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Abstract: This study presents a novel bi-dimensional EMD (Empirical mode decomposition) algorithm. Tt firstly
transforms the given 2D data (e.g., an image) into a function defined on a triangular mesh and then uses a novel
mterpolation method based on bi-Laplace operator to generate the upper and lower envelopes mn the sifting
process. Essentially, this method still uses thin plate spline mnterpolation to generate envelopes but it can be
implemented much faster than the traditional method based on thin plate spline interpolation because only a
sparse linear system needs to be solved when generating an envelope in the sifting process. Furthermore, the
proposed bi-dimensional EMD algorithm can be applied in image enhancement and the application examples
prove that the image enhancement algorithm based on this bi-dimensional EMD approach 1s efficient and better
than some classical image enhancement algorithms in contrast and lightness controlling.
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INTRODUCTION

EMD (Empirical mode decomposition) is developed
by Huang et al. (1998) and Huang and Wu (2008) which
can adaptively decompose a 1-dimensional (1D) nonlinear
and non-stationary signal into a finite sum of different
frequency components. Tt is very important in signal
processing and has been found useful applications in
many areas such as signal denoising, fault detection,
geophysical studies, atmospheric and climate studies,
oceanographic studies and so on (Huang et af., 1998;
Huang and Wu, 2008).

This study focuses on decomposing 2-dimensional
(2D) data (e.g., unages) by EMD techmque, 1e,
bi-dimensional EMD (BEMD). Currently, several methods
about bi-dimensional EMD have been proposed.
Nunes et al. (2003, 2005) generated envelope swfaces by
radial basis function interpolation and used the Riesz
transform for image analysis. Linderhed (2005) used a thin
plate spline (a special case of radial basis function) for
swiace interpolation to develop bi-dimensional EMD
algonthm for an image compression scheme. However, the
determination of the thin plate spline is computationally
expensive because a full linear system with the same
mumber unknowns as data points must be solved.
Damerval et af. (2005) proposed a way based on Delaunay
triangulation and  piecewise cubic  polynomial
mnterpolation to obtain envelope surfaces. Xu et al. (2006)
used a mesh fitting method based on finite elements to

represent the local mean swface of the data. Although,
the methods based on Delaunay triangulation and
finite-element interpolation can decompose the original
signal much faster than the others, they are still time
consuming (Bhuiyan et al., 2009).

In addition, each row and/or each celumn of 2D data
can be processed, respectively by 1D EMD which makes
it a faster process (Han et al, 2002). Unfortunately,
this 1D implementation may generate uncorrected
bi-dimensional intrinsic mode function components as it
ignores the correlation among the rows and columns of
2D data.

Accounting for thin plate spline is a natural extension
of cubic spline used in 1D EMD mterpolation to 2D, this
study presents a novel bi-dimensional EMD algorithm
using thin plate spline interpolation based on bi-Laplace
operator. Compared to the traditional approach based on
thin plate interpolation (Linderhed, 2005), this approach
can be implemented much faster because only a sparse
linear system needs to be solved when generating an
envelope in the sifting process. Experiment results and the
application examples in image enhancement show that the
proposed method is robust and efficient.

1D EMD

The 1D EMD algorithm proposed by Huang et al.
(1998) extracts Intrinsic Mode Functions (IMFs) from a
1D signal by the sifting process which leaves the final
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residue as a constant or a monotone trend. An Intrinsic
Mode Function (IMF) is originally defined that the
number of extrema equals
zero-crossings and 1t has a zero local mean which
represents a generally simple oscillatory mode as a
counterpart to the simple harmonic function.

The first IMF 15 extracted from the given 1D signal
g(t) by the following sifting process:

its the number of its

Step 1: Find all local extrema (minima and maxima) of g
Step 2: Interpolate all local minima (resp. maxima) by the
cubic spline to obtain the lower envelope LE
(resp. the upper envelope UE)
Step 3: Get the local mean m of the lower envelope LE
and the upper envelope UE, 1e., m = (LE+UE)2
Compute h = g-m. If h satisfies the stoppmg
criterion of the sifting process, then h 1s defined
as an IMF, otherwise set g = h and repeat the
process from step 1. The first IMF 1s denoted as

fy and is specified as the first residue

Step 4:

The next IMF f, is then extracted by applying the
above sifting process (step 1-4) to the first residue r,. This
process is repeated until the residue is a constant or a
monotone trend. When this process is complete, the
original signal g 13 decomposed as follows:

(1)

X
g = Ef) +r
=1

where, K 1s the number of IMFs £, f,.... f; and r ,1s the
final residue. The leading IMFs contain high local spatial
scales and/or variations, the trailing TMFs give coarse
local spatial scales.

