http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 13 (3): 434-442, 2014
ISSN 1812-5638 / DOL 10.3923/1t).2014.434.442
© 2014 Asian Network for Scientific Information

Fair and Efficient Variable-length Packet Scheduling and
Multilink Transmission Support

(Guikai Liu
School of Computer Science and Engineering, Hunan University of Science and Technology,
Kiangtan, 411201, China

Abstract: Aiming to guarantee scheduling fairness m variable-length packet networks, this study presents a
novel easily implementable scheduling algorithm, called Resilient Quantum Round-Robin (RQRR). The quantum
assigned to each of the flows in a round is not fixed and is calculated depending on the transmission situation
of all the flows in the previous round. The computing method is: For one flow, p-value (namely quantum) of the
next round = p-value of the current round-+the average count of bytes sent by other flows in current round-the
mumber of bytes sent by the flow in cwrent round. Dynamic quanta can instantly reflect the behavior of the
flows in scheduling process. This study proves that the implementation complexity of RQRR is O (1) with
respect to the number of flows; it also analytically prove the fairness properties of RQRR and show that its
relative fairness measure has an upper bound of 7 Max-1, where Max 1s the size of the largest packets. On the
other hand, multilink transmission is an efficient way to solve the problem that satisfies the subscriber’s
demand on bandwidth increment. RQRR can support multilink transmission commendably and it not only
allocates the bandwidth resowrce of multilink fairly to keep load-balance amongst links, but also guarantees
accordant packet sequence between sending end and receiving end without mereasing additional overhead.

Key words: Packet scheduling, variable-length packet, relative fairness, implementation complexity, multilink

transmission, high-speed networks

INTRODUCTION

In high-speed packet networks, all the switching or
routing points want to output the amived packets by
utilizing packet scheduling algorithms. These algorithms
can be categorized into two main classes: Time-stamp

based scheduling and round-robin based
scheduling. Time-stamp based algorithms such as
WFX) (Worst-case Fair Weighted Fair Queuing)

(Bennett and Zhang, 1996) and SCFQ (Self-clocked fair
Queuing) (Golestani, 1994) maintain two time-stamps for
every packet to indicate its start-serving time and
end-serving time, respectively then sort their time and
send out the packet with the least end-serving time.
This kind of algorithms is to approximately emulate
the ideal packet scheduling algorithm-GPS
(Generalized Processor Sharing) (Parekh and
Gallager, 1993) by maintaining virtual clocks and achieves
good faimess and low latency. However, their time
complexity 1s at least O (logN) (N 1s the number of active
flows) due to computing and sorting each packet’s time.
They are not suitable for using in high-speed networks,
thus round-robin based packet scheduling algorithms
with lower complexity are at a premium. In round-robin
based scheduling algorithms such as RR (Round-Robin),

most

434

WRR (Weighted Round-Robin) (Chaskar and
Madhow, 2003) and DRR (Deficit Round-Robin)
(Shreedhar and Varghese, 1996) etc., the scheduler simply
serves all non-empty queues in a round-robmn manner.
These algornithms neither mamtain a time-stamp for every
service flow, nor perform sorting among the packets.
Most of them have O (1) complexity with respect to the
number of flows. But in a variable-length packet
enviromment, round-robin based scheduling algorithms
must consider packet length to guarantee scheduling
fairness. All in all, a good scheduling algorithm should
have the characteristics of fairness, efficiency and low
complexity.

DRR can support variable-length packet scheduling
with O (1) time complexity and it gains widespread
attention (Sivakumar and Ramprasad, 2012; Ayaz et al.,
2011; Sleem et al., 2011; Mansy et al., 2011). DRR assigns
a quantum for each flow to indicate the number of bytes
that the flow can transmit in a round. At the same time, a
Deficit Counter (DC) 1s also set for each flow to store the
residual quantum that the flow does not use up in a
service opportunity, and through which the flow can
bring the residual quantum into the next service. In this
way during a relatively long time, the service that a flow
receives 18 directly proportional to its quantum on the

