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Abstract: We analysed and solved possible singularity for an improved MFE multivariate public key
(Medium-field Multivariate Public Key Encryption) and studied the use of it in a block cipher. We used our new
MFE multivariate public key cryptosystem to design an algorithm of block cipher, in which a given plaintext
resulted in multi-ciphertext. The attack will be difficult because the ciphertext 1s changeable for a given plaintext.
The ability of the cipher to withstand algebraic attacks is enhanced. Experimental results and analysis show that

the scheme 1s viable and secure.
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INTRODUCTION

Modern public key cryptography began with the
public key cryptography based on the difficulty of the
solution of discrete logarithm created by Diffie and
Hellman (1976). From 1978 to 1982, Rivest, Shamir and
Adelman made RSA public key cryptographic algorithm
(Rivest et al, 1978, 1982) based on the difficulty of
factoring large numbers which has been widely used ever
since. Nevertheless, such public key cryptosystems
based on arithmetic have been potentially threatened
since 1999 because Peter Shor developed algorithms to
crack such arithmetic based ciphers in polynomial time for

a quantum computer (Shor, 1994). Public key
cryptography based on arithmetic will be unsafe in the era
of quantum computers. We need to study new

approaches to solve this problem. Multivariate public key
cryptosystem is a research direction (Ding and Schmidt,
2006), n which finite field multivariable (usually quadratic
or higher ordered) set of polynomials are used as a public
key.

The history of Multivariate public key cryptosystem
can be roughly traced back as early as 1986. Fell and Diffie
(1986) proposed an invertible linear mapping within a
simple triangle synthesis scheme (Fell and Diffie, 1986).
Although they believed the program safe, Cowrtois and
Goubin broke it with rank attack (Goubin and Courtois,
1976) . In 1988, Matsumoto and Tmai designed multivariate
quadratic polynomial scheme implemented via a Frobemus
mapping (Ding and Schmidt, 2006). Although this program
was later broken by Patarin (1995), tlhis work led
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multivariate cryptography in many studies (Ding and
Schrmidt, 2006). In 1995 Courtois proposed a Hidden Field
Equation method (HFE) (Cowtois, 2001), in 1997 and 1999,
proposed Ol and Vinegar (Patarin, 1997) and Unbalanced
O1l and Vinegar (Kiprus et al., 1999) which are suitable for
the digital signatwre. Nevertheless Cowrtois (2001) and
Faugere and Joux (2003) broke HFE respectively i 2001
and 2003 with the method of minimum rank (Goubin and
Courtois, 1976, Faugere and Joux, 2003). Wang et al.
(2006} proposed Mediun-Field Multivariate Public Key
Encryption Scheme (MFE for short) (Wang et al., 2006)
which belonged to a multivariate quadratic polynomaial
scheme. Wang et al. (2009) analysed and developed
Wang et al. (2006) programs to make the cryptosystem
safer. Our main contribution in this study is taking
Wang et al. (2009) scheme as a basis to improve and
design a block cipher. The security of a block cipher
depends on the quality of the encryption
decryption algorithms. The developments of Multivariate
Public Key Cryptosystem inspired us to apply it in block

and

cipher.
ANALYSIS OF THE MFE SCHEMES

Let us begin with Wang et al. (2006) works.

Let K be a finite field of characteristic 2, called the
base field, I. be K’s r-degree extension, called the
Medium-field. L is also of character 2 and has the feature
of ata=20, a-b = a+b.

Define an isomorphism between I, and K* as follows.

Take a base of L over K 0,, 0,,....0,, so that:
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maB +a,09,+-+a6)=(3.3, -.a)va.a, .3 cK

extend 1t to w1: LK™, % L">K'" InL, take 12 variables
X1, turn mte 22 matrices as follows:

M :[Xl XZJ M :£X5 Xﬁj M :[Xg ij (])
' X3 X4 | : X? XE | ’ Xll XIE
Wang et al. (2006) original MFE scheme: In

Wang et al. (2006) original MFE scheme.
InL, 15 variables Y;, turn into 2x2 matrices as follows.
Let:

Y, Y, Y, Y,
Z=MM, - Z,=MM, =
Yﬁ Y? Ym Yu (2)
Y, Y,
7, = MgMg _[ 12 13}
Y, Y

Define a mapping ¢, L%-=L", ¢, (X, X,..,
X, = (X, X, ..., X;;) where Y, is represented as a
quadratic function of X;:

Y =X XX XK +Q

Y, =X + XXy, + XXy +Q;

Y, =X+ XX, + XX+

Y, =XX, + XX, Y, =X X+ XX

Y, =X X, + X XY, =X, X, +X X,
Y= XX + XX Yy = XX + XX,
Yo = XX + XX Y = XX + XX,
Yo = XX + XX Yy = XX + XX
Y= KXo + XX ¥y = XX + XX,

3)

¢, is called central mapping, where (Q,, Q,, €K™, is

optional parameters, agreed by the two sides of the

encryption and decryption. Obviously, Eq. 3 includes 1.
Define an affine mapping:

$p U-X = AU+C,

where, A, is an invertible matrix over K'*, C,eK'.
Define an aftine mapping:

$s Y-V =AYHC,

where, A, is an invertible matrix over K'*, C.cK'.

The public key composed of 3 mappings.
b = ¢odod,;. 15, quadratic polynomials are defined as a
public key by the following equation:

18
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(hy (e, W)y, DUy, W) = PR ™ 0,

(.. u,)

Designing ideas: ¢, ¢,, ¢, are easy to be inverted
respectively, while the composed ¢ 1s difficult to be
inverted, so that the central mapping ¢, 1s "hidden" in ¢
by two affine mappings ¢, and ¢,

Given a set of plaintext (m,,..., m,,.) the encryption is
to substitute into the polynomials to obtain the ciphertext
(Crpns C15)

The decryption is described as follows.

For a group of ciphertexts, compute
b omed, o, e b, to obtain plaintext. The key issue
is to compute ¢, From the matrix definition of Eq. 2 ,;we
have:

det(Z,) = det(M, )det(M,) =Y, Y, + Y. Y,
det(Z,) = det(M, )det(M,) = Y, Y, + Y, Y,
det(Z.) = det(M, )det(M,) =Y., Y, + Y, Y,,

(h

When det (Z,) # 0 and det (Z,) # 0 and det (Z.), we
have:

dety) [ORZIEE oy | [T )ANZ,
! det(z,) 2 det(Z,) )
detM, ) = ’det(jég(cizet)(z3)

From Eq. 3 we have:

Y, =X, +det(M,) + Q,
Y, =X, +det(M,)+Q,
Y, =X, +det(M)+Q,

(6)

Tt follows from Eq. 6 that in the field I of character 2:

X, =Y, +det(M,)+Q,,
X, =Y, +det(M) +Q, ,
X, =Y, +det(M,) +Q,;

7

When X, # 0, from X, X, +3X,X, = det (M1), we have:

X, = X7 (det(M)+XX) (8)

From Eq. 3 and 1, we can obtain X..., X,
successively. Nevertheless, this system has weaknesses
and needs fixing (Wang et al., 2009).

Wang et al. (2009) improved scheme: Wang et al. (2009)
proposed an improved scheme as follows.

K, L.. m, 1, 7., ¢, ¢, are the same as those in last
subsection, redefine ¢,, replace quadratic polynomials
with four ordered ones.
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In ¢, put 15 variables Y}, turn into 2x2 matrices as
follows:

Y, Y,
V2, = KX, MM, =
Yﬁ YT

Y, Y

7, = X,X,MM, = [ ,
YIU lel (9)

Y, Y,
7, =X, XMIM, = [Y“ Y”J
14

15

Define amapping ¢, L'LYE, ¢, (X, X,... X, =
(Y,, Y,... Y;), where Y, is denoted by four ordered
functions of X;:

Y, = X + XXX + XX+ Q

Y, =X+ Xf (Xp Xy + XX )+ Q,

Y, =X, + ¥R X, + X,X)+Q,

Y = 20300 + X300 Y = Ko XK 00 + X))
Y, =X XXX +XX) Y, =X XX + XX

Yy = XK X + XK Y, = XX (XX +XpX)
T = XX &K+ XK )Y =X X XX + XX
Y, = XK G + XX ) Y = XK GG, + XXy
Y, = XXX + XX Y = XK KX + XX

(10}

Given a set of plaintext (m,, ..., my,;) the encryption is to
substitute into the polynomials to obtain the ciphertext
(¢, ..., ©15). The decryption i1s described as follows.