NEW BI-DIMENSIONAL EMD ALGORITHM

The essence of this new bi-dimensional EMD
algorithm is to transform the given 2D data (e.g., an image)
into a function defined on a triangular mesh and to use a
novel mnterpolation method based on bi-Laplace operator
to estimate envelopes which can accelerate the envelope
computation of the traditional bi-dimensional EMD

method based on thin plate spline mterpolation
(Linderhed, 2005). It can be summarized as follows:

Step 1: Transform the given 2D data into a function g
defined on a triangular mesh M = (V, F)

Step 2: Find all local extrema (minima and maxima) of
the function g defined on the triangular mesh
M=(V,F)
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Step 3: Interpolate all local minima (resp. maxima) by the
method based on bi-Laplace operator to obtain
the lower envelope LE (resp. the upper enwvelope
UE) and get the local mean m of the lower
envelope LE and the upper envelope UE, ie.,
m = (LE+UE)/2

Compute h = g-m. If h satisfies the stoppmg
criterion of the sifting process, then h 15 defined
as a BIMF (bi-dimensional intrinsic mode
function), otherwise set g = h and repeat the
process from step 2. The first BIMF 15 denoted as
f, and r, = g-f, 1s specified as the first residue

Step 4:

The next BIMF f, is then extracted by applying the
above sifting process (step 2-4) to the first residue r,. This
process 1s repeated until the residue is a constant or a
monotone trend, or a specified number BIMFs have been
extracted.

In the following, the key techmque of the new
bi-dimensional EMD algorithm will be introduced
including transforming the given 2D data into a function
defined on a triangular mesh, extremum definition,
interpolation algorithm based on bi-Laplace operator and
stop criteria.

Transform the given 2D data into a function defined on a
triangular mesh: Without loss of generality, an MxN
image g(m, n) can be used as the given 2D data and
assume that the wvalues g(m, n) correspond to an
approximation of a continuous function defined on
[0, 17%[0Q, 17, at the set of ponts:

V={v, li=L-Mx N}
{

A trniangular mesh M = (V, F) can be generated with
the point set V and mmage boundary edges by the
constrained Delaunay triangulation algorithm (Fig. 1a). V
denotes the set of vertices of the mesh, F = {(i, j, k)jv,, v,
are v, the three vertices of a triangle i M} denotes the set
of faces.

Then the M>N image g(im, n) [m, n]e {0,.., M-1} =< {0,
N-1} can be regarded as a function defined on the mesh
M= (V,F). It 1s discretized as a piece-wise linear function,
which 1s defined by linearly interpolating the values of g
at the vertices, i.e., g = (g(v,), 8(¥: )., B(¥Vip)) Wsing the
barycentric coordinates (Fig. 1d-e).

%,%}[m,n]e{ﬂ,---,M—l}x{O,---,N—l}}

Extremum definition: g(v,) 1s defined as a local minimum
or a local maximum of the function g living on a triangular
mesh, if it is lower or larger than all values of g at the
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Fig. 1(a-e): Transform 2D 1images into functions defined on triangular meshes. (a) An example for generating
the triangular mesh of a 25%25 image, (b) Lena, (¢) Camera man, (d) Visualization of the function defined
on a triangular mesh for Lena and (e) Visualization of the function defined on a triangular mesh for

carmnera Inarl

1-ring neighbors of the vertex v;. The set of vertex indices
of the 1-ring neighbors of v, is N(i) = {j|v,, v;} is an edge of
the mesh} .

Based on this defnition, the mdices of the local
minima and maxima of g are represented as:

min{g) = {i | vic N(i), g(v;) 2 g(v,)}
and:
max(g) = {i| ¥je N(i} g(v,) <s(v.)}

Interpolation method based on bi-laplace operator: Thin
plate spline 1s a natiral extension of the cubic spline to 2D
which is wvery important for data interpolation and
approximation in Euclidean space. It can be characterized
as the minimizer of a thin plate energy which refers to a
physical analogy involving the bending of a thin sheet of
metal (Bookstein, 1989).

Specifically, the thin plate energy of the function f
defined on Q=R’ is defined as:
(2)

L A
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The corresponding Euler-Lagrange equations is:

Nf=0

= (3)
where, A’ is bi-Laplace operator. Therefore bi-Laplace
operator minimizes the thin plate energy. Consequently,
it can be used to generate an interpolation function
subjecting to data interpolation constraints.