Inform. Techrnol. /., 13 (3):434-442, 2014

whole. It means that DRR is fair and suited to be used in
variable-length packet networks. However, DRR also has
some shortages: Firstly, it just provides long time scale
fairness and it may induce big output burst from short
time scale, furthermore, its faimess 1s related to the
minimum quantum and the minimum quantum must be
equal or greater than Max in order to asswe DRR has
O (1) complexity. Secondly, its characteristic of latency 1s
not good and probably some queues cannot receive
service for a long time. Tn addition, DRR wants to know
the length of packets before sending them and overhead
is increased. Aiming at the above-mentioned shortages,
many literatures put forward improvement to DRR.
Kanher and Sethu (2001) proposed nested-DRR to adopt
fine grain scheduling policy and minish the upper bound
of packet latency. LI. DRR (Xiaodong and Lemin, 2002)
presented a new algorithm switable for variable-length
packet scheduling based on DRR and had prominent
improvement in latency performance. Tian ez al. (2005) put
forward a new scheduling discipline named Prioritized
Nested DRR (PNDRR), which introduced a token bucket
with virtual allocated token quantum and delay of
packet mn latency critical queue 1s effectively diminished.
Fei et al (2011) overcome the limitation that DRR cannot
output smoothly by adding traffic shaper on the basis of
network calculus in nodes and improved network QoS.
I-MDRR (Kumar and Priyameenal, 2011) is proposed for
broadband wireless access and it can support QoS
requirements of real-time services as well as provide
higher throughput. The slicing domain scheduling
viewpoint is proposed (Bo et al., 2012), which adopts
Smoothed Deficit Round-Robmn (SDRR) scheduling
algorithm in carrying group and Longest Queue First
(LQF) scheduling algorithm in scheduling domain;
Scheduling complexity and delay are decreased. M-DRR
(Shuging and Tinye, 2012) schedules wireless packets by
taking advantage of channel conditions and HARQ
technology; 1t mnproves the throughput and QoS
guarantee in IEEE 802.16e system. Aiming at redundant
transmission and handling buwst flows in avionic
networks, D2DRR (Hua and Liu, 2012) properly distributes
traffic between switches and end systems, and umfies the
representation of heterogeneous flows; it implements fast
deduplication and the network load is reduced. In these
mentioned algorithms, improvements to DRR made up its
some shortages, but their basis is still DRR and fixed
quantum is assigned for data flows. In this study, a new
variable-length packet scheduling algorithm different from
DRR is presented, which is called Resilient Quantum
Round-Robin (RQRR). The distinct characteristic is that
the quantum of each queue changes dynamically and the
permission given to each of the flows in a given round is
net fixed and is computed depending on the behavior of

435

the flows in the previous round. During the course of its
execution, flows which receive very little service in a
round are given an opportunity to receive proportionately
more service in the next round. Thereupon, good
scheduling fairness among flows can be guaranteed.
Besides, as an important application of RQRR, it can
support multilink transmission efficiently.

RESILIENT QUANTUM ROUND-ROBIN

A pseudo-code implementation of the RQRR
scheduling algorithm 1s shown in Fig. 1, consisting
of Initialization, Enqueuing module and Dequeuing
module. The Tnitialization is to initialize packet
scheduling module when network node has demand
on scheduling packets. Enqueuing module is called

Initialization//
ActiveFlowList=NULL,;
VisitFlowCount=0;

Enquening Mochle: on arrival of a packet
i = Cueueln WhichPacketAmives;
il (ExistInActiveFlowList(i¥—FALSE) then
AddToAcitveFlowList (i);
Increment SizeOfActiveFlowList;
P=0;
Send=0;
end il;

Dequening modile:
while (TURE) do
I (ActiveFlowListEmpty—FALSE) then
VisitFlowCount=SizeOf A ctiveF lowList;
else
waiting for arrival of a packet;
end il;
while (VisitFlowCount=0) do
i =HeadOf ActiveFlowList;
Remove Head of Active Flow List
do
TransmitPacketFromQueue (i);
Rend= Send+LengthOf TransmittedPacket
while (QueuelsEmpty—FALSR)&&(P;-Send;>0);
ir; (QueuelsEmpty—FAILSE) then
Add QueueToActiveFlowList (i);
else
Decrement 8izeOfActiveFlowList;
end il;
VisitFlowCount= VisitFlowCount-1;
end while;
for (i=1; i<sizaOfActiveFlowList+1; i=i+1)
P=P+Ac=Send;,
Tor (i=1; i<SizeOfActiveFlowList+1; i=1+1)
Send=0;

end while;

Fig. 1. Pseudo-code for ROQRR (Resilient Quantum
Round-Robin) scheduling

Inform. Techrnol. /., 13 (3):434-442, 2014

whenever a new packet arrives at a flow. The packet will
enter into the correlative queue and wait for being sent.
Dequeuing module is the heart of the algorithm which
schedules packets from the queues corresponding to
different flows.

A data flow is defined as active if its queue is not
empty or its packets are being scheduling. All the active
flows are put into a list and this list is called
“ActiveFlowList”. When a flow changes from active to
inactive, it will be removed from ActiveFlowList. When a
flow changes from inactive to active, it will be appended
at the end of ActiveFlowList.

A round is defined as the process during which the
data flows, mcluded in ActiveFlowList at a time 1nstant T1
(T1=0), are accessed by packet scheduling module. The
newcome flows or those become active once again can be
appended at the end of ActiveFlowList, but they will be
accessed in the next round. For example, consider the
instant of time, T1, when the scheduler 1s first initialized.
Suppose round 1 is one round-robin iteration starting at
time T1 and consisting of visits to all the flows that were
in the ActiveFlowList at time T1. Assume that flow-1,
flow-2 and flow-3 are the only flows active at the
beginning of round 1. The visits of the scheduler to the
flow-1, flow-2 and flow-3, comprise round 1. Let flow-4
become active after the time instant T1, but before the
completion of round 1. Let the time instant T2 mark the
completion of round 1. The scheduler does not visit
flow-4 in round 1 since flow-4 was not in the
ActiveFlowList at the start of round 1. Round 2 will visit
all of the flows that are in the ActiveFlowList at time T2.
Assuming that flows-1, flow-2 and flow-3 are still active at
timeT2 and round 2 consists of visits to flow-1, flow-2,
flow-3 and flow-4. Therefore, the sequence number of
rounds 1s relative to one flow, 1.e., round 2 1s the second
round for flow-1, flow-2, flow-3, but the first round for
flow-4.

