http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 13 (18): 2755-2759, 2014

ISSN 1812-5638

© 2014 Asian Network for Scientific Information

ansinet

Asian Network for Scientific Information

RESEARCH ARTICLE OPEN ACCESS

DO 10.3923/itj.2014.2755.2759

Software Quality: Predicting Reliability of a Software Using a Decision Tree

'Ayanloye O. Shakiru, 'Mahmud Ahmad Yusuf, 'Koh Tieng Wei and “Sukumar Letchmunan
'Software Engineering Research Group, Department of Software Engineering and Information System,
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, UPM, Serdang,

43400, Selangor, Malaysia

‘School of Computer Science, Universiti Sains Malaysia, USM, 11800, Penang, Malaysia

Corresponding Author:

Koh Tieng Wei,

Department of Software Engineering
and Information System,

Faculty of Computer Secience and
Information Technology,

Universiti Putra Malaysia, UPM,
Serdang, 43400, Selangor, Malaysia
Tel: +603-89471799

Fax: +603-89466576

ABSTRACT

System availability can be expressed as an attribute of reliability that determines
the total time a system or component is functioning, Most available models
try to predict availability of a software during its life cycle but there are very few
or no models that predict a software going days without a failure. Over the years,
decision tree model have been used as a reliable technique for prediction. In this
study, based on the sample data collected by John Musa of Bell Telephone
Laboratories, a decision tree model has been used to predict the availability of a
system going days without a failure. This study concluded that a decision tree
model is able to decide availability of a software in terms of going days without a
failure.

Keywords: Software quality, software measurement, software reliability, software

availability, decision tree model

INTRODUCTION

The statement of Tom DeMarco “you can’t control what
you can’t measure” has become the motto of expert for
software quality trying to develop and apply quality metrics in
the software industry (Daniel, 2004). For years, stakeholders
of software projects have found it is challenging to apply
software technologies, methods and process control to
software development (Siok and Tian, 2007). Generally, there
is no easy-to-use or standard industrial measurement for
software projects (Siok and Tian, 2007). According to
previous studies the diversity of technology, running
environment and other factors, make it difficult to have
specific quality definition for software systems
(Schneidewind, 2002). Lyu (2007) identifies software
reliability as an activity that spans throughout the entire
lifecycle of a software and can be discussed with respect to
areas like software architecture, design, testing, metrics and
emerging applications.

While software reliability refers to the ability of a
software component consistently perform its duty according to
its specifications, the ratio of time a system or component is
functioning to the total time it is required or expected to

www.ansinet.com 2755

function is known as software availability. Availability is an
attribute of reliability which is a factor software quality that
determines the total time a system or component is expected to
be functional. Over the years, different models have been
proposed to predict different aspects of software reliability.
These models use historical data to solve the problems they
addressed. A lot of software reliability models have been
developed to meet the needs of managers, software engineers
and system engineers to be able to predict software reliability
(Aljahdali ef al, 2003). When trying to measure software
availability, there are two attributes to consider (Buckley and
Poston, 1984). The first is the Mean Time to Failure (MTTF).
The second is the Mean Time to Repair (MTTR).

On the other hand, many software reliability models have
been developed using different classification and prediction
techniques. Zhao and 1.1 (2011) define a decision tree as “an
analysis skill and a classification algorithm, whose basic
principle is the combination of probability theory and an
analysis tool of tree shapes™. It derives a hierarchy of partition
rules with respect to a target attribute of a large dataset.

This study propose a decision tree model to determine
availability of a software in terms of going days without
having any failures.

| Volume 13 | Issue 18 | 2014 |

Inform. Technol. J., 13 (18): 2755-2759, 2014

INDUSTRIAL RELATED PROBLEMS

Quality 1s usually observed from different points of view.
The most popular being supplier (developer) and customer
(user) point of view. The problem with measurement of
software quality arises from the definition of software quality.
Many experts have different opinions on what the definition of
software quality is. It is a general idea that software quality
can be measured subjectively or objectively as supported by
Khosravi and Gueheneue (2004) where quality is said to be
perceptual, conditional and to an extent a subjective attribute
as understood by different people.