For a group of ciphertext, compute ¢, om0, o
7T, 'edp, " to obtain plaintext. The key issue is to compute
¢, From the matrix definition of (9), we have:

det(Z,) = X2 XIdet(M, )det{M,) = Y, Y, + Y,Y,,
det(Z,) = X1 det(M, )det(M,) = Y, Y, + Y, Y,

JUR

det(Z,) = X X2det(M,)det(M,) = Y, Y,, + Y., Y,,;

(11)

When det (Z,) # 0 and det (7,) and det (7.) = 0, we

have:
Xidet(M, )= \/%T

From line 1-3 of Eq. 10 we have:

Y, = X, + X/det(M,)+ Q
Y, =X, + Xidet(M,)+ Q,
Y, =X, + Xidet(M, )+ Q,

(12)

Tt follows from Eq. 1 that:

X, =Y, + Xidet(M,) + Q
X, =Y, + Xidet(M,) + Q,
X, =Y, + Xidet{M, )+ Q,

(13)

When X # 0 from X, X, +3X,X, = X2 det (M,), we have:

X, = X1 (2 det (M) + X,X,) (14)
Furthermore, when 3,# 0, X, #0, det (M,)= 0, from
Eq. 9 and 10, we have:

1

XXX +XX)

X X
X, X

J =M, = X;X;Mflzq =

7 g

By comparison of both sides of the above two
equations, we can obtain X,,...,. X, successively.

This cipher withstands a variety of attacks such as
hole attack, rank attack, Patarin relations attack for C¥*,

Grobner bases and Patarin's [P approach. It 1s relatively
safer.

Our Improvements on Wang et al (2009) scheme: In
Wang et al. (2009) Scheme, “X, X,, X,, M, are all
invertible” are too restrict. When X, = X,=X,= 0, we have
Y, = 0X,,..X,; are difficult to be restored. We modify the
central mapping ¢, as follows:

Y =3+ XX + X X0+ Q

Y. =X+ X12 (X + XX + Qg

Y, =X + XK, KK+ Q,

Y, = 300X + XX, Y =23 00X, + XX
Y =X XXX +XX)Y, =X XX +X,X)

Yy =X G0, + X)), Y, = XX (XX + X))
Y, =X XK G0 + XX )Y, = K X (0K + XX )
Yy = XXX + XX ), Y = X XK (K, + XX )
Y =X K03 + 3300, Y5 = X Ko (KX + XeXyp)
Y =X Y, =X +X;

Y, =X +X+X Y, =vxel

(15)

The computing order 1s to compute Y,;, ..,Y, before
Y.,.., Y5 Before we use the formulae of Y, ... Y s in Eq. 15,
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we adjust X, X,, X; one by one to assure X, # 0, X, # 0,
X, # 0, det (M) # 0. With the pseudo values of X, X, X,
we can avoid the singularity in ¢,

At the same time, we modify the affine mapping, 1.e.
the K-linear isomorphism 1, L"-K" to fit the
modification.

The encryption is quite the same as that of
Wang et al (2009) scheme, except for the extra
computation of Y5, Y7 Yia Yoo

The decryption 1s described as follows.

Compute from Eq. 15 the values of X, X,, X, just the
same way as mentioned m Wang et al. (2009) program.
Then in the field of character 2, we restore X, X,, X, from
the pseudo to the original with a triangular solution as
follows:

X = \54 Y. X, = de +Y,.X, =</Y16 +Y 5+Y,

Analysis of the scheme: Tn Eq. 15, we fully solve the
problem of original singularity. This makes the algorithm
more robust. Meanwhile, xcL. is a random value which
15 used as a pertwrbing item. This small change in
Vi, 1<k<19r results in big change in Y ;A plaintext can
create a lot of ciphertexts. This Camouflage technique
makes the system safer. The breaking is difficult because
the ciphertext 1s changeable for a given plaintext. We will
show numeric experimental results later.

PROPOSED BLOCK CIPHER

Now let us see how we use our new scheme set up a
block cipher. We concentrate on the algorithem over L, so
that the ms are omitted for convenience.

Medium-field with its addition and multiplication: Let
L=K*K=Z,= {0, 1} so that L is just the extended set of
ASCTI. L has a character 2.

The addition of a, bel, agb 1s bitwise exclusive or of
a, b also denoted by atb for convenience (Fig. 1).

In the field L, we have at+a = 0 and a-b = a+b.