In order to express the number of data flows wanted
to be accessed in a round, RQRR introduces a counter,
which 1s called “VisitFlowCount”, to record the number of
flows. At the beginning of a round, VisitFlowCount
equals the number of flows in ActiveFlowList. When
packet scheduling module finishes accessing a flow, the
value of VisitFlowCount will be minus 1. At last, when
VisitFlowCount equals 0, it means that the current round
is over.

In each round, the scheduling algorithm determines
the number of bytes that a flow 13 permitted to send and
calls this quantity the p-value for the flow during that
round. Suppose there are n (n is a natural number and
w>0) flows sharing one output link. The p-value assigned
to flow1 (1 18 a natural number, 1<i<n)during round
1 (1 18 a natural munber, r>0) 1s denoted by P, (r). p-value 1s
not fixed and 1s recomputed m the following rounds

436

except its initial value is 0. The computing method is: For
one flow, p-value of the next round = p-value of the
current round+the Average Count (AC) of bytes sent by
other flows in current round-the number of bytes sent by
the flow in current round.

Another counter is used to record the mumber of
bytes, called “ByteNumberCount”. Tet Send i (1) be the
number of bytes that are transmitted from the queue of
flow 1 in round r. Tts initial value is O before a round starts
and the number of bytes of sent packets will be
accumulated to it once a packet is sent.

Average count (AC): For flow-i, AC expresses that,
starting from the r-th (r=2) round, the average number of
bytes sent by all the other flows in the previous round,
denoted by AC, (1-1). Tf there are n flows in the round r-1,
then:

Send, (r-1)+..+ 8end,, (r-1+8end,; (r-1y+...+8end, (r-1)

AC, (r-1)= o)

(1

If it is not divided exactly, the result equals the
integer part of quotient+1.

Whereupon, computing the p-value of a flow as:
when:

r=1,P,(1)=0

when,

=1, P, (1) = P, (¢-1)+AC, (1-1)-Send, (r-1) (2)

Hereinto 1 is a natural number and 1<i<n. The
meaning of p-value is: The quantity of data that a flow is
permitted to send out m a round not only relates to its
own p-value, but also depends on the quantity sent by
other active flows.

Figure 2 illustrates the first four rounds in an
execution of the RQRR algorithm. In this figure, there are

flow-1,P (1) = 0] 20 |
Round 1 [flow2,P(1y=0[10 |
| fow-3,P(1)=0 15 |
[flow-1, P (2) =-7] 15 |
Round 2 [flow-2,P(2)=8| 5§ I 5 I
| flow-3,P 2)=0
[flow-1, P(3)=15 8 |
Round 3 |flow-2, P (3)=7 6 | 9 |
fow-3,P(N=10 7 [2] 11 |
flow-L,P@=- 5 |
Romd 4 |fow2.P@)=6[3 | &]
flow-3,P (4) =2

Fig. 2: An illustration of 4 rounds in a RQRR (Resilient
Quantum Round-Robin) execution

Inform. Techrnol. /., 13 (3):434-442, 2014

three flows: Flow-1, flow-2 and flow-3. The sizes of the
packets actually sent by the flow during this round are
shown by the horizontal bars and the new p-values for the
next round are again computed using (1) and (2). One
packet is sent at least when p-value = 0 in a round.
Although only four rounds are listed, there is no limitation
in the quantity of flows and the number of rounds for
RORR, which will continue scheduling packets once data
flows become active. Also, it is observed from Fig. 2 that,
in general, flows which receive very little service in one
round will be given more opportunity to receive
proportionate service in the next round. For instance,
flow-3 only sent a three-byte packet in round 2, whereas,
1t sent three packets i round 3 and the total length comes
to twenty bytes.

ANALYTICAL RESULTS

In this section, analyzing the implementation
complexity of RQRR, and also the fairness using a
measwe based on a popular metric proposed
(Golestani, 1994).

TImplementation complexity: Consider an execution of the
RQRR scheduling algorithm over n flows. Define the
implementation complexity of the RQRR scheduler as the
order of the time complexity, with respect to n, of
enqueuing and then dequeuing a packet for transmission:

Theorem 1: The implementation complexity of a RRQR
scheduler is O (1).

Proof: prove the theorem by demonstrating that
enqueuing and dequeuing a packet are each of O (1) time
complexity.

The time complexity of enqueuing a packet 13 the
same as the time complexity of the Enqueuing module in
Fig. 1, which is executed whenever a new packet arrives at
a flow. Determining the flow at which the packet arrives is
an O (1) operation. The flow at which the new packet
arrives is added to the ActiveFlowlList, if it is not already
in the list. This addition of an item to the tail of a linked
list data structure is also an O (1) operation.