Kotaiah and Khan (2012} stated that there is no particular
model applicable to all situations because none of them 1s
capable of capturing sufficient software characteristics. This
means most models are specific to performing particular task.
Khosravi and Gueheneuc {(2004) in their own idea, identified
human estimation, software metrics and the quality models
being used as tools for assessment of software quality that
should be modified and improved.

In Kotaiah and Khan (2012), non-compliance, good
architecture and coding practices are the most common causes
of poor reliability. Measuring the static quality attributes of
software would help in detection of non-compliance.
“Assessing the static attributes underlying an application’s
reliability provides an estimate of the level of business risk and
the likelihood of potential application failures and defects the
application will experience when placed in operation”. The
three causes identified above can be broken up into application
architecture practices, coding practices, complexity of
algorithms, complexity of programming practices, compliance
with object-oriented and structured programming best
practices (when applicable), component or pattern re-use ratio,
dirty programming, error and exception handling (for all
layers-gui, logic and data), multi-layer design compliance.
Most of the problems identified earlier fall into one of these
three groups.

Lyu (2007) addressed the trends and problems from the
software reliability engineers’ point of view. He expanded the
problems by pointing out that the problems of software
reliability are not just size, complexity, difficulty and novelty
of the application but also included knowledge, training,
experience and character of the software engineers.

In the past, a lot of pioneers in the software engineering
industry have come up with different ways to measure
software reliability based on their understanding of the
domain. Regardless of the amount of time and effort put into
it, there is no all-purpose model to predicting rehability.

Florac (1992) developed a mechanism in form of a
framework which can be used to describe and specify two
types of software measures, software problems and defects.
The framework will identify measurable attributes and use
them against a checklist to identify problem and defect
measurements.

After coming across some issues in their research,
Khosravi and Gueheneuc (2004) came up with a 9 steps to

WWW.ansinet.com

2756

software quality evaluation which solves some of their issues.
The 9 steps, respectively are, choosing category of people,
identifying sample programs, building a quality model, human
evaluation, computing software metrics over BP, machine
learning tools, computing software metrics over EP, adapting
metric and finally software evaluation. The method they used
was new but still used classical tools of software engineering.
Kotaiah and Khan (2012) stating that there is no particular
model applicable to all situations because none of them is
capable of capturing sufficient software characteristics,
proposed a series of machine learning methods for assessing
software reliability. These methods are fuzzy approach,
neuro-fuzzy approach, artificial neural network approach,
genetic algorithm approach, Bayesian classification approach,
Support Vector Machine (3SVM) approach and self-organizing
map approach.

Aljahdali et af. (2003) set an evaluation criterion and used
it to carry out experiment on software reliability using
parametric and non-parametric methods. At the end of their
experiment they concluded that when there is an absence of
historical data, non-parametric models performed better than
parametric models.

Singh and Kumar (2010) developed a model for
prediction that can be used across different circumstance and
still be capable of accurate prediction. They used a
combination of two models. The neural networks model is
used for reliability prediction in real environments and the
connectionist model for assessment of reliability. Their results
showed animprovement when using artificial neural networks
over statistical models based on NHPP.

Aljahdali and Sheta (2011) used a fuzzy logic model
which consisted of several linear sub-models put together
smoothly by using fuzzy membership functions. In the end
they developed a fuzzy model for predicting reliability of
software projects.

Musa and Okumoto (1984) developed a simple model
capable of predicting failures expected of software. The model
was presumed better than most models at the time. The model
uses two derived units, execution time and calendar time.

Karunanithi and Whitley (1992) presented a modeling
approach that is adaptive by using connectionist networks and
shows how feed forward, recurrent networks and various
training regimes are used in prediction of software reliability.
An empirical comparison was done between their new
approach and five already existing models. The result was that
their new connectionist network model adapted better to
different dataset and in long term preserved its predictive
accuracy over the analytic models.

Brocklehurst et al. (1990) used a recaliberation process to
improve the accuracy for reliability predictions of already
existing techniques. The result was an improvement in
prediction reliability in majority of the cases.

The model presented by Malaiya et al (1990),
characterizes the long term predictability of a model by using
a predictability measure with two-component. Average
predictability being the first component, measures a models

| Volume 13 | Issue 18 | 2014 |

Inform. Technol. J., 13 (18): 2755-2759, 2014

capability to predict well throughout the testing phase.
Average bias being the second component measures chances
that an underestimation or overestimation of the faults could
be possible. In their conclusion they said “Our results seem to
support Musa’s observation (Musa et al, 1987) that the
logarithmic model appears to have good predictability in most
cases. However, at very low fault densities, the exponential
model may be slightly better. The delayed S-shaped model
which in some cases have been shown to have good fit,
generally performed poorly™.

