http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 13 (4): 643-651, 2014
ISSN 1812-5638 / DOL 10.3923/1t).2014.643.651
© 2014 Asian Network for Scientific Information

Effective XMI. Keyword Search Using Dual Indexing Technique

S. Selvaganesan, Su-Cheng Haw and Lay-Ki Soon
Faculty of Computing and Informatics, Multimedia University, 63100, Cyberjaya, Malaysia

Abstract: Achieving the effectiveness in relation to the relevance of query result 15 the most crucial part of
XML keyword search. Developing an XMI, Keyword search approach which addresses the user search
intention, keyword ambiguity problems and query result grading problem is still challenging. In this study, a
new keyword search approach, named XDMA (XML keyword search dual ndexing and mutual summation
algorithm), for XMI. databases based on dual indexing, is proposed to resolve these problems. This approach
mncludes design of mutual score, entropy-based similarity measure so as to find the relevant results for a given
XML keyword query and, grading score to grade the query results. The algorithm for the new approach 1s
presented and finally, space and time complexity of the algorithm have been analyzed to show the effectiveness
of the algorithm for XMT., keyword search. The proposed algorithm XDMA can retrieve the relevant results for

XML keyword query more effectively.

Key words: XML keyword search, XML databases, indexing, mutual score, similarity score

INTRODUCTION

In XML keyword search, the accurate
identification of user search intention and grading of the
result in the presence of keyword ambiguities have been
challenging problems. The keyword search approach
proposed by Bao et al. (2009, 2010a) made use of the
numerical facts or data of the XML database to address
these problems. However, the approach suffers from the
following limitations and problems. For the purpose of
expediting the query processing, two mdices are
constructed. Of these indices, keyword mnverted list 1s the
index constructed at first. For each keyword inverted list,
an index like Bttree is built on its top increasing the space
requirement. Moreover, keyword inverted list does not
provide information about leaf tag containing data values.
Subsequently, the frequency table which 15 the other
index, 18 constructed. The frequency stored in this table
is the number of XML T-typed nodes having keyword in
their sub trees. Also, the frequency table does not
consider data nodes of XML databases. Hence the query
processing has been made more complex. In both indices,
frequency of text value contained in a leaf node 13 not
considered. This approach does not identify the
query keyword in the frequency table as tag name of
nodes or text value of data node.

In order to address the problems mentioned earlier in
this section, a novel dual indexing approach, XDMA,
which builds dual indices, namely, tag_info table for XML
structural nodes and data mfo table for data nodes in
XML databases, is proposed. Hence, the query

processing will be made simplified. In this approach, a
new keyword searching techmque involving two-level
matching between two indices has been considered. By
utilizing the dependence of two indices and concept of
mutual sum, the mutual score 1s defined to determine
precise T-typed node. Also, a similanty fimetion 1s
proposed using which a formula for similarity score is
obtained to determine the precise data.

In recent times, there have been much research
activities in XML keyword search. Here, the related
researches for XML keyword search conducted in the tree
data model are concisely reviewed. In addition, the work
done on the result grading is reviewed.

In the approach (Schmidt et al., 2001) utilizing the
XML tree structure, an operator is exclusively proposed
to enable XMI. databases to be queried and moreover,
determining the Lowest Common Ancestor (LCA) of
nodes 13 the basis of thus work. In their approach the
result type of the query is dependent on the database
instance and not specific. Li et al. (2004) developed a
framework enabling users to query XML data with partial
knowledge of the document schema and also devised a
stack-based Meanmngful LCA (MLCA) searching
algorithm. Then, XKSearch System (Xu and
Papakonstantinou, 2005) proposes the concept of smallest
LCA (SLCA) and finthermore contributes three algorithms
to determine SLCAs in an effective marmer. Hristidis et al.
(2006) introduce keyword proximity queries in their work
and also provide algorithms to determine mimmum
comnecting trees. Sun et al. (2007) investigate keyword
query processing based on SLCA and subsequently

Corresponding Author: 5. Selvaganesan, Faculty of Computing and Informatics, Multimedia University,

63100, Cyberjaya, Malaysia

Inform. Techrnol. ., 13 (4): 643-651, 2014

propose an efficient multiway-SLCA approach. Also, this
approach deals with keyword queries using both AND
and OR semantics. All these approaches, based on LCA
and variants of LCA, do not solve the search mtention
problems and the ranking problems.

