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Abstract: In order to guarantee the stability of the system performance and the high Qos(quality of service)
of users, a new method based on the HDFS (Hadoop Distributed File System) was proposed which including
a job type classification method and a dynamic replica manage mechanism. The method uses the job type
classification method to select the I/O intensive job, in order to achieve more accuracy of the classification
taken the heterogeneity of the jobs into consideration. For the classified jobs, a dynamic replica manage
mechanism was used to determine whether to increase or decrease the number of copies on the specific data
node. For a test of a cluster with 1 namencde and 20 data nodes, the method has a lugh performance. The
theoretical and experimental analyses in this paper prove that the proposed method has the ability to improve

the performance of HDFS effectively.
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INTRODUCTION

Cluster computing systems, such as MapReduce,
Hadoop and Dryad ete, have become a popular framework
for data-mtensive applications. Among various kinds of
sizes in the cluster, throughput and job completion time
are the main factors affecting the data-centers’ costs and
users’” satisfaction. They were thought as the most
unportant measures of the computation efficiency.

In recent years, many studies have been done on
data locality. A distributed adaptive data replication
algorithm DARE (Abad et al, 2011) that aids the
scheduler to achieve better data locality was proposed.
DARE improves data locality by more than 7 times with
the FIFO scheduler in Hadoop and achieves more than
83% data locality for the FAIR scheduler with delay
scheduling.

In order to improve the data locality of map tasks, a
Next-k-node Scheduling (NKS) (Cheng et al, 2012)
was proposed, implementing the NKS methed in
hadoop-0.20.2. Experiment results have shown that the
NKS method reduced 78% of the map tasks processed
without node locality; reduced 77% of the network load
caused by the tasks and improved the performance of
Hadoop MapReduce when comparing with the default
task scheduling method in Hadoop.

When reassigmng the slots, FAIR picks the most
recently launched tasks to kill without considering the job
character and data locality which mcreases the network

traffic while rescheduling the killed Map/Reduce tasks.
Focused on this problem an improved FAIR scheduling
algorithm (Tao et al., 2011) was proposed, which take into
account the job character and data locality while killing
tasks to make slots for new users. In order to unprove the
scheduling efficiency, the dynamic processing slots
scheduling (Kurazumi et al., 2012) was used for the I/O
intensive jobs of Hadoop MapReduce focusing on /O
wait during execution of jobs.

An elastic replication management system for HDFS,
which provides an active/standby storage model for
HDFS (Cheng et al, 2012), was proposed. It utilizes a
complex event processing engine to distinguish real-time
data types and then dynamically increases extra
replicas for hot data, cleans up these extra replicas
when the data cool down and uses erasure codes for cold
data.

A method of energy-conserving, hybrid, logical
multi-zoned (hot zone and cold zone) variant of HDFS
(Kaushik and Bhandarkar, 2010) was proposed to manage
data-processing intensive, commodity Hadoop cluster.
Analysis of the traces of a Yahoo! Hadoop cluster
showed sigmficant heterogeneity in the data's access
patterns which can be used to guide energy-aware data
placement policies. The trace-driven simulation results
with three-month-long real-life HDFS traces from a
Hadoop cluster at Yahoo! show a 26% energy
consumption reduction by doing only Cold zone power
managerment.
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Tt is a common practice for data-intensive systems to
place the data as close as possible when calculating,
which referred to as the data locality problem. Due to the
significant impaction on system throughput and job
completion time, the data locality problem has become an
unportant problem i data-intensive systems. HDFS
adopts a uniform triplication policy (i.e., three replicas for
each file) to improve the data locality. The policy can also
enswre data availability and fault tolerance in the event of
data and disk failures. This policy could also achieve load
balancing by distributing work across the replicas.
Though high reliability and performance the policy has in
most cases, there are two significant problems.

First, in a large and busy HDFS cluster, the hot data
(Chen et al., 2010) could be requested by many
distributed clients concurrently. Replicating the hot datas
only on three different nodes 13 not enough to avoid
contention of the data nodes which store hotdatas. If the
number of jobs which concurrently access to hot data
exceeds that of replicas, some of these jobs may have to
access to the data remotely and compete for the same
replica. Second, the triplication policy comes with a high
over head cost in the management for the cold data. Too
many replicas may not improve availability significantly,
but bring unnecessary expenditure instead. The
management cost, including storage and network band
width, will significantly increase with the increasing
number of replica.

Therefore, the hot data should be assigned with a
larger nmumber of replicas to iumprove data locality of
concurrent accesses. The additional copies may be used
not only to not only improve availability, but also to
provide load balancing and unprove overall performance
if replicas and data accessing requests are reasonably
distributed. As a result, dynamic configuration of file
replica is necessary (Berral et al., 2011).

METHODS

Here, we will give a generalized introduction of a
method of job type classification and after that a dynamic
replica policy was put forward.