Karunanithi et af. (1992) explored a connectionist method
in different network models, data representation methods and
training regimes. A comparison between their connectionist
method and five other well-known reliability growth models
revealed that their connectionist model can adapt across
various dataset and still preserve its prediction accuracy. The
connectionist method can also be used to model variation in
complexity.

METHODOLOGY

Software reliability data source: The software reliability data
used in this study has been collected by John Musa (Bell
Telephone Laboratories). He collected failure interval dataset
with the purpose of helping software managers monitor test

Table 1: Software reliability data project information

status, predict schedules and help researchers to validate
software reliability models. The models are applicable to the
area of software reliability engineering. The dataset was
collected from failure of 16 projects. Table 1 shows all the 16
projects and the information recorded. The data represents a
variety of applications and was recorded in the mid 1970’s.
The application types are real time command and control,
word processing, commercial and military applications. The
attributes recorded for each software are system code, failure
number, failure interval and day of failure.

While trying to accomplish the goal, additional data was
collected on top of the one provided by John Musa decision
tree model construction. The data used is showed in Table 2.

Methodology of measurement program: The measurement
program done in three phases. The first is to calculate the
reliability of each software. Reliability here is measure in
terms of the availability of the system. The second phase
would be using a reliability scale to determine if the software
is reliable or not.

The third and final phase is to classify the reliability and
use attribute of each software to model a decision tree.

Calculating software reliability: Software reliability can be
expressed in different ways depending onwhat vou intend

System code Application Size Failures Phages

1 Real time command and control 21,700 136 System test operations
2 Real time command and control 27,700 54 System test operations
3 Real time command and control 23,400 38 System test operations
4 Real time command and control 33,500 53 System test operations
5 Real time commercial 2,445,000 831 System test*

6 Commercial subsystem 5,700 73 Subsystem test

14C Real time (Hundreds of thousands) 36 Operations

17 Military 61,900 38 System test

27 Military 126,100 41 System test

40 Military 180,000 101 System test

SS1A Operating system (Hundreds of thousands) 112 Operations™*

SS1B Operating system (Hundreds of thousands) 375 Operations™

Ss1C Operating system (Hundreds of thousands) 277 Operations™*

$S2 Time sharing system {Hundreds of thousands) 192 Operations*

SS3 Word processing system {Hundreds of thousands) 278 Operations*

SS4 Operating system (Hundreds of thousands) 196 Operations™

Table 2: Prediction data

System code

Application

Phases

Software reliability

1 Real time command and control System test operations Unreliable
2 Real time command and control System test operations Unreliable
3 Real time command and control System test operations Unreliable
4 Real time command and control System test operations Unreliable
5 Real time commercial System test* Unreliable
6 Commercial subsystem Subsystem test Unreliable
7 Real time Operations Reliable

8 Military System test Unreliable
9 Military System test Unreliable
10 Military System test Unreliable
11 Operating system Operations™ Data is unreliable
12 Operating system Operations™ Reliable
13 Operating system Operations™ Reliable
14 Time sharing system Operations™ Reliable
15 Word processing system Operations* Reliable
16 Operating system Operations* Reliable

WWW.ansinet.com

2757

| Volume 13 | Issue 18 | 2014 |

Inform. Technol. J., 13 (18): 2755-2759, 2014

to measwre. The common and most widely acceptable
calculation for availability 1s expressed as in Eq. 1:

MTEF

~ MIBF M
+MTTR

where, MTBF 1s the mean time before failure and MTTR 1s the

mean time to repair.

The availability of each software was calculated using the
equation above and the data provided. The output should be
from a range of 0.0-1.0. The reliability should lie somewhere
between. Reliability scale: For the purpose of classification a
threshold is needed for the acceptable level of availability
before software can be accepted as reliable. The suggested
threshold before reliability can be achieved is set to 0.7. This
means after the calculation for individual software 1s done,
those with availability lower than 0.7 will be considered as
unreliable while those with availability of 0.7 and above will
be considered reliable. For what so ever reason if the
availability falls outside the range of 0.0-0.1, the data for that
software will be considered unreliable.