Consider the discretization of the 2D domain Q
as the triangular mesh M = (V, F), Laplace operator A
can be discretized as a sparse matrix I with elements
(Meyer et al., 2002):

z Wy, 1=
KNG

Liligrm= Wy JeN(D) (4)
0, otherwise

where, | V] 1s the number of vertices of the mesh, N(1) is the
set of vertex indices of the 1-ring neighbors of v;:

1
p I(cot a; + cot )
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e and 3 are the angles opposite of the mesh edge (v;, v))
and A, is the Voronoi area of vertex v; (Fig. 2).

Then the following optimization scheme based on
bi-Laplace operator can be solved to interpolate all
data constraints which s similar to the approach of
Wang et al. (2012) and is an extension of the cubic spline
to 2D Euclidean space:

{Iff =0 (5)

st f(v,)=g(v,),ieC

where, L 1s the discretization Laplacian matrix 4, = (f(v,),
f(v,),..., f(vy;) is the unknown interpolation vector and C
1s the interpolated anchor set.

The optimization scheme 5 can lead to a sparse linear
system for values of f at the vertices of the triangular
mesh. Figure 3 gives the results for interpolating all local
minima and maxima of Lena image by the method based on
bi-Laplace operator to obtain the lower envelope and
upper envelope.

Fig. 3(a-d). Envelope generation by the mterpolation method based on bi-Laplace operator (a) Local mimima, (b) Lower
envelope interpolating all local minima, (¢) Local maxima and (d) Upper envelope interpolating all local

maxima
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Stop criteria: Just like the original 1D EMD, the stop
criterion of the sifting process is controlled by limiting the
size of the standard deviation SD which is computed from
the values of the two consecutive sifting results b, and
h, at all vertices:

sp= o) e (©)

S vy

where, [V| denotes the number of the vertices.

The sifting process is stopped if SD falls below a
threshold SDT. The typical value of SDT 1s set between
0.1 and 0.3 as the original EMD.

EXPERTMENT RESULT ANALYSIS AND DISCUSSION

The above bi-dimensional EMD algorithm was
unplemented on a computer with Inter Core{TM)2 Duo
CPUTE660 at 2.20, 2.19 GHz and with 2.96 GB RAM. The
backslash operator of MATLAB 2010 (Yan, 2011) is used
to solve a sparse linear system. Although, the proposed
method is capable of decomposing images of fine
resolution fast, the maximum image size is limited to
256H256 pixel n order to compare it to the traditional EMD
method based on thin plate spline mterpolation
(Linderhed, 2005).

An orthogonality index, denoted as OI, has been
proposed for IMFs by Huang et al. (1998) to test the
decomposition quality of an EMD algorithm which may be
extended to the case of BIMFs for an MxN unage g(m, n)
as follows:

B M N KHEH gz(m,n) 7
OI"EE{;]:If)(m,n)ﬂ(m,n)} @

where, fi(x, y), 1 =1,..K are BIMFs and fi,,(x, v) is the Kth
of OI a good
decomposition in terms of local orthogonality among the
BEMFs.

Figure 4 and 5 give the comparison results for Lena

residue. A low value indicates

image and Camera Man image between the presented
method and the traditional method based on thin plate
spline interpolation (Linderhed, 2003), respectively. The
values of BIMFs may be negative, so the values of all
BIMFs are transformed into [0, 255] to visualize BIMFS.
According to the comparison results (Fig. 4 and 5) and
orthogonality statistics (Table 1) under the same
conditions (SDT = 0.1, K = 3), the proposed method can
generate comparable results (even better results) than the
tradition algorithm based on thin plate spline
interpolation. Tn addition, the presented method can
accelerate the decomposition process greatly (Table 1).
The main reason is that a sparse linear system 1s only

Table 1: EMD  comparison in orthogonality index (OT) and mntime
between the method of Linderhed (2005) and the presented
method

Tmage Method o1 Tatal time (sec)

Lena Linderhed (2005) 0.0445 169

Presented method 0.0428 14

Camera man Linderhed (2005) 0.0538 198

Presented method 0.0482 16.6

Fig. 4(a-h): EMD comparison for Lena between the method of Linderhed (2005) (a-d) and the presented method (e-h).
(a)(e): BIMF1, (b)(f): BIMF2, (c)(g): BIMF3 and (d)th): Third residue



Inform. Techrnol. /., 13 (3):469-476, 2014

Fig. 5(a-h): EMD comparison for camera man between the method of Linderhed (2005) (a-d) and the presented method
(e-h). (a)(e): BIMF1, (b)(f): BIMF2, (¢)(g): BIMF3 and (d)(h): Third residue

solved when generating an envelope n the sifting
process while the tradition algorithm based on thin plate
spline mterpolation (Linderhed, 2005) needs to solve a full
linear system with the same number unknowns as data
points.