Job type classification: Since the different types of job
have different amount of requests on HDFS, the
heterogeneity of a job type should be taken into
consideration. In this part, we classify jobs into cluster
according to the following method.

The execution time of a map task is the total time
spent on fetching the output of the map tasks and writing
results to HDFS. In the following we decouple the time
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consumption on I/Q operations and CPU operations of a
MapReduce application. The execution time for a
map/reduce task is then defined as:

Task ExecutionTime = OT + CT + IOT (1)
where, OT 1s the fixed overhead n running a task, CT and
IOT are times taken in CPU and TO operations,
respectively. OT is independent of data size which mainly
IVM (Java virtual machine) imtialization
overhead and scheduling time. CPU-related operations

mostly occur in the user-defined map and reduce function.
Broadly, IO operations can be classified as follows:

includes

Input and output for a map/reduce task

Reading and writing for sorting data in a map/reduce
task

Shuffle for a reduce task

CT and TOT are two parts, distinguishing from other
types of task, to represent the characteristic of a task. The
ratio between them 1s denoted by Computing Rate (CR)
and 1/O rate, respectively. The I/O rate of a task 1s the
total amount of input and output of a task divided by task
execution time. Since, the Hadoop framework uses cache
mechamsm and temporary files for sorting, the accurate
total amount of input and output of a task 1s difficult to be
counted. Thus, in this study, we adopt CR to represent
the characteristic of a task which is defined as:

CR = CT/Task ExecutionTime = CT/(OT + CT +TOT) 2

If a task’s CR reaches to 1, the task 1s regarded CPU
intensive, or I/0 intensive if CR. 1s close to 0.

The LPL was validated by rumming 19 bench marks,
including machine learning jobs (Lu et al, 2012), web
search jobs and some typical MapReduce benchmark jobs
etc. According to their results, an [/O mtensive job can be
defined as both of its map CR and reduce CR 1s less than
0.2. Now, reduce tasks in 16 jobs of 17 benchmarks (94%)
are able to be reflected correctly.

Dynamic replica policy: In this part, we present a dynamic
replica management based on HDFS, including a dynamic
adjustment and selection mechanism of replica. After that
we 1mplement a experiment on the method replica
controller based on HDFS. The overall architecture of the
system is shown in Fig. 1.

The following presents the main module and function
of the replica controller:
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Fig. 1: System architecture

+ History Logs: Once name node receives file read
requests from clients, the request logs will be first
stored in buffer first, then be sent to the “lustory
Logs™ of replica system 1 every t sec

¢+  Timer: The main function is to prevent the situation
that a file read request from the client surge in a short

sharp decline, leading to
corresponding changes of the number of copies mn a
short period of time. These changes may increase the
burden on system. Tts cycle equals 3,

*  Controller: It has two main functions. The first is to
modify the BlockMap m Namenode to adjust
numbers of replica. The second is to select the

time and then a

suitable nodes by analysis of listory logs
mnformation, then add or delete replica to this selected
nodes

Dynamic adjustment mechanism of replica: In order to
eliminate the performance bottleneck of HDFS and
achieve dynamic adjustment of replica. We made some
small changes on the basis of the original HDFS. Let
variable which represents the number of replica in fsimage
as the min replica number (mmReplica) and add two
numReplica and comectCounter to the
attributtion of HDFS3. NumReplica represents current
numbers of replica, its imtial value equals minReplica.
Replica system will adjust the number of replica
dynamically according to value of numReplica.
ConnectCounter represents the number of users that read

variables

the same file in the same time.
Pseudocode of file read and dynamic adjustment
process is shown as Table 1.
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Inthis pseudocode, ph, = 0.8xL., xnum Replica,
P = 5t, L. 18 the max link number of each replica and st
represents the standard replica number 1n fsimage.

Dynamic selection mechanism of replica: Here, a copy
selection method based on the stage of history
information is proposed. This method will describe that
which data node should be assigned.

In general, an arbitrary undirected or bidirectional
graph G({V, E) 1s taken into consideration. V is node set
VinV, . Vi NV =0, V;is sub set of V and represents
data node in different region. E is link set between two
nodes and EcVxV. The link between any two nodes n
and n, is given a weight value of d(i, j), it is the delay
between them. In this mechanism, assign value X to each
node X, represent whether the replica of file X 1s stored
onnode H;,. If X, = 1, indicates that there are copies of the
file on the node n. V', represents node set which has
copies of file in region V.

Select node which needs to be added to file replica as
follows:

First, in order to determine adding file replica 1n
which domain, replica controller will divide records into
R=ruru..ur.. raccording to history information,
1, represents mumber of requests sent by client in region
V.