Decision tree model: Based on the attributes of the software
and newly derived attribute (availability), a decision tree isuse
to predict the reliability of each software. Table 2 shows the
data used to model the decision tree.

Rules generation:

¢ Each attribute-value pair along a given path forms a
conjunction in the rule antecedent and the leaf node is the
consequent

Basic algorithm (a greedy algorithm):

o Tree is constructed in a recursive
divide-and-conquer

o Atstart, all the training examples are at the root

» Aftributes are categorical (if continuous-valued, they are
discretized in advance)

¢ Examples are partitioned recursively based on selected
attributes

» Test attributes are selected on the basis of a heuristic or
statistical measure (e.g., information gain)

top-down

Conditions for stopping partitioning:

¢ All samples for a given node belong to the same class

e There are no remaining attributes for further
partitioning- majority voting is employed for classifying
the leaf

* There are no samples left

Attribute selection measure: Information gain:
» Select the attribute with the highest information gain

¢ Sbe aset consisting of s data samples
¢ Lets, nooftuplesinclass C, for1={1,..., m}

WWW.ansinet.com

2758

+ The expected information needed to classify:

=25 3
I(SI:SE,---,Sm):*ZgllogQE‘ 2)

1=1

+ Entropy of attribute A with distinct values {a,.a,,a,...a,}:

E(A) = i%l(&],_., S,) 3)

1=1
+ Information gained by branching on attribute A
Gain(A) = 1(5,, S,...., S.)-E(A) (4

The gain Gain(A) for each attribute was calculated by
subtracting the entropy of the attribute E(A) from the
information gain (I). After calculating the gain for each
attribute, selects the largest as the most eligible to become the
root node.

Implementation: For implementation of the measurement
program, a program written in C++to read the data being used
and compute the necessary attribute require to model the
decision tree. The program calculates the reliability of each
software in the data set and based on the set threshold
determines if the software is reliable or not and generate a new
table with an extra attribute, reliability. The program uses the
attribute of the new table to determine the information gain for
the table. It then calculates the entropy of each attribute and
subtracts the entropy of each attribute from the information
gain. This would repeat itself until the information is sufficient
to model the decision tree.

Begin

Repeat until all data file (i)
Read File (i)
Caleulate MTBF

Calculate MTTR
Calculate Availability
IF Availability 0.7
THEN Reliability = “Reliable”
IF Availability < 0.7
THEN Reliability = “Unreliable”
Print to new file
End repeat
End

RESULTS AND DISCUSSION

Although this project has not compared the model to
current and existing models, it 1s certain that the model is
capable to predict software reliability in terms of availability
to a modest contempt.

The justification for scaling reliability between O and 1 is
because this scaling system has been used before
(Karunanithi and Malaiya, 1992; Castner and Ferguson, 1998;
Karunanithi e al., 1991). Setting the threshold at 0.7 comes
from the perception that 0.7 is the accepted minimum

| Volume 13 | Issue 18 | 2014 |

Inform. Technol. J., 13 (18): 2755-2759, 2014

threshold for reliability to be achieved (Castner and Ferguson,
1998). Size of the project was removed from the oniginal data
(Table 1). This 1s because size of the project on its own has
little or no impact on the result of the table.

The measurement of reliability 1s subjective to different
people but here the model proposed is specific to the
prediction of availability of software. The decision tree model
has not been compared with other existing model, so it cannot
say at the moment to what extent is it better than others. The
model has been applied to only the dataset discussed here.
Although, it is expected that the result if applied to a different
dataset would be similar.

CONCLUSION

This study developed a decision tree model which is able
to predict the reliability of a software. It described using a
threshold of 0.7 to determine the reliability and
unreliability of software. The future work would check the
effectiveness of this model against other common and well
known models.

REFERENCES

Aljahdah, S, AF. Sheta and M. Habib, 2003. Software
reliability analysis using parametric and non-parametric
methods. Proceedings of the ISCA 18th International
Conference on Computers and their Applications, March
26-28, 2003, Honolulu, Hawaii, USA_ pp: 1-4.