Next, considering the time complexity of dequeuing
a packet. During each service opportunity, the RQRR
scheduler transmits at least one packet. Thus, the time
complexity of dequeuing a packet is equal to or less than
the time complexity of all the operations performed during
each service opportunity. Fach execution of the set of
operations inside the while loop of the Dequeuing module
in Fig. 1, represents all operations performed during each
service opportunity given to a flow. These operations
include determining the next flow to be served, removing
this flow from the head of the ActiveFlowList and
possibly adding it back at the tail. All of these operations

437

on a linked list data structure can be executed in O (1)
time. Additionally, each service opportunity includes
updating the values of VisitFlowCount, Send, and p-value.
All of these can be done in constant time, as represented
by the constant of operations in the
Dequeuing module in Fig. 1. The statement of the theorem
1s proved.

number

Fairness: GPS (General Processor Sharing) scheduling
algorithm has good faimess. Absolute fairness bound of
a scheduler, a method of faimess measurement, 1s defined
as the upper bound on the difference between services
received by a flow under the scheduler and that under
GPS scheduling over all possible time intervals. Since this
upper bound is difficult to obtain analytically, Relative
fairness bound, proposed by Golestani (1994), is more
commonly employed. This quantity is defined as the
maximum difference in the services received by any two
flows over all possible time intervals:

Definition 1: Let Send, (t, t) be the mumber of bytes
transmitted by flow-1 during the time mterval between t,
and t,. Given a time interval (t,, t,), the Fairness Measure,
FM (t,, t,) for the interval 1s defined as the maximum value
of the difference between the number of bytes transmitted
by any two flows, flow-i and flow-j. Namely:

FM (t, b,) = max (Send, (t,, L)-Send, (4, 1)), 1<i,j =0

Define FM as the maximum of FM (t,, t) for all
possible time mtervals (t,, t). A scheduler s more
perfectly fair if FM approaches zero more closely. GPS
(General Processor Sharing) is proven to have FM =0, but
this condition cannot be met by any packet-by-packet
algorithm since packets must be served exclusively.
Therewithal, a scheduling algorithm can be considered
close to fair if its FM is bounded by a constant.
Especially, FM (t,, t;) should be independent of the length
of time mterval.

Definition 2: Define Max as the size in bytes of the largest
packet, namely the largest length of packets:

Lemma 1: Tn the case of no rounding in computing AC,
(1<i1zm), for any round r (r21), the sum of p-value of n
flows 1s zero.

Proof: Whenr =1, since P; (1) = 0, so the sum of p-value
of n flows is zero. When, r=2, since:

P, (1) =P, (r-1) +AC, (r-1)-Send, (r-1)

so the sum 1s:

Inform. Techrnol. /., 13 (3):434-442, 2014

Z“;[Pl(rf 1)+ AC(r—1) - Send;(r -1}

i=l

SR ()=
=

:zn:P,(r -1) +iAC‘(r -1)- iSend,(r -1)
=) =

Since:

iACi(r—l): ><(n—l)zn:SmQ(r—l)=z“:Smdi(r—l)
= =t i

1
n-1

then:
éR(r)zgR(r—l)m:gR(rq)
Since, P, (1) = 0, therefore:
TR©=0

The statement of the lemma is proved.

Lemma 2: For any flow-1 (1<i<n) and round r (rz1),
P, (1) <2Max.

Proof: Whenr =1, P, (1} = 0. The statement 1s correct.
When:

r 22, P (1) =P (r-1+AC, (r-1)-Send; (r-1)
Since:
Send; (r-1)zP; (r-1), have P; (r)<AC; (r-1)

According to Lemma 1, if the p-values of flows are
not all zero, then they cannot all be positive number. The
sum of positive p-value and the sum of negative p-value
have the equal numerical value. When the p-value of a
tflow 1s negative, this flow 1s permitted to send one packet
and 1its largest length 13 Max. Without loss of generality,
assume that the p-value of flow-1 is negative at round r-1,
the largest length of data that flow-1 can send at this
round 1s Max. Again, assume that flow-2 1s the flow with
the largest p-value which is more than Max and attains to
2Max-1. The total length of packets that flow-1 and flow-2
can send at the most 1s: Max+2Max-2+Max = 4Max-2; the
average value is 2Max-1 and less than 2Max. If need
AC, (r-1)=2Max, then the average value of P, (r-1) of the
other flows (j#1) must be more than Max, that is to say,
AC, (r-2)>Max. By parity of reasoning, it requires
AC (1)»Max. However, the maximum value of AC, (1) is
Max, and then AC, (r-1)<2Max; therefore, P, (r)<2Max. The
statement of the lemma is proved.

Theorem 2: Given m consecutive rounds starting from
round k (k=1) during which flow-i (1<i<n) is active, the
total number of bytes transmitted by flow-i is denoted as
Sum-1. For any round r (k<r<k+m-1), 1f P, ()20, then:

438

ktm-1 ktm-1
—2Max + . AC(r) <Sum—i-< > AC(r)+ 2Max
=k 1=k

Proof: When 1=2, P, (r) = P, (-1 +AC; (r-1)-Send; (1-1),
therefore, Send, (1-1) = P, (r-1)-P; (r)+AC; (r-1), then:

Sum — i=k§ISend‘ ([")=](§:_1[Pl (r)=P{r+1)+AC, (r)]=k+§:_l[]?1 (r)-P(r+1)]+

k+m-1 k+m-1

3 AC (=P (k)-Pk+m)+ > ACH)

Since, P, (r)<0 and P, (r) = 0 allow flow-i to send one
packet, when P, (r)<0, take P, (r) = 0, then have P, (1)>0.
Also, P, (r)<2Max from Lemma 2, therefore, -2Max<P,; (k)-P,
{(k+m) <2Max. The statement of the theorem is proved.