Second, replica contreller will selectregion V of node
that need to add replica:

3)

¥V =minfr, /V,)

After determine the region, replica controller need to
determine which node is in this selected region. Since
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Table 1: Pseudocode of file read and dynamic adjustment process

Algorithm 1:

Steps Description

1 Begin:

2 numReplica = minReplica;

3 Read requests of file fiom clients;

4 connectCounter++;/Namenode

5 If (counectCounter=upper threshold py..){

6 Send message “addInfo”;//From Namenode to System controller
7 Start the timer;

8 Ack;//From Controller to Namenode

9 Redefine the value of p,,..//Namenode

10 Assign freedatanode and add new file replica on this datanode;#controller
11 numReplicat+;}

12 Read data;

13 Send request logs to controller;

14 connectCounter--;

15 if (counectCounter<lower threshold p ;) {

16 Send message “addInfo”;//From Namenode to System controller
17 Start the timer;

18 Ack;//From Controller to Namenode

19 Redefine the value of p,,;//Namenode

20 Assign datanode and delete file replica on this datanode;//controller
21 numReplica--; }

22 End

replica controller has history information, it can record the
location of users who send request as V,, V, = V uV_u ...
Vi oo UV, Vi is node set of all the requests in V.
G (V. BE) 18 graph constituted by V, and link between
nodes. And distribution of all copies in HDFS file system
can be informed by reading the name of the node in the
BlockMap. By doing this, we can get Vi, Vi = Vy
UVg UV o UV o Vi Vi, Vi, 18 set of nodes which
own copies of file. Gg(Vy, E) is the coverage of Vi, In
SUITLITAry:

(“4)

G':Gﬂ.’(Gﬂ.mGR}.)

The selection process of deleting file replica 1s siumilar
to that of adding nodes. What need to do is change the
value of Vto maxiry/Vy).

EXPERIMENTS

We evaluated the proposed method of job
classification and dynamic replica management in a
private cluster with 1namenode and 20 data nodes. The
name nodes are run on the server with Ubuntu 10.0.4, two
Tntel Xeon E5520 CPUs, 2.26 GHz, 12 GB memory and 2TB
SATA disk. The data nodes are run on a personal
computer with Ubuntu 10.0.4, Intel Xeon E5420 CPU,
2.50 GHz, 8 GB memory and 300 GB SATA disk. The Java
version is 1.6.0 24, These nodes locate in three different
racks with Gigabit Ethernet network commecting.

Experiments of job type classification: The aim of the first
experiment is to evaluate our analysis on generalization of
workload characteristics. The mput data 1s 512 MB for
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each job. Since the default size of block is 64 MB, the size
of mput data leads eight map tasks for each job and we
manually set eight reduce tasks.

We have verified the similanty in the characteristic of
tasks in an individual benchmark. For simplicity, 5
representative applications among 19 benchmarks is
presented. Those 5 benchmarks are, respectively Word
Count, Grep, Sort, Terasort and Crypto. The selection 1s
based on therr relativeness with CR. Namely while the
latter three can represent I/O intensive, the first two are
relatively more CPU intensive. We separately ran each of
these 5 benchmarks in isolation to identify the computing
rate and the execution time of each (map/reduce) task. The
result shows that there 1s no significant variation for tasks
belonging to the same job in terms of both CR and
execution time. The variation of reduce tasks tends to be
greater than that of map tasks, which is because that
the input data of reduce tasks and outputted by map
tasks are probably not partitioned evenly. However,
the variation of execution time for map tasks and
reduce tasks in the same job still remams in a very
siumnilar level. Therefore, we can use the characteristic
of a task to represent the characteristic of the rest of
tasks.

According to the research of Hadoop benchmark
provided by Intel, some characteristics of benchmark
program workload are shown in Table 2.

From the comparison of Fig. 2 and Table 1, the
proposed method according to computing rate can be
used for job classification. The results are basically mn line
with Intel’s research.

Experiments of dynamic replica management: TeraSort is

a standard map/reduce sort, except for a custom
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Table 2: Characteristics of benchmark program worklead

Workload Resource characteristics
Word count CPU intensive, light workload of network and T/O
Sort I/O intensive, medium utilization of CPU
TreaSort CPU intensive in map and shuffle, mediun I/O
T/0O intensive in reduce, medium utilization of CPU
Nutch Indexing CPU intensive in map
I/O intensive in reduce, medium utilization of CPU
Page rank Basicalty CPU intensive

Bayesian classification
K-means clustering

Four jobs are basically IO intensive, CPU utilization of the first job is high
Computing of center node: CPU intensive
Clustering: /O intensive

Enbanced DFSIO I/O intensive
0.6 = s \Word count M
| sl \Word count R
05 e . i —
S o GrepM
o 04 = e -
8 s Grep R
j=2)
= |
5 %9 i SOIt M
g
O 0.2 e —_— Sort R
3 -
[P s oy -
0.1 e e - T _:: Terasort M
0.0 aflm—— e —— -
1 2 3 4 5 6 7 8
Task

Fig. 2: Characteristic analysis for 6 typical benchmarks

partitioner that ensures that all of the keys inreduce N are
after all of the keys mn reduce. This 1s a requirement of the
contest so that the output of the sort is totally ordered;
even if it is divided up by reduce. Experimental data is
generated by TeraGen. It generates mput data for the sort
that 1s byte for byte equivalent to the C version that was
released in March of 2008, including specific keys and
values. It divides the desired number of rows by the
desired number of tasks and assigns ranges of rows to
each map. The map jumps the random number generator
to the correct value for the first row and generates the
following rows.