Aljahdali, S. and AF. Sheta, 2011. Predicting the reliability
of software systems using fuzzy logic. Proceedings of
the 8th International Conference on Information
Technology: New Generations, April 11-13, 2011,
Las Vegas, NV, pp: 36-40.

Brocklehurst, S., B. Littlewood and J. Snell, 1990.
Recalibrating software reliability models. Software Eng.
Trans., 16: 458-470.

Buckley, F.J. and R. Poston, 1984. Software quality assurance.
TEEE Trans. Software Eng., 10: 36-41.

Castner, G.J. and C.B. Ferguson, 1998. Development of a
scale for measuring software diffusion. Proceedings of
the 31st Hawaii International Conference on System
Sciences, Volume 6, January 6-9, 1998, Kohala Coast, HI,
pp: 518-528.

Daniel, G., 2004. Software Quality Assurance: From Theory
to Implementation. Pearson Hducation India, India,
ISBN-13: 9788131723951, Pages: 616.

Florac, W.A., 1992, Software quality measurement: A
framework for counting problems and defects. A
Technical Report, Software Engineering Institute,
September 1992.

Karunanithi, N, Y K. Malaiya and D. Whitley, 1991.
Prediction of software reliability using neural
networks. Proceedings of the International Symposium on
Software Reliability Engineering, May 17-18, 1991,
Austin, TX., pp: 124-130.

WWW.ansinet.com

2759

Karunanithi, N. and D. Whitley, 1992. Prediction of software
reliability using feedforward and recurrent neural nets.
Proceedings of the International Joint Conference on
Neural Networks, Volume 1, Junuary 7-11, 1992,
Baltimore, MD., pp: 800-805.

Karunanithi, N. and Y K. Malaiya, 1992. The scaling problem
in neural networks for software reliability prediction.
Proceedings of 3rd International Symposium on Software
Reliability Engineering, October 7-10, 1992, Research
Triangle Park, NC., pp: 76-82.

Karunanithi, N., D. Whitley and Y K. Malaiya, 1992.
Prediction of software reliability using connectionist
models. [EEE Software Eng. Trans., 18: 563-574.

Khosravi, K. and Y. Gueheneuc, 2004. On 1issues with
software quality models. Proceedings of the 11th Working
Conference on Reverse Engineering, November 8-12,
2004, Delft, Netherlands, pp: 172-181.

Kotaigh, B. and R A. Khan, 2012. A survey on software
reliability assessment by using different machine learning
techniques. Int. J. Sci. Eng. Res., 3: 1-7.

Lyu, MR, 2007. Software reliability engineering: A roadmap.
Proceedings of the Workshop on the Future of Software
Engineering, May 23-25, 2007, Minneapolis, MN., USA |
pp: 153-170.

Malaiyva, Y.K., N. Karunanithi and P. Verma 1990
Predictability —measures for software reliability
models. Proceedings of the 14th Annual International
Computer Software and Applications Conference, October
31-November 2, 1990, Chicago, IL., pp: 7-12.

Musa, 1.D. and K. Okumoto, 1984. A logarithmic poisson
execution time model for software reliability measurement.
Proceedings of the 7th International Conference on
Software Engineering, March 26-29, 1984, Orlando, FL.,
USA., pp: 230-233.

Musa, ID., A Iannino and K. Okumoto, 1987. Software
Reliability: Measurement, Prediction and Application.
McGraw-Hill, New York, ISBN-13: 9780070440937,
Pages: 621.

Schneidewind, N.E., 2002. Body of knowledge for software
quality measurement. Computer , 35: 77-83.

Singh, Y. and P. Kumar, 2010. Prediction of software
reliability using feed forward neural networks. Proceedings
of the International Conference on Computational
Intelligence and Software Engineering, December 10-12,
2010, Wuhan, pp: 1-5.

Siok, MLF. and J. Tian, 2007. Empirical study of embedded
software quality and productivity. Proceedings of the 10th
High Assurance Systems FHEngineering Symposium,
November 14-16, 2007, Plano, TX., pp: 313-320.

Zhao, M. and X. Li, 2011. An application of spatial decision
tree for classification of air pollution index. Proceedings
of the 19th International Conference on Geoinformatics,
June 24-26, 2011, Shanghai, pp: 1-6.

| Volume 13 | Issue 18 | 2014 |

	ITJ.pdf
	Page 1