The following theorem establishes the fact that the
faimness measure of RQRR 1s bounded by a constant,
which is independent of the length of time interval.

Theorem 3: In any execution of RQRR algorithm, when
P, (1)<0, take P, (r) = 0 (1<1<n), Then, for any time mterval
{t, t), FM (t,, t))<7Max-1.

Proof: Consider two active flows i and j in time interval
(t,, t,). Since, RQRR is around-robin algorithm, flow-j must
have an opportunity between any two opportunities
given to flow-1. Let m; be the number of opportunities
given to flow-1 in time mnterval (t,, t,) and let m; be the
number of opportumities given to flow-) m the same
interval, then [m;-m;|<1.

Without loss of generality, assume that in the interval
(t, t;), flow-1 starts receiving service before flow-j. Thus,
m, = m, or m; = m;-1. From Theorem 2, have:

ktmi-1
Send, (t,t,)< >, AC,(r#2Max (3
=k
ktmj-1
Send, (,4,)> -2Max+ 3 AC (1))
r=k
Thus:
keti-1 ketanj-1
Send, {t), t,-Send, {t;. ty)< > AC,(rrr2Max-[-2Max+ 3, AC,(r}]
r=k =k
ktmi-1 k-1
=4Max+ 3 AC (1)} 3, AC/(n)
r=k =k
(5)

When m, = m;:
k-l Tyl ktai-1 k-1
3 ACH- Y ACD= 3 AC- 3 ACH)
=k r=k =k r=k

ktmi-1 k4mi-1

S [ACi(r)—ACj(r)]:% 3 [Send,(r) - Send, ()]
r=k n-1 .

Ll[kﬂfl Send, r) - kfl send, ()]
n- =k =k

1
H [Send] (tl ,tz)'sendi(tl ,tz)]

Inform. Techrnol. /., 13 (3):434-442, 2014

So, from Eq. 5 have:

1

n-1

Send; (t;.t;)-Send; (t;.t;)<4Max+ [Send; (t;,t;)-Send, (t,.t;)]

namely:
1+ %) [Send; (t;.t;)-Send; (t,.t,)]<4Max
n—
then, get:
Send, (t,.t,)-SendJ (.t = n= 1X4Max<4Max (6)
n

Whenm, = m-1:

k-1 kg1 keri-1 ketrni-2

> ACHN - > AC)= X ACD - > AC(r)

pury Tk oy =

ketrai-1 kotni-1

= Zk AC;(r) - Zk AC(HHAC, (ktm;-1)

krai-1
= Zl; [AC{r) - AC, (AT, (+m;-1)
ketrai-1

Ll Z [Send;(r) - Send; (r)] + AC;(k+m;-1)
n—=1 =k

1 kerii-1 keni-1
71[Z Send;(r) - Z Send; (r)]+ AC; (k+m;-1)
n— =k =k

Tt -1

! [Zk Send; (r) +8end;(k + m;) —

a n-1
1
n-1

keHrmi-1
>, Send,(r)] + AC, (k+m,-1)
=k

1

n-1

[SendJ (t;.t;)-Send, (t, .t)]+ SendJ (k+m])+ACJ (k+m])

! [Send; (t,.t;)-Send; (t;.t,)]+LZ Send, (k +m;)
n-1 n—-1%

So, from (5) have:

1
Send; (t;.t;)-Send; {t; 1, }=4Max+ I[Send] (t;.t,)-Send;

n
1
{t,.t)]+SZSend“(k +mg)

=1

namely:
1 1 2
(lJrﬁ)[SendJ (t, ,t;)-Send; (t,.t,)]<4MEX+EZ_1: Send, (k + m,)

then, get:

n-l ><4Max+lE Send, (k +m,)
n n

u=l

Send, (t, t,)-Send, (t, t,)<

Since, Send, (k+m,)<P, (ktm;)-1+Max<2Max-1+Max
= 3Max-1 hence:

SendJ (t;,t;)-Send; {t, .t)=

071 Mt Lo x(3Max- 1< 7Max-1 (7)
n n

Combining Eq. 6 and 7, get FM (t,, t;)<7Max-1. The
statement of the theorem is proved.