Other works 1n the tree data model mclude XSeek,
presented by Liu and Chen (2007) which creates return
nodes by examimning the match patterns of query keyword
and the structure of XML data. Nonetheless, 3 Seek has
not addressed both keyword ambiguity and ranking
problems. MaxMatch, Liu and Chen (2008) enhances the
appropriateness of matches and also result quality. On the
other hand, Li et al. (2009a) proposed an adaptive XML
keyword search approach, XBridge, to process keyword
search by constructing a set of effective structured
queries. Also, in their work, they have considered XML
schema as tree patterns whereby the reference
relationships of XML data have not been considered.
XKMis (Li et al, 2009b) decreases the false positives
considerably and also generates query results that are
notably more meamngful. T.i and Wang (2009) presented
an interactive XML keyword search system, XQSuggest,
allowing for query suggestion and enabling users to
express thewr queries more clearly. They proposed an
algorithm for finding the results of the transformed query.
Moreover, two optimization techmques were used in the
algorithm to speed up query processing.

Bao et al. (2009) introduced an approach making use
of the numerical facts of XML database to address the
challenges, namely, identification of user search mtention,
result retrieval and relevance based result ranking as a
single problem for XML keyword search. They presented
an XM, keyword search engine prototype called XReal
which is implemented to achieve effective identification of
user search intention and relevance based result ranking.
Bao et al. (2010b) presented object-level semantics to
retrieve relevant results for queries i XMI, data.
Bao et al. (201 0a) proposed several updates to (Bao et al.,
2009) as an extension. Inthe work (Bao et al., 2010a), they
added the popularity of the results having comparable
relevance scores.

Here, the result ranking schemes adopted in the
existing XML keyword search techniques are described
briefly. XRank {Guo et al, 2003) computed LCAs to
process XML keyword proximity queries and it has a
ranking mechamsm which returns document fragments as
answers. XRANK is designed to generalize and apply the
PageRank algorithm of Google to XML element level to
rank all LCA results. However, an empirical study has not
been carmried out to demonstrate the effectiveness of
XRank’s ranking function. XSHarch (Cohen et al., 2003)
gives results which are fragments that bear semantic
relationship. But XSearch requires that users have a basic

644

knowledge about XML schema information. This, in turn,
limits the query flexibility. EASE, proposed by Li et al.
(2008), considers both the TF-IDF based ranking and
structural compactness based ranking, for indexing and
querying heterogeneous data. Termehchy and Winslett
(2011) proposed a ranking method, coherency ranking, for
XML keyword queries that is based on statistical
measures of their cohesiveness.

Motivated by the research on XML keyword search
by Bao et al. (2010a), a new keyword search approach for
XML, databases has been proposed, addressing the
problems mentioned earlier in this section. The main
objective of this research is to design and develop an
efficient approach for keyword search that is considered
to be an effective information discovery from XML data.
The proposed approach primarily focuses on solving all
the keyword ambiguity problems (Bao et al, 2010a) in
order to retrieve the most relevant information from the
XML, database. In addition, the grading of retrieved
information 1s essentially needed to find the most suitable
results for the query keyword given for searchung. In
order to handle these challenges, a grading measure is
devised that will sort out the retrieved results to identify
the better one.

METHODOLOGY

The keyword search approach for XML databases,
namely, XDMA is presented based on dual indexing.
The proposed approach identifies the type of query
keywords using dual indexing technique and selects
possible T-typed nodes. Furthermore, it includes design
of mutual score, entropy-based similarity measure so as to
find query results for a given XML keyword query and,
grading score to grade the query results. The block
diagram representing the stages of the dual indexing
based XML keyword search approach, XDMA, is shown
mFig. 1.