TeraSort uses Hadoop's MapReduce mechanism to
achieve Sort. With the perfect combination of Hadoop
mechamsm, TeraSort has been a superior sort program. So
it can be used for testing Hadoop in cluster due to its high
test value. From experiment 1, TeraSort can be classified
as 1/O intensive job in reduce phase. The amount of
experimental data 15 10 GB. The amount of map task can be
adjusted by “mapredmin.split.size” and the amount of
reduce task can be adjusted by “mapred.reduce.tasks™. To
simulate reality in different time periods of different users
simultaneously access to the same data, the number of
map task and reduce task can be adjusted.

First, we maintain the amount of map task equals 16
and change the amount of reduce task. Moreover, make a

comparison of execution time between HDES default copy
strategy and the dynamic replica adjustment method. The
execution time of map and reduce under HDFS default
copy strategy and under the dynamic replica adjustment
method are shown in Fig. 3 and 4, respectively.

From the analysis of Fig. 3 and 4, we can draw such
conclude that: when the number of reduce task is less
than 15, the total time and reduce time are inversely
proportional to the amount of reduce task. When the
number of reduce task is greater than 15, total time and
reduce time remain substantially constant. The amount of
reduce task should be close to that of slave nodes and
slightly larger than that of nodes. There 13 no apparent
relationship between execution time of Map and the
amounts of reduce task.

Compared to HDFS original copy strategy, dynamic
replica policy has a significant performance improvement,
1n particular when reduce task number 1s greater than 15.
But there 1s no significant decline of execution time when
rapid growth of the number of users occurs. The most
suitable number of reduce task should be 0.95 or
1.75%(nmumber of datanode xmapred.tasktracker.
tasks.maximum).

If the mumber of tasks 15 0.95 times as many as that of
nodes all reduce tasks can be launched at the same time
after the end of the map task output transmission. If the
number of tasks 15 1.75 times as many as that of nodes,
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Fig. 3: Execution time of map and reduce under HDFS
default copy strategy
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Fig. 4: Execution time of map and reduce under the
dynamic replica adjustment method

then fast node will launch the second batch reduce tasks
after finishing of the first batch reduce tasks, itis
more favorable load balancing. As can be seen from
Fig. 3 and 4, the proposed method works well when there
are 15 (nearly 0.95 times), 25 and 30 (nearly 1.75 times),
program’s execution time has an apparently decline. In
other words, the performance of the Hadoop can be
significantly improved with reasonable adjustment of the
number of Tob Tasks.

Moreover, a dynamic parameter adjustment method
was achieved by script. In the mutial stage, set 5 reduce
tasks, set 20 reduce tasks from time t1, set 40 reduce tasks
from time t2, set 60 reduce tasks from time t3, generate a
random number between 10-60 from time t4. The contrast
of the proposed dynamic replica adjustment method and
HDFS default replica policy is shown in Fig. 4, last row.

CONCLUSION AND FUTURE WORK

The replica technique is widely used in the storage
systern, which can ensure system stability, enhance the
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rate of user access to files, as well as improve the security
of data and other characteristics. HDFS, which uses the
form of a copy of the file block to store larger files, is a
common distributed file system. It has a default replica
mechanism, yet is static. When many users request for the
same particular file at the same time, this file will be the
so-called hot file, as a result, system performance will
have a sudden drop. Users® QoS will have a
corresponding decline. Therefore, it is necessary to use a
dynamic replica scheduling mechamsm to guarantee
system performance and Users” QoS. In this paper, a job
type classification method and a dynamic replica manage
mechanism based on HDFS are proposed. I/O intensive
jobs will be picked up first and then uses the dynamic
replica manage mechamsm to determine whether to
increase or decrease the number of copies on appropriate
datanode. Experiment result shows that the proposed
method can improve HDES performance effectively.

There are still some limitations in this proposed
method. Its basic idea 1s sacrifice storage space to reduce
users’ access delay time. However, this mechanism will
not be activated until large amounts of file requests occur.
And the number of file replica will have a corresponding
decline when the number of user request decreases.
Furthermore, the prices of the storage resources are
relative lower 1n the real cloud environment. Therefore,
the proposed method is acceptable in real cloud
enviromment.
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