439

RORR SUPPORTS MULTILINK TRANSMISSION

Many medium-small enterprises access Internet
through an El leased lne firstly. When business
higher bandwidth than El,
telecommumecations operators have no good method to
solve this problem because the higher bandwidth
standard is E3 line. The bandwidth of E3 is 34 Mbps and
this kind of line not only has expensive rent charge, but
also subscribers do not need such high bandwidth. In this
case, multilink transmission is an efficient way to solve
the problem; that
demand on bandwidth by increasing links based on the
former lines. The PPP Multilink Protocol (MLPPP)
(Sklower et al., 1996) 1s the typical representative among
them. The distribution mechamsm of multilink will divide
a large packet into many small packets and transmit them
through multilink simultaneously. However, if just assign
packets to multi channels and transmit them sumply, the
receiver cannot reassemble the packets correctly because
of the improper arriving sequence. Therefore, MLPPP
appends 4 bytes sorting identifier in a packet header to
control the sequence and adopts simple synchronous
principle so that it can transmit packets on parallel
channels and reassemble them with correct order at the
The other problem which multilink
transmission needs solve 1s the fairness of link utilization,
namely load-balance between links. In this respect,
MLPPP only mentioned two simple round-robin methods
and they cannot guarantee fairness as well as adequately
take advantage of the bandwidth provided by multilink.

RORR algorithm can settle datagram reassembly and
load-balance commendably in multilink transmission.

increments want

is, satisfying the subscriber’s

destination.

When there are two or more links between sending end
and receiving end, RQRR can realize load-balance at the
sending end At the receiving end, RQRR carries out
queue scheduling and the receiving packet sequence is
entirely consistent with the sending sequence. Next,
specifying the process of multilink transmission
supported by RQRR algorithm. Notice that: Some
concepts such as ActiveLinkL.ist, VisitLinkCount etc., can
be understood easily based on the above algorithm
description, so there is no specific explanation for them.

RQRR operating at sending end: There are one mput link
and multi output links at sending end. RQRR will initialize
sending end after all output links are ready, including:
initializing ~ “ActiveLinkList” of sending end;
“VisitLmkCount™ 1s set mmtial value 0, the p-value of each
link 1s also set muitial value 0. When a packet arrives at
sending end, it enters into “DataRequestSendQueue”

Inform. Techrnol. /., 13 (3):434-442, 2014

Load-balance Operation at Sending End:

(1) When DataRequestSendQueue is empty, namely there is no
packet wanted to be sent, load-balance module goes to the status of
waiting for packet coming otherwise, counting;

(2) Judging whether VisitLinkCount equal 0 or not, if yes,
continue; Otherwise, executing step (5);

(3) ByteNumberCount of each link in Activel.inkList is set as(y;

(4) VisitLinkCount = the number of links in ActiveLinkList,

(5) Choosing the first link in ActivelinkList picking up a packet
from
DataRequestSendQueue and sending it out through the link, its
ByteNumberCount is
increased by the length (bytes) of the packet;

(6) Judging whether p-value of the link minus its ByteNumberCount
is more than O or not, it yes, continue, Otherwise, executing step (9);

(7) Judging whether DataRequestSendQueue is empty or not, if yes,
executing step (1), Otherwise, continue;

(8) Picking up a packet from DataRequestSendQueue sequentially and
sending it out through the chosen link ByteNumberCount. of the link
is incresed by the length of the packet; executing step (6);

(9 Moving the chosen link to the tail of ActiveLinkTist
(10) VisitLinkCount minus 1;

(11) Judging whether VisitLinkCount is
continue; Otherwise, executing step (14);

(12) Computing the p-value of the next round of each link in
ActiveLinkList
(13) Executing step(l);

(14) Judging whether DataRequestSendQueue is empty or not, if yes,

0 or not, if yes,

executing step (1) Otherwise, executing step (5).

Fig. 3: RORR (Resilient Quantum Round-Robin)
operating procedure at sending end

Queue Scheduling Operation at Receiving End:
(1) When the queue of the first link of ActiveLinkList is empty,
namely there is no packet wanted to be scheduled in the queue of the
current link, queue scheduling module goes to the status of waiting for
packet coming Otherwise, continue;
(2) Judging whether VisitLinkCount equals 0 or not, if yes, continue;
Otherwise Executing step (4);
(3) VisitLinkCount = the number of links in ActiveLinkList
(4) Choosiing the first link in ActiveLinkList sending out the first
packet in the queue of the link through the output links;
ByteNumberCount of the chosen link is increased by the length (bytes)
of the packet;
(5) Judging whether p-value of the link minus its ByteNumberCount
is more than 0 ot not, if yes, continue; Otherwise, executing step (8);
(6) Judging whether the queue of the first link in ActiveLinkList is
empty or not if yes, executing step (1); Otherwise, contniue;
(7) Sending the next packet of the chosen queue sequentially,
ByteNumberCount. of the corresponding link is increased by the length
of the packet executing step (5);
(8) Moving the chosen link to the tail of AcrivelinkList
(9) VisitLinkCount minus 1;
(10) Judging whether VisitLinkCount is 0 or not, if ves, continue;
Otherwise, executing step (13);
(11) Computing the p-value of the next round of each link in
ActiveLinkList; ByteNumberCount of each link in ActiveLinkList is
set as0;
(12) Executing step (1);
(13) Judging whether the queue of the first link in ActiveLinkList is
empty or not if yes, executing step (1); Otherwise, executing step (4).