The main contributions in the proposed approach are
as follows:

An indexing approach that builds two indices
namely, tag info table and data info table for
structural node and data node in XML database
respectively, to simplify the query processing and
distinguish the keyword as tag or data while
searching a query keyword

A keyword searching technique to select all possible
T-typed nodes for a given query using the two-level
matching between two mdices

By utilizing the logarithmic and probability functions,
a termimology that defines the Mutual Score between
selected tags and query keywords to find the exact
T-typed node

Inform. Techrnol. ., 13 (4): 643-651, 2014

Dual indexing (Building two indices)

y

Selection of T-typed nodes (using searching technique)

v

Selection of desired T-typed node
(Mutual score for every prefix path extracted)

v

Retrieving the exact data (Similarity score)

v

Grading of query results

Fig. 1: Block diagram representing the stages of the dual
indexing based XML keyword search approach

An expression to count the similarity measure
between the leaf nodes of XML data and the query,
so as to retrieve the exact data through the selected
T-typed node

Grading for the query results that have comparable
relevance score, based on the similarity measure of
the query results

The proposed keyword search approach for XML
databases, XDMA and its various stages are described in
the following section.

XDMA: PROPOSED APPROACH

This section presents the proposed approach,
XDMA, for searching query keywords in XML databases
based on dual indexing. The indexing scheme mcludes a
new keyword searching technique, design of mutual score
measure, similarity function and similarity score measure
to determine relevant path for a XML keyword query and
grading score to rank the query results.

Dual indexing: In the earlier works (Bao et al., 2009,
2010a), with a frequency table, it 1s uncertain whether
an input query keyword is a tag or data (text) value,
causing query processing more complicated. To
overcome this, the proposed approach XDMA could be
used. The proposed approach constructs two indices,
namely, tag mfo table for tags and data info table for

645

data values. Moreover, these two indices are different
from the indices mn (Bao et al., 2009, 2010a).

For each tag in XML database, the tag info table
stores respective tag information, namely, tag name t,,
frequency of occurrences of tag in T-typed nodes and
their subtrees f, and prefix path of the corresponding
T-typed node, path. Also, for each data value in XML
database, the data_info table stores the information of
respective data value, namely, data value d, name of leaf
tag contaming data value t,, 1dentification id of data value
d contained in leaf tag t,, and frequency of occurrences of
data node contained in the corresponding leaf tag f. It 15
noted that both data info table and tag info table
mutually share information with reference to tag name.
The proposed approach deals separately with each tag of
structural nodes and data (text) values of XML database
so as to simplify the processing of query.

Identification of query keywords: For XMI, query search,
each keyword of the query 1s first searched 1n the tag_info
table. If it finds match(es) in the tag info table, it is
identified as tag keyword (k) and subsequently,
information about keyword matching tag(s), i.e., t,, f, and
path will be retrieved from the tag_info table. Otherwise,
query keyword is searched in the data info table. If it
matches with data value(s), it 1s identified as data keyword
(ky). For keyword matching data value(s), leaf tag t,, will be
obtamed from the data info table and subsequently,
information about t, i.e., t,, f and path will be retrieved
from the tag_info table.

Finding T-typed node: For a given XML keyword query,
T-typed nodes and the corresponding prefix paths will be
determined based on the dual indexing technique
explained earlier in this section. ITn XMI. database, the
keyword matching tag (structural node) and the keyword
matching data (text) value may occur once or many times.
The Fig. 2 shows an example data tree with tag names and
data values for dblp XMIL database. The keyword
ambiguities (Bao ef al., 2010a) in XML keyword queries
can be explained with the following examples. As shown
in Fig. 2, a keyword “September” appears as a data value
of month in the path dblp, phdthesis and title in the path
dblp, proceedings. A keyword “year” as shown in Fig. 2
appears as the XMI, tag name of phdthesis and
proceedings. Also in dblp XML database, a keyword
“journal” appear as both an XML tag name in the paths
dblp, proceedings and dblp, article and a data value of
title 1n the path dblp, mproceedings. As explamned earlier
in this sectiony, the two separate indices for structural
nodes (tags) and data (text) values of XML databases are
built in the approach. Hence, XML keyword searching
occurs only in these two mdices.

