[ R e = == =

e T =T =T R S
—_ 0 O O = H =
S OO = = = = =
S S = = = = O

Then we get:

¥y =25 t2, tE

¥ =25 T2; TE

Y5 =2, T2, 12,

Ya=2, T2, 12 (4)
¥y =25 T2; T2,

Yy, =2, +Z,+tz +1

Y, =& t2; T2

=7z, +7. +z7z, +1
yEI 7 3 2
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Substituting Eq. 4 into 3, we obtain 8 multivariate
quadratic equations of S-box as Eq. 5

0=X,2, + X2, + X2, + X2y + X,Z; + X2, + X,Z; +X,Z, +
X2, T XaEg + X2y T X2, +X,E; T X,E, H X2, TX,Z, +
bWARS FARS AR WA S AR S IR SAES WA
PWARS $ A HIED HAES S DAL R

0=%,2, + X,Z; +X%,2, + X,Z, +X,Z, + X7, + X, 2, + X, 7, +
X2, YX B X2 + X8 + X2, TXZ, X2 H X2 +
XyZg T XyZy + X E X, + X,y T KT, T X E, X2, T
X;Zy T X2, TXE, T X2, TXE; X2 T X, T X,

0=X,2, + X2, + X2, + X Z; + X2, +X,Z, + X, 2, + X, 7, +
X2y + X 2, T X2, T X2+ X7 X7, + K2 HXZ
Koy X2, VX, 2, + X7, + X2 VX2 + KT+ XE,
XoZo T X2, + X2 X8, T X2, + X2, +X; X, TXK,;

0=X,2, + X2, +X,Z;+ X,Z; + X,Z, + X2, + X,Z; +XE, +
X2y +X,E, + X 2y + X2, T X8, + X2 + X E + XGE
XZs FXZ, K2 F X FX,E, FXZ R XE X E
XoZs + KBy ¥ X2 + X2 F X7, F X2 X2 T X, T
X, +X, X,

0=X,2, +X,Z; + X2, T+ X,Z,; + X,Z; + X2y +X,Z; + X,2,; +
XiE, T X2, tX,Ey TX,E H X2, T X, T XGE T XE, + ()
XoZy T X2 TXE T X2 T XGE, T X, X E X2+
X2y X2 T X2 T X X HX

0=X,2, + X2, + X7, + X, Z, + X,Z, + X2, + X, 2, + X, 2, +
X2, F X, E, X, B, T OE VX E Y X+ E, HXE,
PWARD AR FAES AR WHAED AR AR ¢ A
XoZy + KoZy + X Bt X2y T X2+ XGE TXE TXGE
XoZy T XgEy T X2y TX, 2, + X2, + X2, T X2, HXGE
X, tX;, +X;

0=X,2, + X,Z, + X2, + X2, + X Z, + X2, + X Z, +X,Z, + X2,
TX,Z, H X2, X E X2 T XGE Y XGE TXGE T XE T
X2y T X2, T X7, tX,E) T X2, TX,Z H X2, X7+
X2y X2+ X2 TX 2, T X8, T X2, T X Z T X2,
X2y + X2y T X2, Y XGE T X,E, X2 + X2, TX 2
X, +X, +X;

1=%,2, + X2 + X2, + X2, + X7, + X2, + X, 2, +X,2, +
b ARS S AR S IRD FAEL WA WAES FAED & AN

AR SRS AES AR WAES WA AL e

X2yt X2y T X2 X2, Y X2, T X,2, TX2, TX) X,

Since, there 1s no nonzero const term m 7 of these
equations in Eq. 5, for x = 0, these 7 equations are true
with probability 1. The 8th equation 1s true when, x # 0, so
this equation 1s true with probability 255/256.

Since, xy = 1(vx # 0) we can get:

¥x#0 x=xYy

Obviously, this equation is also true when x = 0, so
we have:

x=yxx’

2_..2 4
vxeGr2y {7 X (6)

128 _ 1%, %6 _ 1B
XT=y T =y TR

We might as well choose the last equation in Eq. 6. Tt
is symmetric with respect to the exchange of x and v, so
we can obtain the following two equations:

Then we have two equations over GF(2°) are true with
probability 1. Because x - x'*® 1s linear, each of above
two equations will give eight quadratic equations with
eight variables. Similarly, we can obtain these sixteen
equations as Eq. 7 and &:

0=XyZ, +XoZ5 T K25 + X2y + K7 + N7 X Z, KT F K Zg T XZ,
X Ty + X Ty T XZg ARy VX FHGT, FHZp FX,Zp THZg T
K45+ XgZy + X2y + X yZy + KyZg + XgZy + KTy + KT + XgZg + KZg
Xy + XLy + Koy FXqZy +KgZy F X Ty VK X Xy XK X

0=XyZs + X2 +XgZg + X2y + XgZg +XZ5 + X2y A KT F K Z KT,
XoZq + X7y +X,Zy + KgZy + XgZg + XaZs + XgZy +XaZy + X7 + X2y +
X 2+ X7, KT+ X KT K+ KT+ K 7, X7+
X Zo + X, Z X2+ KT + X T A K2 K, X X

0=3,7, + X Z; + X Z, + X2, + X7, + X, Z, + X7, +X,7, + 5,7, +X,7, +
XoZs + X7, + X7, X7 + X7 + K7 + X070 + X7, X7 X7 +
4Ty + X7 + KsZy + X7, + X7y X7y +X,Z5 +X,7, +XZ) +XZ, +
MoZg X2 F Xy + KT X X, X X

0=3,7, + X7, +XgZ; + XoZg + X, Zp+ X, 75 + X2, + K75 + X7, +X,7, +
X Z; + KoZy + X7, + Xy Zs + X7 + X7 X7 X7 X7 + N7, +
X,y VN, KT, F KT, b X Zy KT T KT T X Y KT KT,
X Zy + X7, +X,Z, X2 3,7, X, X, X

0=3,7, + X, Z, + X7, + X Z; + X2, + X, 7 + X, 7, +X,7, +X,7, + X7, +
X4 FXyZy X2y KoZ T K GZy + Ky +XsZ KTy T X2y Xy
XEy + KoLy +XZy + KgZy +XgZg T XLy +KqZy +XqZy T X E X2, +
X X T

0=xyZ; + X2y + XgZ, +XZg + X Zs +XpZy + KTy T X Zg + K7 FX 7 +
Ky Zs VX Ty T KTy VT X Z T XgZy FXE Xy X7 T X2y +
HaZg +HZy + KgZy T XyZy + KTy + XgZy + KT+ Ko Zs + X7, + X2
+ X T, + X T KT KT KT KT X T+ K2+ X7+
K7+ Xy X, X, X X

0=3,7, + X, Z; + X7, + X, Zs + X Z, + X7, + X 2, + X, 75 + X, Z, + X7, +
X2y + X7y + X7, X7, + KpF + X7, + Ko7 + Ko7, 307, +X,7 +
X, Z + X7 A X T +X70 F X7y X7 + KT + K57, + X7, + X7, +
Xy + XgZy + X T + X075 + X7 + 37, 32 + X X+ X X, + X

0=3,7, + X7, +X4Z, + Xy Zg + X2, +X,Z5 +X,Z; + N Z; +X,7, + X7, +
XoZs +HyZs + Ko Zs + Xy + X7y + K25 + 337, +X,7; + X7, + X7, +
X By Ko FRT +NE K GZ T KT X2y X2, RGE +XE,

HoZy + X Zy VX2, X2 F N2 FXGE X X, N

From Eq. 7 and 8, we have 23 quadratic equations
between x; and z that are true with probability 1. We have
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explicitly generated these equations have verified that
they are all linearly independent and have also verified
that there are no more such equations. It 1s easy to find
that there i3 no terms in xx or zz in the above 23
equations and the terms present in these equations are
t = 81: these are {xX,z,,..X,Z,, Z;,... 25 X;o Xy, 130

0=X,Z; + X2, + X2, +X,Z; T X2y TX,2; + X,2; +X,Z, + X2, +
PR AR WIS FIED WIS SR TS SAES #- A &
TXE T Xy TXE, X B YN, TX, B YE HE T E

0= X2y + K23 + XoZy + X2, +X,Z; +X,Z, + X2, + X7, + X7 +
LIRS HAES AR HAED WD B AR & AR FANS AR
XEy + X E, F X2, ¥ XE X E VX E P E X E X, b
L A A A A A

0=XZs + XZs + XpZg T X2y + K2, + X, 25 + X2 + X2 + X2 +
KBy + X8 X2, X8, T X8, T X2 X2, X2, X2 +
X2, T X7t XZ, FXE AN, X Z, TR PXGE, X T
X,y T X2 tXE, +X,2, X, +X,2, v K E, +X, X, X+