Fig. 4 RQRR (Resilient Quantum Round-Robin)
operating procedure at receiving end

440

laf 20

lel s1fl5 lsBhl
[al STsPtT 6 Ju]

| I
1] 6 [k|
g]

Ic]
9

15
11

1d] 15]
7mp[p| 11 |

8

Fig. 5: A flow consisting of seventeen packets arrives at
sending end and each packet is denoted with a
letter and its length (bytes). Hereinto, packet a
arrives firstly and u is the last one

firstly and waits for being sent. Load-balance module
executes RQRR algorithm and selects one link from multi
output links through which packets in
“DataRequestSendQueue” are sent out. The operating
procedure 1s shown as Fig. 3.

ROQRR operating at receiving end: There are multi input
links and one output link at receiving end. The initializing
process involves: TInitializing “ActivelinkList” of
receiving end; “VisitLinkCount” is set initial value 0; the
p-value of each link is set initial wvalue O; The
“ByteNumberCount” of each link in “Activel.inkList” is
set initial value O as well. Notice that, receiving end has
some same components as sending end, but their
operation is independent. When a packet sent from
sending end arrives at receiving end, it will enter into the
queue belonging to the relevant link. Queue scheduling
module of receiving end executes RQRR algorithm to pick
up packets from relative queue and send them out
through the output link. The operating procedure is
illustrated in Fig. 4.

An example: Assume that a flow, arriving at sending end,
consists of seventeen packets expressed successively by
a,byc,d e f g hjklmp,q,s tand u shown as in
Fig. 5. The numbers behind letters denote the length of
packets with unit byte. There are three links between
sending end and receiving end, expressed as link-1, link-2
and link-3, respectively.

At sending end, load-balance module executes RQRR
algorithm to distribute seventeen packets into three links
after four rounds (hereinto SP denctes p-value at
sending end) illustrated in Fig. 6. At receiving end, there
are four packets a, d, h, g entering into the queue of link-1;
seven packets b, e, f, j, k, s, t entering into the queue of
link-2; six packets ¢, g, 1, m, p, u entering into the queue of
link-3 and the status is revealed in Fig. 7. Moreover, the
load-balance situation between links can be seen from
Fig. 7.

Queue scheduling process at receiving end is similar
to the scheduling process in section 2. After four rounds
queue scheduling, obtaining the following packet
sequence on the output link at receiving end: a, b, ¢, d, e,
f,e, h ik 1, m,p,q,s, t and u Hereinto, a is the first
packet sent out through the output link and u is the last
one. Thus, it can be seen, the packet sequence sent out

Inform. Techrnol. /., 13 (3):434-442, 2014

" Link-1, 5P (1)=0
Link-2, SP (1)=0
Link-3, SP (1)=0
[Link-1, SP (1)=-7
Link-2, SP (2=8
Link-3, SP (2 =0
[Link-1, SP (3)=15
Link-2, SP(3)="7
Link-3, SP (3)=10
[Link-1, SP (4)=5
Link-2, SP (4) =6
| Link-3, SP (42

20 |
10 |
15
15
AREN

Round 2

3
6 |k

7

5 |

4]t]6 |
8 |

Round 3

e

11 |

Round 4

Fig. 6 An illustration of 4 rounds in a ROQRR
(Resilient Quantum Round-Robin) execution at
sending end. There are three links between
sending end and receiving end and SP denotes the
p-value at sending end

Link-1[a] 20 [al 15 Inl 8 [qf 51
Link-2]b] 10 Jel SIfIS5[1ijl 6 |kl 9 [Isf4]t] 6 |
Link-3[c] 15 BRG] 7 APl 11 Tul 8]

Fig. 7. At receiving end, packets a, d, h and g enter into
the queue of Link-1, packets b, e, f, , k, s and t
enter into the queue of Link-2, packets ¢, g, I, m, p
and u enter into the queue of Link-3

gboedefghjklmpgsty

DataRequestSendQuene
qh.d,a
; Link-1
Sending "
p| ond Leskijfeb iving ‘
Link-2 end
wpmlge
Link-3
Output link

Lbu,t.s,q,p,m.l.k.j,h.g.ie.d.c,b,a

Fig. 8 An illustration of RQRR (Resilient Quantum
Round-Robm) supporting multilink transmission.
Load-balance operation at sending end distributes
seventeen packets to be transmitted through three
links. After executing queue scheduling at
receiving end, packet sequence through the
output link is the same as packets arrived at
sending end

through the output link at receiving end 1s consistent with
the packet sequence arriving at sending end. The whole
process is presented in Fig. 8.

Therefore, realizing multilink data transmission by
RQRR algorithm, it not only allocates the bandwidth

441

resource of multilink fairly to keep load-balance amongst
links, but also guarantees accordant packet sequence
between sending end and receiving end without
increasing additional overhead. So, 1t has low complexity
and hardware implementation is simple as well. In order to
realize load-balance and accordant packet sequence,
sending end and receiving end must satisty the following
conditions: (1) Sending end and receiving end should be
synchronous and have same ActiveL.inkList, (2) There is
no packet loss during the transmission, or accordant
packet sequence cannot be guaranteed.