Inform. Techrnol. ., 13 (4): 643-651, 2014

“ohd/McKen
7ie3g”

author schoo

l month

“Edwin McKenzie" #1938
“An AlgebraicLanguage for
Queryand Update of
Temporal Databases”

“September” venturiniz

Semantics of Parallelism,

Advanced School, Rome,
September 24 - October1, 1986,

Proceedings”

“University of North
A Carolina, Computer
Science Department”

IJ

“Mathematical Models for the

taly,

dblp

Key

“conf/ac/

1986parallel”

proceedings

year

book) volume l isbn ur
series
tte ; l
hre . ,
— “1987"
Y28] .
»’aheman + 43.54(-18419-8" "d?.-'cmf.-'
al Modelsfor . ac/parallel198
publisher -
the Semantics 6.htm "
of Parallelism
_ . ‘Springer”
“db/journals/
nes.hitml"=Lec
ture Notesin
Computer
Science”

Fig. 2: An example XML data tree showing tag names and data values. Data values are given within quotes

If a query keyword finds more number of matches in
XML database, query processing will be complicated. For
that reason, mathematical formulae need to be devised to
filter out the optimum T-typed node for a given keyword
query. For a keyword query, the approach retrieves tag(s)
matching with keyword and tag(s) containing data values
matching with keyword from the two indices, namely,
tag_info table and data_info table, respectively. In the
approach, the two mdices are dependent and share
information.

Mutual summation i1s defined for a pair of random
variables X and Y as follows:

Msum(X,Y)= > log,(c) (1

MSUIH(X,Y) = 2 10g (pEx)R(YN (p(x7 Y)) (2)

where ¢ = p(x, v) 1s the jomt probability distribution
function of X and Y and a = p(x) p(y) are the marginal
probability distributton fimctions of X and Y,
respectively.

By applymg change of base rule in (2):

log,[p(x, ¥)]
log, [p(x)p(y)]

Msum(X,Y)= 3 (3)

To make the mutual sum definition simple, a base of
10 to the log function could be used:

646

log,,[p(x. ¥)]
log ,[p(x)pP(y)]

4

Msum(X,Y) =

By incorporating the dependence of two indices and
concept of mutual sum, the mutual score between selected
tags and query keywords 1s defined to find the exact
T-typed node as follows:

Macore = log,, f(tag,data) T (5)
logg [3 fitag) > f(daxa)]
kg, kégrD
Mscore = logp £t t;) » rfiD (6)

2, fit) > f(td)J

log,,
kégnT, kégnD

where, k stands for a keyword in the given query q, T,
represents tags in the tag info table and D represents
data values in the data info table. In Eq. 6, f(t,) is the
frequency of tags matching with keyword in each prefix
path and f{t;) s the frequency of tags (leaf nodes)
contaiming keyword matching data value. f(t,.t) 1s the
frequency based on combmation of tag and data
keywords inthe given query. rf is a reduction factor which
can take a value between 0 and 1 and d(T) is the depth of
T-typed nodes in XML documents. rf “” in Eq. 6 is used
to reduce mutual score of the deeply nested node types
in XML databases.

