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Abstract: This study presents a new Adaptive Throughput Policy algerithm with Weibull (ATPWT) Tratfic
Model. Real live inbound internet throughput from IP-based campus network which supports 16 Mbps
Committed Access Rate (CAR) 18 collected. Throughputs are fitted with four best Cumulative Distribution
Function (CDF) which are Normal, T.ognormal, Exponential and Weibull. Maximum Likelihood Estimator (MLE)
technique is used to measure the best CDF fits which presents the maximum log-likelihood. Analysed
throughput found that Day 1 and Day 7 present the minimum and maximum log-likelthood, respectively. A fitted
2-parameter Weibull distribution is identified as the best fit which produced new parameters: Scale, & and
shape, . These parameters are simulated as Weibull traffic model in the ATPWT algorithm. ATPWT
performances on min-max MLE produces larger bandwidth saving, reduces bucket capacity and faster
processing time. Burst traffic controlled in the system is derived with five different Weibull shape, [ parameter.
Larger value of shape, p produces less burst traffic while smaller shape, [ parameter produces larger burst in
the system. Thus, ATPWT algorithm derives burst controlled and better performance on internet throughput
traffic for TP-based campus network in this research.

Key words: Throughput, policy, mternet, traffic model, Weibull distribution, algorithm, burst, bandwidth

management, TP-based network

INTRODUCTION

Traffic modelling in network and engineering
communications is gradually being an important research
focus. Internet traffic research by analysing and
understanding the features of network traffic models are
becoming a concemed enviromment in forecasting the real
network situation (Garsva et al, 2014). Not only
development of new scheme on traffic management is
umnportant but also the identification of best traffic model
seems a basic requirement for accurate capacity planming
in network communication (Karagiannis et al, 2004).
Various network traffic communications which ocecur
i the network produce high volume of traffic capacity
and different characteristics exist in the traffics. Among
the mechanisms that contribute to high volume of traffics
are high user’s density,
communication, use of new technology on various
network tool, orientation with new applications m the
system, network architecture design, virus attacks from
internet or intranet and Quality of Service (QoS). QoS

wer’'s ethic m network

are the regular issues in network communications
where some mnetwork managements are recognized
with the real situations 1n their own network
(Pavlou, 2004; Xiaolong et al., 2012). Fast development of
network technology either i hardware, software or
application medium produce the network traffic challenge
where huge traffic needs huge bandwidth capacity.
Research presents that high bandwidth used is due to the
increase of new technology and new applications
especially internet applications. These reasons also
contributes to burst traffic and slow accessing
(Schudel, 2013; Ahn et al., 2013). Thus, certain network
becomes unreliable and traffic congestion occurs. A
broad network with huge clients 1s possible to risk with
high traffic load without proper QoS. Thus, bandwidth
management is one of the QoS to control throughput in
network management (Kassim et al., 2012). There are some
network management which are implemented namely users
blocking, routers scheduling or embedded with network
bandwidth controlled machine but bursting of network
traffic still happens (Kassim et al, 2014). This study
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presents that bandwidth management is needed where
burst traffic existed in real IP-based network traffic. In
order to overcome the problem, some organizations just
upgraded their mternet line or Committed Access Rate
(CAR) with higher bandwidth. Burst traffic and lhugh load
bandwidth are examples of bandwidth bemng gradually
upgraded in an IP-based network.

Tn a broad area of network communications, policing
traffic is implemented in many network approaches or
techniques. Policing traffic is identified as one technique
for bandwidth management which supports the Quality of
Services (QoS). Other policing schemes or techniques
may be mnplemented at various network areas such are
blocking virus or bad flows, policing on unwanted traffic
based on certam criteria, controlled certain traffic,
bandwidth controlled, IP-route management, applications
blocking and network level policing. Policing techniques
or scheme usually control certamn 1dentified resource in
presenting better performance m a network. One of the
examples of better network performances in policing
technique is bandwidth saved and delay avoided but
certain traffics are dropped. Enhancement of traffic
policing is traffic shaping where certain traffics are
dropped with policing but shaping takes actions to
transmit the dropped traffic into next submission time in
anetwork (Vayias ef af., 2006). One example of bandwidth
policing 1s identified which implements a packet layer
policing in network commumication (Caim and Furinciel,
2004). Bandwidth management or policing on throughput
1s implemented at byte flow or rate controlled in a network.