However the multiplication of a, bel,, acb or ab is
more complicated. Obviously, the non-zero element
subset of T. is a 21 = 225 ordered cyclic group,
denoted by L* i1, 2, . OxFF:. Take an 8 ordered
ammonic primitive polynomial over K, we have

p(x) =x"tx+x"+x+1. Let £ be aroot of p{x). Then£ generate
L.ie,L=(f). Allelements in L can be obtained from the
linear shift feedback register system £° = E4E+£+] it is
shown in Fig. 2.

On one hand, any of element in I. can be denoted
by a power of £ One the other hand it follows from
=il that (8= 1,5 8, 8.8, 8,8 & is a
maximal linear independent group 1.e., a base.

VA, bel, a, b, can be denote by certain linear
combination of 1, £, &%, &% &% F5 £° £7 Let:

0,1,..,7

L Lo,

a=afal+.+af, ae{0, 1}, 1=
b =bf+bf+ . +bE bef0, 1},1=0,1,...7

It follows from the linear shift feedback register
system that:

af = a fH(a ta,) el Ha ta)E a L H(a, ta,)
53+aaE4+(a4+av)55+asﬁﬁ+aﬁﬁ7

Furthermore, we have the product ab as shown
Fig. 3.

More details of operations of Z," can be found in
Cohen et al. (2005) Gilbert and Nicholson (2004) and
Courtois (2001). We concentrate on the mappings ¢, ¢,
¢, and their inverses as follows.

Encryption

¢ Input: U

*  Output: V
+  Algorithm

Step 1: Compose ¢, §,, P, to obtain b, so that b = ¢ °,
&b,°, ¢°; as shown in Fig. 4

The mmplement can be the compiling of the function
phi (parameters):

Addtion c=a+b:
c=axor b
where xor is the bitwise exciusive or of a and b

Fig. 1: Addition of medium-field L

—>

Fig. 2: Linear shift feedback register system £* = E4+£HE+1
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phi{parameters){
phi_1(parameters);
phi_2(parameters);
phi_3(parameters)
return parameters;

B

Then publish the program as the public key, in which
phi(parameters) accept U and return V like a box. Inside
the box, the computation can be described as shown from
step 2-6.

Step 2: Format U, rewrite U to meet the block size 12,
append *.”s at the end if neccessary

Step 3: Determin Q,, Q,, Q4

Step 4: Compute ¢,: X = A UHC,

Step 5: Compute ¢,, in ¢,, we have Y from Eq. 15

Step 6: Compute ¢, V = A Y+C,

Decryption

¢ Input: V

*  OQutput: U

¢ Algorithm

Step 1: Compose ¢,”' to obtain ¢~ 'so that ¢~ = ¢,
°d, ' ¢, asshowninFig. 5

The implement can be the compiling of the function:

phi_inv(parameters):
phi_inv(parameters){
phi 3 inv(parameters);
phi_2_inv(parameters);
phi_1_inv(parameters)
retum paratmeters;

h

Multiplication ¢ = ab;

. if bg=1
then c-a
else ¢-0

. fori=1to7
a -af

if b=1 then ¢~ cta
where c+a=c xor a

Fig. 3: Multiplication of medium-field L

The function phi invi{parameters) accept V and
return U like a box. Inside the box, the computation can be
described as shown from Step 2 to Step 6:

Step 2: Determine Q,, Q,, Q,

Step 3: Compute ¢, Y = A7 (V+C,), n ¢, ', from
Gaussian Elimination,we have A,

Step 4: Compute ¢, in ¢, ', we have From (15), we
have X

Step 5: Compute ¢, U= A, 7" (X+C)), from Gaussian

Elimination, we have A, ™
Step 6: Restore U= “It’s a text”

EXPERIMENTAL RESULTS AND ANALYSIS
Encryption
*  Input: U=“[t's atext”
*  Output: V=7538 4A B4 C6 4A 72 AD pB 72
CD 4F F8 C8 04 D6 80)"

Algorithm

Step 1: Compose d)la d)Za d)ja tO Obtain d), 50 t}lat
¢ = §,° b,° b, as shown in Fig. 4

The implement can be the compiling of the function phi():
phi(parameters){

phi_1{parameters);

phi_2(parameters);

phi_3(parameters)

retuin parameters;

:

Then publish the program as the public key, in which
phi(parameters) accept U and return V like a box. Inside
the box, the computation can be described as shown from
step 2-6:

Step 2: Format U, rewrite U by U= “It’s a text”. To meet
the block size 12, in hexadecimal form it 1s

denoted by:

U=(49 74 27 73 20 61 20 61 20 74 65 78 74 2E)'

=" %,

LR R R

A

\

M

S/

Fig. 4: Composition of the mappings ¢, §,, d;
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¢_l= ¢s_1° _ID¢1_1
CH( PR B

Fig. 5: Composition of the invert mappings ¢, ", ¢, ", ¢,

Step 3: Determine Q, = 5C, =250Q,=74 Step 6: Compute ¢ V = A, Y+C,, in ¢,, we have:
p 1 2 3 P P 3 3 3 3
Step 4: Compute ¢ X = AU+HC,, in ¢,, we have:
A13
Ay A A
A=Ay T A,
ABI A43
Where: Where:
30 70 BO FO 31 71 Bl Fl 32 72 B2 F2 Ay =
87 61 62 81 8 60 63 8 83 65 66 80 41 61 81 Al €I El 02 22 42 62 82 A2 C2 EZ 03 23 43 63 &3
A“: E7 4B E4 43 02 AE 04 A8 EZ 4E ElI 4D 07 AB 05 A% E3 4F E0
05 C0 6F 2A B3 DO BC 5F E8 El 35 BC JE 03 3§ 5B A% B4 08 1A ID IF 8D FF 1% 7A OF 91 BC 32 EF
F0 4B 4E F5 Fl 4A 4F F4 E0 5B 5E E5 B4 43 BF AF 04 1D 10 09 AF BZ AF E7 15 0C 11 03 AA B3 AF
55 oB 29 78 E0O B9 24 1C 21 B4 DO 24 A =
54 DD 9E 52 79 58 20 19 7F AB AS 34 43 34 33 33 97 T4 8B
Ao = 52 DD AB 42 50 IE 7A 52 88 82 D Al 3 05 D9 88 08 72 40 6F 74 TJE B4 DI 6B 25 55 CF 32 83 FA
Tl eo2 FC 90 15 F2 39 1C ES 05 BD D8 61 81l CE 8 0C FI 5B 80 CA 1B 54 65 9B DI 6E FF 24 09 OF 35
26 4C 37 3D 10 7A 1B 41 0C 66 1D 77 34 50 ZA 40 0D 67 IC
2A 05 7E EF 5F EC 83 B8E FA ID DA 83 FE 0OF 5F 1D CF 82 3§ DI 65 ED 33 08 6F 5B 7E B3 2A E8 AD
CD 54 E2 C9 0C oE 1D CD 5B 33 50 8A by =
11 03 IF ER 67 28 32 98 EF AE 96 132 DD 79 94 C9 20 8D AC 6A 34 OC 58 97 A6 97 82 82 DB 25 A5
A21= 4D 4 8B 79 BS AS 73 60 9C CE 8 3E 16 9E AD OB 7D 7B 11
4D 90 64 77 D2 5C 6B FC TE TA A4 62 9 11 69 A5 40 65 Ef IF 25 35 72 29 OF BD DC 56 83 EO CO
8 A3 B2 95 85 A? B3 9 AF 8 99 BE 76 8B 44 94 41 331 ET A3 52 a4 BD 3F Fz C9 4F IF &9 40 69
E4 57 F5 50 80 38 E5 47 6E 89 5B 3B 2D 1E DI BC 41 55 94
Cl=(48 65 6C 65 68 48 65 6C 6C 65 6EY .
==
BD 33 B4 El 8 BD El 1D B4 25 25 72 38 T2 58 58 65 SB TA
X=AU+C :(70 90 D2 lD OF EE 7D AO 02 3D OB 60)T B8 B6 92 SC 2B 25 EY EF 0 SE YA 74 C3 CD EE E6 51 SF 7B
1 1 Dd F3 ZF EB 2F 01 F2 3C EA& ©C5 01 C5 C5 EB 13 F8 F» F8 F8
Do 55 98 7A 56 El D9 29 SB FE 82 40 1F 88 35 47 EE EF 1%
Step 5: Compute d)z ln d)z we hﬂve: 70 F1 A2 6D S5E AE 93 F5 64 70 El 14 0D OE 5F 96 37 27 F7
71 90 OF EE 02 3D And:
M, = LM, = M, =
D2 1D D A0 0B 60