Xy TX, T2, 2 H 2 T2

0= X2, + X2, + X2, + X2, + X7 + X7, FX,E X2 FXE
X2y T X2, + X2 T X2y TXAE T XE, T X,E, X2 TXE +
X,y ¥ X7+ X2+ XE b X F X+ X Z VX E, TR+
XEy + X2 Y E T X TX, tX, YX, 42, HE T E + 2

0= X2y + XgZ3 + X2y +X,Z5 + X7y X7y TXZ; + X7 FXE +
bR AES R AR S AR NS RS S IRDFAED §ARS & A
XsZy T X2+ X2 T XK E + X2y X2 T XE T X T TXE
XZy X b X E VKT P X, PR, PX bX bX b2+
Z, +2,

0=X,Z; + X2, + X,Z, + X2, +XZ; T X2, +XZ, +XZ, +X,Z; +
X2y VX T+ K2+ XZ, FXZ FXE FXZ FXE, FX,Z
X,Zo T X2 X2 + X By X Zy X2y + K2yt X Z T XZ T
XEy ¥ Xy VX2, VX B, VX B P XE, VX, PR Z PR E

Xy T X 4K b Xt b2 2 v R, v TE T

0=X,Z; + X2, + X2, + X2, +X,Z; TX,Z, +X,Z, +X,Z, +X,Z; +
N Zg X2, FX,E N2 R NE PR, PXZ FXE, TR+
X,y YXEy X2, X2 tX,E; +X,2 X2, + X2, + X,
FHZ, KT+ K+ Xy T X E T XE, PR TXE X,
FHE P, TX, AKX, A X, V2 b7 T2+, 2 T2, 4T

0=X,Z, + X2, + X2, +X,Z, +XZ; +X 2, +X 2, +XZ; +X,E, +
bR SRS WD SIS SRS WS F A HAES SRS & AR

XZy + X2y T X2, TXZ X2, Y XE X TX T X 2+

Z t2, t2 +E, +1
&)

OPTIMIZATION OF RIJNDAEL S-BOX
EQUATION SYSTEM

Definition 1: Cheon and Lee (2004). For r equations mn t
terms over GF(27), the Resistance of Algebraic Attacks
(RAA) 13 denoted by I and 15 defined as follow:

I = ((tr)/n)f

The resistance of algebraic attacks reflects a difficulty
of solving multivariate equations. Thus we will use this
quantity to measure the resistance of algebraic attacks in

thus study.

Definition 2: An Affine-Inverse-Affine (ATA) S-box is
defined as follow:

S(x) = Aclo A

where, A denotes the affine transformation and I denotes
the inverse transformation in GF(2%).

Equation system of the ATA structure rijndael S-box: In
the Cui et al. (2011), we designed a new Riyndael S-box
structure named Affine-Inverse-Affine (ATA) to increase
the algebraic complexity of Rijndael S-box. Now we
analyze the equation system of the new Rijndael S-box.

We obtain the coefficients of the algebraic expression
of the new Rijndael S-box as Table 1.

From Table 1 and the algebraic expression of Rijndael
S-box, it can be seen that the algebraic expression of
Rijndael S-box is very simple (ie., only 9 terms are
involved) while the new Ryndael S-box involves 255 terms
and 1s very complex.

From Table 1, it i1s easy to see that the algebraic
expression of the new Rijndael S-box 1s as follow:

S’(x) = Fax+A "+ A"+ +E7x +26x+1 2%
= FA+AG(x TV A+ ABET(x Y H26(x Y+ 2x 7!
— FA+AGy Ay, - +ETy 426y, 412y,

where, y; = Vi = Ty = (X, Y = (T,
Vi, = (x7)* and it can be denoted as S(x) = g(v,, Vi,...»

Yaso Yasa)-

We denote by x, , the (3, k)-th nput byte variable of
the -th round S-box function. In consequence we denote
the intermediate variable by y% v . .y% . andthe
output variable by z{. . According to the algebraic
expression of the new Rijndael S-box, the (j, k)-th S-box
transformation of the -th round can be described as the

following quadratic equations over GF(2%):

X&%J,k) yg‘,)(.!,k) =1
VO i Yatin = Yo - (0€m< 253 where m+1is plus 1 mod 254)

B oy @
Zoti = BUY8G00 Yidio - Vi)

(%)

where, 0<1<9, O<¢j, k<3.
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Table 1: Coefficients of algebraic expression of the new Rijndael §-box