This study presents a new Adaptive Throughput
Policy with Weibull Traffic Algorithm (ATPWT) based on
real live intemet throughput for campus 1P-based network.
First, four best Cumulative Distributions Functions (CDF)
which are Normal, Lognormal, Exponential and Weibull are
fits to real live traffic by using Maximum Likelihood
Estimator (MLE) technique. The CDF Weibull is identified
produce the maximum log-likelihood among the four
distributions. The analysed traffic has identified fitted
2-parameter CDF Weibull which 1s scale, ¢ and shape, p.
Both parameters are derived and simulated m the new
ATPWT and analysed. Result on traffic performances
are presented in larger bandwidth save, lower bucket
capacity and faster processing time. ATPWT derives
burst traffic controlled in the system where larger value
of shape, B produces less burst traffic and vice
versa. This new model presents new performance on
throughput controlled which based on real traffic
implemented in campus IP-based network. With this
new traffic fits also useful for future prediction of
tele-traffic models.

TRAFFIC MODEL STATISTICAL ANALYSIS
AND POLICY

Traffic modelling 1s an important role in identifying
and understanding the features of dynamic demands by
stochastic or random processes. Accurate traffic models
may represent the real situations of real network traffic.
Thus, this helps service providers to proper maimtain and
forecast the Quality of Service (QoS) in a network. Many
traffic models are developed based on traffic measurement
data and how to improve its performance in a network
such as analysis on time distributions (Garsva et al., 2014,
Choi et al., 2014), performance measures on heavy tails
(Ramaswami et al., 2014), traffic models evaluation
{Chandrasekaran, 2009) and traffic predictions (Sang and
L1, 2002). Research presented that concepts and
requirements of Quality of Service (QoS) and traffic
modelling is rapidly changed. Thus, traffic modelling is an
important aspect to be considered to meet QoS
requirements of services and efficient utilisation of
network resources and management. Statistical analysis
on identifying real traffic model is also a crucial research
area 1n tele-traffic engineering. Mathematical concept 1s
proved with traffic theory where it 1s taken as one of the
methods in evaluating real traffic data. Previous research
presented that Poisson traffic model are used but it failed
or becomes inadequate model in certain internet traffic
simulations (Karagiannis et al., 2004; Willinger ef al.,
1998). Some new traffic distribution is identified as
self-similarity process with Weibull Long Range
Dependent (LRD) (Thakur et af., 2013; Ramaswammi ef af.,
2014) and Pareto traffic model (Garsva et al, 2014). In
probability theory and statistics, the Weibull distribution
1s a continuous probability distribution. There are a few
Weibull properties in evaluating data which depended
on certamn parameter values (Shuhong et al., 2014,
Huang et al., 2009). Such Weibull properties example like
analysis on density which used Probability Density
Function (PDF) or analysing hazards to calculate errors in
data. This research uses CDF Weibull with two value
parameters, scale, ¢ and shape B. Equation 1 presents the
mathematical equation for CDF Weibull with two
important WT parameters, F (x; «, p):

B
(xy

F(X;O[,B): 1-¢ [EJ ,XZO (1)
0, x<0

Many estimators on fit distributions theories are
developed based on mathematical calculations. MLE is
one of the identified methods in fitting theories based on
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Fig. 1: Token bucket transitions of throughput on policy

1dentified maximum log-likelihood value. A few researches
in many areas have utilised this MLE method in their
implementation method which are proved with successful
results (Cao et al., 2008; Gu ef al., 2005). Maximum
Likelihood Estimation (MLE) 1s a procedure of finding the
value of one or more parameters for a given statistic which
makes the known likelihood distribution maximum.
Example MLE for a parameter mu is denoted as max-mu
(Weisstein, 2014; Myung, 2003; Harris and Stocker, 1998).

Policing in network traffic is one example of
bandwidth management mechanisms in controlling any
resources 1n the network especially network traffic. A
good traffic policing scheme should make it easy for
nodes inside the network to detect bad flows. This
activity is sometimes called policing the traffic flow. One
of traffic policing process uses token bucket mechanism
which 1s one of the flow processes in traffic and resource
management (Dashdorj et al., 2010). Figure 1 presents the
Token bucket Transitions of Throughput, X on Policy.
Threshoeld, Th acts like the CAR service rent by an
organization. Thus, Th 1s the meximum possible
transmission rate in bytes/second or identified as Policy,
P. The maximum burst time is the time where the rate of
throughput, X 15 fully utilized. Bytes as token are
discarded from the bucket 1if it goes beyond the threshold,
Th or policy, P and per Bucket size, B;. The incoming
throughput is put in bucket according to identified policy
condition, P. All conforming throughput that meets the
policy requirement are stayed in the bucket.