Application in image enhancement: Tmage enhancement
1s one of major research areas in digital image processing,
whose purpose is to bring out details that are hidden in an
umage, or to increase the contrast mn a low contrast umage.
It is very beneficial to further image applications, such as
image segmentation, image analysis and understanding,
immage classificaion and so on (Saradhadevi and
Sundaram, 2010).
Bi-dimensional empirical mode decomposition
can adaptively decompose an image g into several
Mode Functions (BIMFs)
f, 1= 1,..K with different scale details and a residue 1. In
fact, the leading BIMFs contain the fine-scale details and
the trailing BIMFs represent the smoothed features wiule
the residue can be regarded as a monotone trend (i.e., the

Bi-dimensional Intrinsic

lightness of the image). Consequently, image details can
be enhanced by modifying IMFs and image lightness can
be mnproved by adjusting the residue. The specified
adjustment formula based on the proposed bi-dimensional
EMD algorithm is as follows:

(&)

K
g':ET‘ T, X1
in1

474

where, T, 1=1,. K+1 are the transformation functions for
different BIMFs and the residue, g’ represents an
enhancement result for the input image. Generally, K =3
and T, i = 1,.., K+1 selected as linear functions can
generate good results (Fig. 6e), e. g.:
T,=1.8-02x3-D,1=1,2,3,4 )]
According to the theory of Jobson et al. (2002), the
overall lightness of an image can be measured by the
image mean which is also the ensemble measure for
regional lightness. The overall contrast can be measured
by taking the mean of regional standard deviation which
provides a gross measwe of the regional contrast
variations. The following image mean and variance
changes can be used as a quantitative evaluation of an

image enhancement algorithm:
ZM: ZN: Var(g'(m,n)) - i ZN: Var(g(m,n))
€ o ®=lasl _ m=ln=1 (10)
Z Z Var(g(m,n))
Lo Mean(g") — Mean(g) 1

Mean(g)

where, g’ represents an enhancement result for an nput
M>N image g, Var(g® (m, n)) and Var(g(m, n)) are regional
standard deviations of g and g~ at the pixel (m, n) and
Mean(.) represents the mean of an inage.
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Fig. 6(a-¢): Image enhancement comparison for camera man (a) Original image with low contrast, (b) Histeq method,
(¢) Adapthisteq method, (d) TImadjust method and (e) The presented method with transformation

functions 9

The above 1image enhancement method was
compared to some classical methods, such as histogram
equalization (Histeq), adaptive histogram equalization
(Adapthisteq) and image contrast adjustment (Tmadjust)
(Chang and Wu, 1998, Gonzalez and Woods, 2006):

Histeq performs histogram equalization which
operates on the whole image m order that the
histogram of the output image approximately
matches the uniform distribution histogram
Adaptiusteq performs contrast-limited adaptive
histogram equalization which increases the contrast
of the put image by operating on small data
regions. The contrast of each data region is
enhanced so that the histogram of each output
region approximately —matches the uniform
distribution histogram

Imadjust improves the contrast of the image by
mapping the values of the input mtensity image to
new values in order that a specified percent of the
data (e.g., 1%) 15 satwated at low and high
intensities of the input data

According to the comparison for camera man
between the presented image enhancement method and
these classical methods implemented by image processing
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Table 2: Image enhancement comparison in changes of contrast (C) and

lightness (L)
Method C L
Histeq 3.8227 0.4136
Adapthisteq 4.0297 0.3356
Trnadjust 4.5903 0.5007
Presented method 5.219%4 0.5090

toolbox of MATLAB 2010 (Yan, 2011), the presented
image enhancement method can control better in contrast
and lightness in image enhancement (Fig. 6) and obtain a
better result about quantitative evaluation (Table 2).

CONCLUSION

In this study, a novel bi-dimensional EMD algorithm
is presented for 2D data (e.g., images). The essence of this
approach 1s based on transforming the given 2D data mto
a function defined on a triangular mesh and using an
interpolation method based on bi-Laplace operator to
generate envelopes. It can be implemented faster than the
traditional bi-dimensional EMD method based on thin
plate spline interpolation. Experiment results show that
this methed is robust and efficient and can be applied in
image ernhancement. The application examples also

prove that the image enhancement algorithm based on the
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presented bi-dimensional EMD is efficient and better than
some classical algorithms in contrast and lightness
controlling.

In the future, the proposed bi-dimensional EMD
algorithm can be used in other areas such as image
denoising, image analysis, pattern recognition and so on.
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