Cn) 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 FA Ab A9 E5 DE 5A 05 FB 5C AA o4 CB Al 87 6A 6C

1 E4 87 93 6A 76 Es 66 09 43 ocC 91 92 03 8F 63 30

2 54 99 E9 30 EE BF F2 Eé 71 4E 90 D3 18 85 45 FA
3 7E 73 OE 13 8B 5B 08 8B C8 3B 0A 10 87 09 FB 47

4 28 AF Cs 20 0B 8D 74 D3 59 37 19 c9 2A 4F 02 C1

5 91 F1 50 83 9B 42 87 4A 42 F2 74 oC 4F 2D 49 AE
6 DA 25 o4 58 CD FE 1B D2 D F8 66 A8 6D 2A A9 7E

7 21 C3 3F D2 EC Cc9 A AC 0D CcC TF D3 35 25 C2 oF

8 BF 86 07 91 5E Cs 75 4E C1 83 ES8 CA BO E9 75 Bo
9 07 16 F8 7B 49 D3 FA AD 5B SF C2 19 12 13 C5 20

A 99 B3 44 9F F2 71 9B 38 TA AE AS oD 48 C4 EF 1E

B F4 09 8F D1 2F 88 60 9B E9 9F 75 66 69 7C 23 62

C 03 DE 30 DE BB D3 96 4D 52 AB 77 32 09 B4 3F AB
D FF 97 Do FB FE 59 DB BA 15 1A ot 2D 02 F8 5D 3B

E 74 EE 1B 82 C8 63 F8 Fa4 BF 49 50 SA C FC 46 47

F c9 97 ED 52 59 D3 01 56 79 DB c7 9A E7 26 12 00

Table 2: Comparisons of equation systems of Rijndael S-box

Equation system Equation system Equation system First Second

Murphy and Liand Xiao and equation equation
Parameters Notation Robshaw (2002) Chen (200 Zhang (2008) gystermn gystermn
No. of equations of each 8-box R 24.0 17.0 16 23 255
No. of terms of each S-box T 41.0 34.0 28 81 510
Size of the 8-box ] 8.0 8.0 3 8 8
Resistance of algebraic attacks of the S-box 9.6 9.6 2 229 214

The last linear equation can be seen as another linear CONCLUSION

transformation after 3-box transformation. From the
Eq. 9, it can be seen that each S-box has 255 quadratic
equations. Then, the total 255 quadratic equations of the
new Rijndael S-box are obtained.

These 255 quadratic equations comprise a total of 510
terms: 1, yg,)(j,k) ----- yg?B,(j,k)’ Xg‘,)(j,k)yg?(j,k)’ (yg,)(],k) v, YE:EJ,k)yg,)(],ky
ygi,)(J:k) yg,)(J:k) e yg‘;l(xk) y&)(J,k) :

For the new Rijndael S-box, it is easy to obtain that
t =510, r =255, n= 8. According to the definition 1, it can
be obtained that T' = 31.875% = 2'*",

Comparison with the existing equation systems: Table 2
shows the comparison results. As can be seen from
Table 2 for each S-box, the equation system (Murphy and
Robshaw, 2002) comprises 24 quadratic equations of
41 terms over GF(2) and the equation system (Li and
Chen, 2004) comprises 17 quadratic equations of 34 terms
over GF(2") while our equation system comprises
255 quadratic equations of 510 terms over GF(27).

According to the definition of RAA, we can obtain
that the RAA of the equation system (Muwrphy and
Robshaw, 2002; L1 and Chen, 2004; Xiao and Zhang, 2008)
are 9.6, 9.6 and 2°, respectively. However, our equation
system has the following property: I' = 2!, Cheon and
Lee (2004) pointed out that should be greater than 2% for
secure ciphers.

This suggests that the complexity of solving our
equation system 18 much more than that of solving other
existing equation systems. Owr work is helpful to
improving the security of Rijndael cipher.

In this study, a new approach to generating the
multivariate quadratic equation system over GF(2) is
proposed and an equation system over GF(2°) is proposed
to describe the new Rijndael S-box. Firstly, the
construction principle and the algebraic expression of
Rijndael S-box are described. Secondly, a new approach
to generating the multivariate quadratic equation system
over GF(2) 1s proposed and the generation process of the
multivariate quadratic equations is given explicitly.
Finally, an equation system over GF(2%) is proposed to
describe the new Rijndael S-box and it suggest that
the
against algebraic attacks than other existing equation
systems.

new equation system has stronger resistance
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