Other mechanisms of bandwidth management are
shaping and scheduling which differ in the way they
respond to the identified traffic violations (Simion, 2012).
Traffic policing identifies certain technique to block or
police certain traffic which typically drops the unwanted
traffic or above certain rate threshold (Vayias et al., 2006).
Policing traffic mechanmism helps to improve traffic
performance in network. Policing on speed or rate controls

15 a techniques uses m bandwidth management. Certain
bandwidth is by limiting or controlling within the traffic.
Many researchers presented the improved performance
on bandwidth management. This study identifies a
continuing research needs as new traffic features and
technology used shows a burst rate on speed from time to
tune.

MATERIALS AND METHODS

Figure 2 presents the methodology flow of the new
Adaptive Throughput Policy with Weibull Distribution
(ATPWT) algorithm modelling that fits with the real live
internet traffic. Daily internet traffic is collected in 7 days
and traffic is fitted with the best existing theory
distribution which 1s Normal, Lognormal, Exponential and
Weibull. Maximum Likelihood Estimator (MLE) 1s used to
fit all theories and identified maximum log-likelihood is
chosen as the best result. Weibull is identified as the best
fit distribution with the real live data that presents two
mains Cumulative Distnbution Function (CDF) parameter
which is the Scale, ¢ and Shape, p. Among the best MLLE
log-likelihood, day 7 Weibull is identified the best fitted
CDF. Besides that two days comparison between
minimum and meximum MLE log-likelihood 1s 1dentified.
The fitted 2-parameter Weibull is used as random
distribution or traffic model in the new algorithm called
Adaptive Throughput Policy with Weibull Traffic
(ATPWT).

Figure 3 presents the ATP method which is adapted
in ATPWT. Three policies conditions are applied
according to percentage level filtering on implemented
threshold. The new ATPWT derives sample on one policy
condition as real implementation for Committed Access
Rate (CAR) in real network situations. Token bucket
theory 1s used m the policing algorithm. New mathematical
model on the new ATPWT 1s presented according to
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Fig. 2: Method flow on ATPWT

police implementation and evaluation on the traffic
performance. The performance evaluation result 1s derived
by presenting bandwidth save, processing time and burst
throughput traffic between the two identified days
selected which 18 day 1 and day 7. Comparison on
performance with control burst traffic is also identified
based on Weibull fit parameter scale, ¢ in five difference
conditions of parameter shape, B.

Analysis on real internet traffic: Distribution on Daily
Internet Traffic has identifies two conditions which 1s
burst traffic and fitted CDF. Real live mtemet traffic
throughput 15 1dentified as byte flow, B. Allocation
bandwidth, B, Committed Access Rate (CAR) 15 16 Mbps
and Inter-arrival Time, T, is captured in every 10 min
traffics throughput. Throughput captures time started at
00:00 to 23:530 on each day. One day traffic tracers are
144 times and 7 days captures traffic tracers are
accumulated to 1008 times. Equation 2 presents the
equation for Max throughput, By, for the byte flow
collections 1 10 min time with Bandwidth Speed, B, at
16 Mbps. This maximum throughput per time 1s taken as

Weibull
parameter with
fit byte flow

072
Selection policing
condition

-

Policing —

Traffic character &<

Burst
threshold

Traffic
performance

Fig. 3: Adaptive policy on throughput flow

Drop
traffic

Policing
traffic into
bucket

Bandwidth threshold, By, in the new Adaptive
Throughput Policy with Weibull Distribution (ATPWT)
algorithm.

B,. = B,xT, = 1200 MByte (2)

Empirical CDF throughput: Figure 4 shows daily live
internet traffic which is captured in 7 days. Every tracer
shows 1n the figure presents 10 min tune which derives the
throughput traffic in MBytes. Traffic shows burst exists
in captured real live traffic where throughput goes beyond
the CAR rate, 16 Mbps which 15 1200 MByte threshold.
Figure 5 presents the comparison of Cumulative
Distribution Function (CDF) on seven daily real live
throughput traffics. The graph presents the difference of
empirical CDF plots for throughput rate at each tracer. All
days traffics are measured using the Maximum Likelihood
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Fig. 5: Comparison on 7 days empirical CDF throughput

Estimators and log-likelihood is identified. Parameters are
presented based on best fits CDF distnibution to
umplement m Adaptive Throughput Policy with Weibull
Traffic (ATPWT) algorithm.