CONCLUSION

This study presented a novel scheduling discipline
called Resilient Quantum Round-Robin (RQRR), which 1s
fair, efficient and supports variable-length packet
scheduling. The implementation complexity of RQRR is
O (1) and therefore, can be easily implemented in
high-speed networks with large numbers of flows. The
relative fairness measure of RQRR is independent of the
length of time interval and has an affirmatory upper bound
of TMax-1, where Max is the largest size of the packets. In
comparison to DRR of similar efficiency, complexity and
fairness of RQRR are not related to quantum; each flow
sends out one packet at least in a round and RQRR has
better characteristic of latency; on the other hand, RQRR
does not want to know the length of a packet before
scheduling it because it gets hold of the length
information from the already sent packets. Finally, in
supporting multilink transmission, RQRR can efficiently
implement load-balance as well as guarantee the
consistent packet sequence between receiving end and
sending end.

ACEKNOWLEDGMENTS

This study is partially sponsored by the S and T Plan
Projects of Hunan Province (No. 2010GK3045) and
Scientific Research Fund of Hunan Provincial Education
Department (No. 10C0687).

REFERENCES

Ayaz 3., F. Hoffmann, R. German and F. Dressler, 2011.
Analysis of deficit round robin scheduling for future
aeronautical data link. Proceedings of the TEEE 22nd
International Symposium on Personal Indoor and
Mobile Radio Communications, September 11-14,
2011, Toronte, ON., Canada, pp: 1809-1814.

Bennett, J.C.R. and H. Zhang, 1996. WF*Q: Worst-case
fair weighted fair queueing. Proc. TEEE INFOCOM,
1:120-128.

Inform. Techrnol. /., 13 (3):434-442, 2014

Bo, 7., W. Bin-giang, W. Shan-shan, W. Hong-quan and
L. Hui, 2012, Research on input-queued slicing
domain scheduling based on Crossbar in the
reconfigurable network. J. Commun., 33: 105-115.

Chaskar, HM. and U. Madhow, 2003. Fair scheduling with
tunable latency: A round-robin approach. IEEE/ACM
Trans. Network, 11: 592-601.

Fei, G., 7. Yuan and Y. Baizhan, 2011. A new and better
algonthm for combimng token bucket filter with DRR.
I. Northwestern Polytechn. Univ., 29: 49-53.

Golestam, S.J., 1994. A self-clocked fair queuing scheme
for broadband applications. Proceedings of the 13th
INFOCOM 94, Networking Global
Communications, June 12-16, 1994, Terento, Ont.,
Canada, pp: 636-646.

Hua, Y. and X. Liu, 2012. Scheduling heterogeneous flows
with delay-aware deduplication for avionics
applications. IEEE Trans. Parallel Distrib. Syst.,
23: 1790-1802.

Tian, G.Z.,N. Ge and C.X. Feng, 2005. A prioritized nested
DRR algorithm. I. Electron. Inf. Technol., 27: 123-126.

Kanher, 5.S. and H. Sethu, 2001. Fair efficient and
low-latency packet scheduling using nested deficit
round robin. Proceedings of the TEEE Workshop on
High Performance Switching and Routing, May 29-31,
2001, Dallas, TX., USA., pp: 6-10.

Kumar, D. and V. Priyameenal, 2011. Adaptive packet
scheduling algorithm for real-time services in
Wi-MAX networks. Proceedings of the International
Conference on Recent Trends 1n Information
Technology, Tune 3-5, 2011, Chennai, Tamil Nadu,
pp: 342-347.

for

442

Mansy, A., M. Ammar and E. Zegura, 2011. Deficit
round-robm based message ferry routing.
Proceedings of the Global Telecommunications
Conference, December 5-9, 2011, Houston, TX.,
USA., pp: 1-5.

Parekh, AK. and R.G. Gallager, 1993. A generalized
processor sharing approach to flow control in
mtegrated service network: The single node case.
IEEE Trans. Network., 1: 344-357.

Shreedhar, M. and G. Varghese, 1996. Efficient fair
queuing using deficit round-robin. IEEE/ACM Trans.
Networking, 4: 375-385.

Shuging, Y. and P. Tinye, 2012. QoS multi-users packet
scheduling algorithm in IEEE 802.16e system.
Proceedings of the International Conference on
Computer and Automation Engineering, January
21-23, 2011, Chongqing, China, pp: 112-116.

Sivakumar, G. and A.V. Ramprasad, 2012, Analysis of
FiwWi networks to improve TCP performance.
Proceedings of the International Conference on
Computing, Communication and Applications,
February 22-24, 2012, Dindigul, Tamil Nadu, pp: 1-6.

Sklower, K., B. Lloyd, G. McGregor, D. Carr and
T. Coradetti, 1996. The PPP Multilink Protocol (MP).
http: /tools.ietf.org/html/rfc] 990

Sleem, M.Y., HM. ElBadawy and M.S. Abo-El-Seoud,
2011. Two layer channel aware scheduling for QoS
support in TEEE 80216/WiMAX networks.
Proceedings of the 8th International Conference on
Wireless and Optical Communications Networks,
May 24-26, 2011, Paris, pp: 1-5.

Xiaodong, T. and L. Lemin, 2002. LL-DRR: An efficient
scheduling algorithm for packet network. J. Electron.
Inf. Technol., 24: 361-369.

	ITJ.pdf
	Page 1