C,=(00 34 36 31 32 32 43 59 4C 31
4A 47 37 30 53300 34 36 3 31)°

det(M,) = 24, det(M,) = 24, det(M,) = 44
V=AY+C3I=(75 38 4A 55 B4 C6 4A 72 AD

4 02 AD 45 31 8B 9B A6 72 CD 4F F& C8 04 D6 80)"
:[FO BO} 2:[11? DSJ’ 3:[71? EEJ
Decryption
det(Z,) = 4F, det(Z,) = 15, det(Z,) = 72 *  Input
Y=(13 8E 11 34 02 FO BO AD 45 1F D9 31 g8 Y =(75 38 4A 55 B4 C6 4A 72 AD 9B A6
7F EE 4A 1D El E8) 72 CD 4F F8 C8 04 D6 80Y
where, Y, = E8, is a random value in finite field .. *  OQutput
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U="It's atext”
Algorithm

Step 1: Compose ¢, ¢, ¢, to obtain ¢, so
that p~ = ¢~ ;o™ op™, as shown in Fig. 5

The implement can be the compiling of the function phi_inv():
phi_inv(parameters){
phi_3_inv(parameters);
phi_2_inv(parameters);
phi_1_inv(parameters)
retum paratmeters;

The function phi invi{parameters) accept V and
return U like a box. Inside the box, the computation can be
described as shown from step 2-6.

Step 2: Determine Q, = 5C, Q,=25,Q,=74
Step 3: Compute ¢ '3 Y = A~'5(V+C,), in ¢4, from
Gaussian Elimination, we have:

Where:

A4 D9 3C &2 99 87 48 AB 45 C4 ID BF 8A CD 72 00 04 29 4E
A3 67 DA 41 22 41 A7 FD 60 C3 DF AF 13 Ed4 9E 00 50 51 8B
8D D3 3B &2 BE 9% 72 BE 4F B8 5B 60 01 3C C7 47 F5 El 74

67 Bl CF AR 4C C¢ 75 C3 EB 6A 18 CA C5 C8 D5 FE AD 34 2B
8D 5B 4C 82 8D 74 DB 2C 62 20 3E A0 4D AE 01 S5A 52 F1 24
75 7D 9 11 BB Y7 F4 D3 95 Ef DE 14 ¢2 03 C& 0OC E5 4D CV
FC Da Eé 47 D4 21 68 7&¢ 04 CY CD EY D4 8% 3C B2 54 E7 CO
41 49 Al C7 27 73 E6 BA EA 67 4E EF 0§ 77 AB A8 07 96 ERI

12 7B D¢ BA FD 3D CB Bs E2 44 IC 80 CE BD 12 A3 D7 DI F3
6F 54 00 84 EA EB 87 3D 4E DA 31 D5 8 FB DI 3A 52 6% ZE
6E A& 54 ID ES9 F7 IF 9% BC FD F8 56 BE 7F B CB 7E B0 BO
27 Do 45 79 6C BO 01 A2 FF FF IC Al 06 26 CD 57 79 7TA 44

FO B4 75 34 43 78 0A 23 8A 60 FI 07 O0E BB F6 3A 78 FE DB
B9 25 DB 7C 5B 985 81 94 F3 B 4C 51 ES 93 FC C9 74 C5 SF
DF E5 6C C2 DB 59 D2 F4 22 3D Fl 3F 04 60 EO 4A 34 C3F &F
LA 93 60 AD 24 IE 54 AR DE OF AF CB DA 03 E3 6E EE 91 OB
EC E3 30 7F OE DE S5 48 BO 01 83 9C 7JF 6A Al 00 35 085 CO

And:

C,= (00
44

34 36 31 32
47 37 30 353

32 43
0 34

59 4C 31
36 31)7

Y=A"(V+C,)=(13 8E 11 34 02 FO BO
AD 45 1F D9 31 §B 7F EE
4A 1D El E8)

Step 4: Compute ¢, in ¢, we have:

34 02 AD 45 31 8B
le[FO BOJ’Zzz[lF D9J’Z3=[7F EEJ
det(Z,) = 4F, det(7,) =135, det(Z;)=72

[71 90] [OF EE] [02 3DJ
M, = J M, = M, =

D2 1D D AD 0B 60

det(M,) = 24, det(M,) = 24, det(M,) = 44

From Eq. 15, we have:

X=(71 80 D2 1D OF EE 7D A0 02 3D 0B 60)

Step 5: Compute ¢~': U = A™L{3HC), in ¢, from
Gaussian Elimination, we have:

Ay

A{l: A‘21

A‘El

Where:

E2 B8 AF 67 D7 92 58 70 1IE El EB ED
4 _|B3 CA 87 E9 DD ES S8 30 8F 42 EB 04
"7 BS 20 EE 02 A6 58 95 26 36 EB 56
81 73 C8 Fl 73 5D S8 47 E7 6E EB Do
2E EF 24 CE 30 5F A8 AC C4 FF E2 DE
A /DA AB 15 01 05 Dé A8 D2 11 23 E2 02
“71A2 BE IB 3A 26 BA A8 9A (8 FC E2 (7
Bl 3B BC B6 0B FB A8 09 E6 CC E2 77
4E 6C E3 D3 0B E0 FO 3E 6E D7 09 43
A761 13 31 CC 6A 6B F0 B5 A2 8D 09 0A
18D 9A 36 92 25 D3 F0O E2 3B B8 09 CB
E0O 29 48 9 82 D0 F0O E3 8A EC 09 84

C,=(45 65 6C 65 6H 48 65 6C 6C 65 6E)

U=A"(X+C,)=(48 74 27 73 20 61 20 74
65 78 74 2E)

Step 6: Restore U= It's atext” from U= It's a text”. by
removing.” from the end of the block

Analysis: Experimental results show that our scheme 1s
viable. Given a 12-byte plaintext block U, we obtaina
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Y, V(¥
E, 75 38 4A 55 B4 C6 4A T2 AD 9B A6 T2 CD 4F F8 C8 04 D6 80
C3 C4 08 SF 2D FC 16 F8 7A 45 4F AA 53 81 52 99 E3 CD D9
9E E0O EC 3A BT 76 82 37 FD A3 55 61 EF AD EE B3 F5 AC AA 8C
26 DF & AD 4E ED 95 8 82 01 BD 57 SD OB 51 78 8 E0 63 D2
AF A6 BC S5E 4C C0 7E 75 F7 3A 62 3D 65 TA 30 S5A 2D 32 64 26
cs 9E CD 3F GE 6B AC 72 03 CC B9 (0D A0 CA BB OE 13 34 13 30
72 El 6F DA 58 D9 0A CD C8 BF F5 C4 FE 6D 87 25 8F D7 52 94
44 53 C9 65 93 AA 46 04 9 18 €9 EF 62 SE C6 8 1D F7 D4 AD
BC 4B 3E 3D 43 80 59 07 38 13 D3 135 DI AB 9 AS (Cl 33 E7 8]
6D E2 C1 DI 42 03 B9 E8 97 9B 39 00 CD 06 3C B4 01 5A T BC
78 78 55 86 D2 E0O D4 24 10 21 3B 6E AF BA 9C 7C DC 1D A2 38
50 44 BD DD AC 2F DI FD 0D OF 7E 9% C0 6B FO0O 33 BB 48 |IF DE
66 F&§ 1B 62 67 5C 9D 34 53 A8 42 BB 5C 88 Bl 97 29 68 99 E7
IF E§ 58 EB 1E 8 6E 36 7E 4 B7 CE 67 57 DB AF 58 09 BB 4C
Etc. and 0 on

Fig. 6: Table of different ciphertexts from the same plaintext

19-byte ciphertext block V and vice versa. If a plaintext is
bigger than 12 bytes, we can divide it mnto blocks of
12-byte. The remainder may be a smaller block. In this
case, we append some “.”’s at the end to make 1t a 12-byte
one. Last continual “.”s are only used as a “length
matcher”. When we restore a plaintext from a cipher one,
we can remove them from the end according to the context
with ease.

The Y, = ¥x€L in ¢ is arandom value. It 1s used as a
perturbing item. This small change makes big change after
¢;. Tt makes ¢ a multi-valued cipher. A determined
plaintext may result in undetermined ciphertexts. This
makes the adversary difficult to crack the cipher. More
examples are shown as follows.

Given A, A, C, C,, Qp, Q, Q. U just the same as
before, we have the results in Fig. 6.

We may use this perturbing item as a camouflage
technicue to make the crack more difficult. The scheme is
secure.

CONCLUSION

To design a block cipher algorithm based on
MFE multivariate public key cryptosystem, we choose
Wang et al. (2009) scheme and solve a problem m the
central mapping. In addition to solving the original
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problem, we extend its new feature of camouflage. This
new feature makes the system safer. Experimental results
and analysis show that our scheme 13 viable and secure
and deserves further study in network applications.
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