Captured real live throughputs are fitted to the best
four CDF distributions to identify the best fits for traffic
model. Figure 6 shows an example of day 1 CDF
distribution fits to the four best distributors. Among many
distribution theories that fit to this throughput, the
identified 4 best distributions are Normal, Lognormal,
Exponential and Weibull distributon. MLE 1s used to
identify the best distributions which among four
distribution.

Maximum likelihood estimation: Table 1 presents MLE
with log-likelihood of day 1 to day 7 traffics for four
difference distribution. Maximum value of log-likelihood
1s the best result that fits to the live traffic. Tabulated
log-likelihood value presents that all the values are in
negative points. Therefore, the best log-likelihood is the
value which 1s nearest to 0. From the derived table,
Weibull distribution i1s 1dentified as the best fit which
shows the meaximum log-likelthood among Normal,

10
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Fig. 6: Empirical CDF dayl throughput fit to four best
distributions

Lognormal and Exponential m day 1 to day 6. However,
only day 7 shows the best fits on Lognormal which
present maximum log-likelihood which is -1050.93. Tt is
only 1.03 pomt different from the Weibull maximum
log-likelihood. Because of the small different for a day,
this research identifies the best result for best fit is
Weibull distributions. Thus, analysis traffic shows day 1
1s the mimmum MLE log and day 7 1s the maxinum MLE
log-likelihood values. Both these two days are taken as
sample to run the new ATPWT algorithm. Thus, fitted
2-parameter Weibull 1s identified m simulating a new
ATPWT for both days.

Weibull CDF: Figure 7a and b present the comparison of
real live internet traffic on day 1 and day 7 which fits to
Weibull distributions after the maximum log-likelihood for
MLE 138 identified. With mmimum MLE log as in Fig. 7a
shows there is quite a high range of difference to real live
empirical CDF traffic compared to Fig. 7b which shows the
fit Weibull distribution 15 close to real live empirical CDF
traffic. After analysed the fitted throughput, important
2-parameter CDF Weibull are identified wheih are the
scale, ¢ and shape, p. This parameter is used as Weibull
traffic distribution model on the Adaptive Traffic Policy
algorithm.

ATP mathematical model with identified Weibull traffic:
This section presents the mathematical model for ATPWT
wheih 1s based on fitted 2-parameter values of Cumulative
Distribution Function (CDF) for Weibull Traffic (WT) as
the incoming throughput. Parameter Scale, ¢ and Shape,
B are presented. Real live internet traffic, x 1s used as
scheme values with the fitted distribution. Token bucket
theory 1s used m simulating the algorithm.
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Table 1: Comparison of MLE log on daily throughput internet traffic

Parameters Day 1 Dav 2 Day 3 Day 4 Dav 5 Dav 6 Day 7
Normal -1104.95 -1091.94 -1076.00 -1083.68 -1082.40 -1071.78 -1081.58
Lognormal -1133.39 -1107.83 -1093.73 -1093.75 -1076.50 -1068.98 -1050.93
Exponential -1113.23 -1103.10 -1107.44 -1118.52 -1099.15 -1104.79 -1061.50
Weibull -1102.92 -1084.17 -1071.37 -1077.83 -1069.42 -1061.98 -1051.96
10 @ value of maximum Bucket Size, By, ATPWT presents
' W IR ‘ sample used on one policy condition, p,B,, which acts
; exactly like the real live implementation in the campus
08} : 1 network. ATPWT algorithm simulates condition when the
E 07 Lo | s _ throughput traffic larger than the policy condition, p,By...
g - : than throughput is filtered or cut-off. The incoming
s ’ : : throughput, are put in bucket with bucket capacity as
= 05 frmegieaniy e ‘ 7 bucket size, B,. B, 18 the original bucket size before policy
2 044 1 implementation. New traffic after policing is put in new
3 03, | bucket, By, Maximum bucket is identified as BEK,..
02| | Equation 3 presents the total of bucket size, B, in a daily
o1 cycle, D, Let’s, throughput, B = F(x; «, B) which uses two
B S i S S e G 7 parameters Weibull CDF. In formulating the mathematical
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Fig. 7(a-b). Weibull distribution CDF fit to real live traffic
(a) Day 1 and (b) Day 7

Modeling parameter identification: Table 2 presents the
identified modelling parameters based on the throughput
captured meluding with the fitted 2-parameter Weibull for
day 1 and day 7 which is scale, « and shape, p.
Performance comparison based on  the new
unplementation of ATPWT algorithim 18 compared
between the two days.

Mathematical model: Mathematical model with ATPWT
algorithm is derived. Performance analysis on the new
algorithm 1s produced a mathematical model on larger
bandwidth, reduced processing and comparison of burst
traffic control on the scalar of parameter « and [ used in
the model. The real bandwidth threshold, By, 1s used in
the simulation. Maximum throughput, B, 15 taken as

model, symbols are address as Bandwidth allocation,
B, = Z, Speed, S, Policy Condition = P and bandwidth
threshold, By, =Y for all presented equations. Algorithms
models the Bucket Size, B, according to real live parameter
throughput captured, Br. Daily inter-arrival, D,time is from
ito n which is 114 times.

SN G)

Equation 4 derives a mathematical model on ATP
algorithm based on Weibull Traffic. Policing action
derives the total throughput and put in a new bucket as
bucket size, B,,. Daily throughput numbered from iton is
processed with policing according to pBy.. The
equations present a condition where B+ 1s filtered and 1f B,
1s found under policy threshold which is py than it is put
in By, and if Brwhich is greater than policy threshold, py
and then 1t 1s put n a new bucket, B,,. This model also
controls traffic burst by using the different value of
Shape, B by using the token bucket mechamsm for
bandwidth management. Performance result also presents
burst and bandwidth controlled:

Y Bkn

i=1,j=1

- B B B
(1—e ] Hl e —-py | 1—e” A =Py, =0
=1, j=1 o, o, 8
- s s
l1-e st 1-e st <py
S S

Performance of this model presents by two
mathematic models which are Bandwidth Save, B, and

(4
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Table 2: ATPWT parameter used on real live internet traffic

Parameters Symbol Values

Cormmitted access rate, speed (Mbps) ] 16

Tnter-arrival time (min) Ts 10

Daily and weekly captured time min 00:00-23:50

Daily tracers Dt 144 times

Threshold (MByte) By, 1200

Maximum bucket (MByte) P 1200

Scale of day 1 and day 7 al, a7 ocj::lz 908.501, 641.04}
Shape of day 1 B pE=s {0.5,1,1.41765,1.7, 2}
Shape of day 7 B [3?:15 {0.5,1,1.3575,1.7, 2}
Minimum throughput of day 1 (MByte) Bminl 22.04

Minimum throughput of day 7 (MByte) Bmin7 63

Maximum throughput of day 1 (MByte) Brmax1 2116.2

Maximum throughput of day 7 (MByte) Brmax7 21208

Processing Tune, Pr. Bandwidth Save 1s calculated as in
Eq. 5 and total of B, 1s derived based on Eq. 6. Byte Burst,
B, in the equation also is equal to byte loss, B .

D, =BS5S (3)
nom
Y Bkn
i=1, j=1
B B
ESS 1 x [ x
= 1-e”| —| —py X8, By, <y>By and 1-e”| —| =>py,x=0
i=1, i< e a;
(6)

Processing time presents network performance of the
developed model. There are two main processing times
calculation which is total time before and after
implemented policy. Equation 7 presents mathematical
calculation before policy action. Tt presents the total
Process Time, Py, before Policing. Traffic before policy 1s
multiplied with parameter speed and divided with
Bandwidth Allocation, B, in the implemented system
where z P 1s considered one cycle processing time
which is a day. Result presents a comparison on daily and
weekly basis in the result section:

_ i BkxS

(7)
Equation 8 derives the Total Process Time after
Policing, Py, for the internet traffic:

L _ 2.iq Bknx38

i=1 z

&)

Equation 9 presents the different of total difference of
Processing Time between after and before implementation
of adaptive throughput policy algorithm:

Z}D - _zlyﬂ - ;pm @

Equation 10 presents burst throughput if the
throughput flow 1s larger than the policy condition. Burst
throughput is controlled on the value of shape, «. When
larger value of parameter shape, B, is used, it generates
the smaller burst throughput in the system:

(10)

o Bk = G
2 (le'[ﬁ] —py.l—e [EJ >py,x20
-1 OCJ

x

_ (]
0,1—e [“J <py

RESULTS

Result presents the performance evaluation with
ATPWT. ATPWT presents sample on one policy
condition, p;By.. which acts exactly like the real live
implementation in the campus networle. Four performance
conditions which are bandwidth save, bucket capacity,
process time and burst controlled on identified fitted
2-parameter Weibull are presented. Based on the maximum
MLE log value, day 7 1s selected in the analysis of the
traffic performence on the bandwidth save, bucket
capacity and processing time. The identified ¢ and P
parameters on fit day 7 are used for traffic simulation. The
analysis presents only one sample of adaptive policy
controlled which is 16 Mbps. Result also presents burst
traffic controlled using parameter ¢ and 3. Burst traffic are
evaluated based on five different shapes, p value in the
ATPWT which differentiate the volume of burst traffic.

Bandwidth save: Figure 8 and 9 present the fitted CDF
Weibull of day 1 which identify the value of « = 908.501,
p=141765 and day 7 which identify the wvalue of
o = 641.04, B = 1.3575 on threshold, P1 in 144 tracers
incoming traffic. Figure 8a and 9a present throughput
flow with policy which is put in buckets every 10 min of
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inter-arrival time. Plotted graph presents red throughput
which 1s above threshold and blue throughput 1s under
policy condition. Figure 8b and 9b present throughput
flow after applying policy where the max bandwidth
allowed is below 16 Mbps. The maximum bucket
capacity allows 1z 1200 MByte traffic. The cut off
throughput 1s 1dentified as bandwidths saved after

policing as in Fig. 8c total bandwidth saved is identified
as 73.43 Mbps. Figure 9¢ total bandwidth saved is
1dentified as 165.87 Mbps.

Bucket capacity on byte Flow: Figure 10 and 11 present
the comparison of byte flow in bucket of each mter-arrival
time between before and after policing. Figurel Oa shows
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CDF Throughput where the maximum traffic is identified
as 2488.8 MByte and Fig. 1la more than 2000
MByte. Figure 10b and 11b show CDF Throughput after
Policing is reduced with not more than 1200 Mbyte
i both days. This policy has cut off the traffic which
goes beyond the threshold and avoids burst traffic in
buckets.

The total existing bucket before policing for the
144  tracers 1s 118850 MByte and new bucket 1s
106410 MByte in day 1. The day 7 derives of the total
existing bucket is 91936 MByte and after policing bucket
is 86429 MByte. The different is about 12440 MByte in
day 1 and 5507 MByte i day 7 which are identified as

byte loss or burst traffic. The performance produces low
bucket capacity and reduce burst throughput according
to the implemented threshold in ATPWT algorithm.

Processing time: Processing time is another performance
criterion which is derived in this new traffic model
algorithm. Figure 12 and 13 present the ATPWT
simulation analysis on performance of processing time in
day 1 and day 7. Figure 12 shows processing time
performance in day 1 (a) Which 15 before policing. It
present the maximum process time per bucket is 20.7 min
compared to (b) After policing where the maximum
process time is 10 min per bucket. The different graph
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plotted that time processing is reduced after policing
umplementation. The total process time before policing 1s
equal to 990.45 mimn and after policing 1s equal to
886.78 min. Thus, it presents a different process time of
103.67 min for the whole 1 cycle process. Figure 13
present the performance process time in day 7 (a) Before
policing which resulted the maximum process time per
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=0 Brust throughput
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2 100000 4
_’E.
2
S 80000
j=%
=
2
g 60000 4
=
]
=
@ 40000 4
20000 1
0 -
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Shape parameters
Fig. 14: Day 1 throughput burst with shape-p and
scale-908.5
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Fig.15:Day 7 throughput burst with shape-p and
scale-641.04

Table 3: ATPWT performance on burst traffic by shape parameter

bucket is 18 min compared to (b) After policing where the
maximum process time 1s 10 min per bucket. The different
graph plotted that time processing 1s reduced after
policing implementation. The total process time before
policing 13 equal to 766.14 min and after policing 1s equal
to 720.24 min. Therefore, performances result presents a
different process time of 45.89 min for the whole 1 cycle
process. Thus, the new ATPWT algorithm produces time
saving and faster process in time.

Burst throughput control: This section presents how
adaptive used of parameter shape, p can control the burst
traffic simulated in ATPWT algorithm. Fitted 2-parameters
CDF Weibull are shown which represents for day 1 which
1s mimmum MLE log-likelihood and day 7 which having
the maximum MLE log-likelihood. Parameter scale, o
presents the scale of fitted distribution to the real live
internet traffic while parameter shape, P presents the
shape of the Weibull distribution on the fits data. Table 3
presents the difference of five value parameters shape, B
included with original fits value of Weibull distribution.
Burst throughput is compared between the two days with
fix scale but different shapes are derived. Result presents
that low p would produce higher burst throughput in both
days. The higher the parameter value of p, the lower burst
traffic 1s identified.

Figure 14 and 15 present the slope of shape
parameter versus burst throughput n day 1 and day 7.
Both days analysis derived the down slope from left to
right which present the higher of parameter value shape,
B, the lower burst traffic goes down. Thus with Weibull
parameter traffic modelling in the adaptive throughput
policy can control the burst traffic by adaptive shape
parameter, 3.

DISCUSSTION
Successful  results with new  parameters
identifications on new ATPW algorithm based on real
IP-based network mternet traffic is analysed and

presented. This study 1s going beyond conventional
meodels and 1s looking Long Rage Dependence (LRD) in

Day 1 with Weibull scale 908.5

Day 7 with Weibull scale 641.04

Shape parameter B value Burst throughput (MByte) [ value Burst throughput (MByte)
g1 0.5 121460.00 0.5 105020.00
g2 1 34571.00 1 10127.00
-Weibull 1.41765 14527.00 1.3575 4424.40
B3 1.7 8297.10 1.7 1633.10
B4 2 4858.50 2 1050.70
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tele-traffic with CDF Weibull distribution compared
to  few previous research done by Chandrasckaran
(2009) and LSD with self-similanty (Karagianmis et al.,
2004). This research 1s similar with Garsva et al. (2014) and
Ramaswami ef al. (2014) in modelling and identified
performance from a fitted traffic but both of them using
a different test which 1s Kolmogorov-Smimov fit test for
packet inter-arrival time distributions and LogPH fit to
wireless mobility network data. A few research which
used Weibull distribution model traffic which is similar to
this research but implementing in a different approach are
by Huang et al. (2009) and Shuhong et al. (2014) which
identifies reliability evaluation on a historical data by
combination of empirical methods and statistical methods.

Quite similar algorithm on traffic policing and shaping
15 done by Daian and Giura (2011) but results presented
the effect of traffic shaping and traffic policing on
aggregate traffic dynamics especially
properties on traffic time series which 1s different for this
research which present performance comparisons.
Moreover, Daian and Giura (2011) tested the algorithm on
OPNET Modeler simulation program with synthetic traffic
generated by chaotic dynamic systems compared the
result produce in this research is based on real TP-based
internet traffic. Further shaping algorithm is presented by
Vayias ef al. (2006) using token bucket mechanmsm which
1s sumilar with this research but exponential distribution is
used in the algorithm. Thus, recent research on internet
traffic would shows most important direction to explore
for future understanding of traffic and related with real
network traftic phenomena. Deep mspection or particular
other internet traffic will produces even more intriguing
behaviour which need to be thoroughly explored and new
tele-traffic algorithm for QoS should be presented to the
International research community.

stochastic

CONCLUSION

This study presents new research based on the
recent and real live collected and best fitted CDF Weibull
measured on mternet throughput traffic from an IP-based
campus network. Analysed throughput on real traffic
supports with a 16 Mbps speed rate on a campus
TP-based traffic iz done wusing four best fitted
distributions. New fitted 2-parameters Weibull are

identified as the best parameter using MLE technique.

By wing the identified parameter, a new ATPWT
algorithm is successfully simulated, analysed and
presented. Internet traffics may change regularly in time
which produced different parameters value. Previous
traffic model on policing are imposed based on Poisson

traffic, self-similarity traffic model, Exponential traffic
model, Pareto traffic model, Normal traffic model and
others. Thus, this research presents it novelty with an
implemented controlled policing using new identified
parameters which are difference from others traffic model
1n a broad network. Traffic performance and burst traffic
are controlled in the system where larger value of shape,
B parameter produced less burst traffic. Smaller shape,
parameter produced larger burst in the system. Different
value of measured parameter may affect with different
research results
performance. The rate speed can be taken as measured
benchmark in future algorithm. Thus, modelling Weibull
traffic m Adaptive Throughput Policy (ATP) algorithm
presents a new result n controlling traffic burst and traffic
performance mn bandwidth management of IP-based
network.

which are important in network
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