Inform. Techrnol. ., 13 (4): 643-651, 2014

As explained earlier in this section, for each keyword
matching tag in the tag info table, the approach will
retrieve tag names of structural nodes, frequency of the
occurrence of each structural node i either T-typed
nodes or their subtrees and, prefix path of the
corresponding T-typed nodes from the tag info table.
The approach will add together frequency of each tag,
matching with keyword in T-typed nodes and their
subtrees. If the given query keyword matches with data
value in the data_info table, the approach will retrieve the
tag name of the leaf node of keyword matching data. For
each retrieved tag, information such as tag name,
frequency of the occurrence of each structural node in
either T-typed nodes or their subtrees and prefix path will
be retrieved from the tag_info table. Subsequently, the
approach will add together frequency of tags (leaf nodes)
of each keyword matching data. Tn such a way, both
indices are dependent and share the information.

An mput query contains one or more keywords
matching with tag or data values. Accordingly, combmed
frequency f(tag, data) will be computed from the two
indices. For every prefix path extracted, mutual score
between retrieved tags will be calculated using Eq. 6. As
mentioned earlier, both indices are in such a way that one
index is dependent on other. Obviously, mutual score
measures the information that the two indices share; also
1t measures how much knowing the tag_info table reduces
uncertainty about the data_info table. The node with the
highest mutual score is obviously selected as the desired
T-typed node. However, data value matching with
keyword and frequency of the data value contained in the
leaf tag and the prefix path are not exclusively taken into
consideration in the computation of mutual score. So, it is
not certain that query keywords are in the prefix path
with highest mutual score. Hence, mutual score is
mcorporated into similarity score as described in the
following section.

Finding optimum T-typed node and relevant path: Fora
given query, XDMA will look for the similar data (text)
values in the data_info table and then, the relevant tag of
leaf nodes of these data (text) values will be found.
Subsequently, the approach will collate the tag with the
highest frequency with paths of selected T-typed nodes
using the tag info table. Moreover, the approach
proposes a similarity score formula to estimate the
similarity between nodes and keyword successively
for each prefix path extracted with respect to query
keyword.

For a random variable X’
{x:1=1... n}, asunilarity function S(x) 1s proposed and it
1s defined as follows:

with n outcomes

647

S(x)=ﬁ1[p(x,)+logb(p(x,)] (7

where, p(x;) is the probability mass function of
outcome x,.

By assuming the above similarity function, a new
equation 1s defined to measure similarity among the leaf
nodes of XML data and the query so as to determine the
precise data through the selected node of T-type as

follows:

S(x) = 3 [+ log,, (1] ®)

Similarity Score = Mscore+S(x) (9)
where, in Eq. 8, n denotes the number of keywords in a
query q and data node 1s denoted by a, whereas T,
represents the type of data node’s parent node, f*
represents the number of g, with respect to T,. In Eq. 9,
Mscore is the mutual score of a pair of keyword matching
tag and tag containing keyword matching data value. The
proposed similarity score measure evaluates the accuracy
of occurrence of query keywords path-wise m order to
find relevant path for a query.

Grading: Grading of query results will be mapped to
address the results containing comparable score. The
grading of query is presented as the measwe of the
highest similarity score for each prefix path extracted with
respect to query keyword.

Grading (G) =Max {similarity score}
G = Max {Mscore + S(x)} (10
where, in Eq. 10, Mscore and S(x) contain the same
notations as in Eq. 6 and &, respectively.
Therefore, Grading can be represented by:

log,, f(t,.t;)

logm[Z fit,) Z fit,)
keqn

keqrD

<of %0 £ SR +logi ()]

i=1

G = Max

(1)

where, grading for the query results having comparable
relevance scores 1s determined using Eq. 11. Path with
maximum similarity score is graded as the most relevant
and other paths will be graded successively based on
similarity scores.

ALGORITHMS AND COMPLEXITY ANALYSIS

Data processing and index construction: The approach
parses the input XMI, document and extracts the

Inform. Techrnol. ., 13 (4): 643-651, 2014

information, namely, tag name of each structural node t_,
prefix path for each structural node, path and data value
of each data node d. Also, frequency of occurrences of
structural node (path-wise) in T-typed nodes and their
subtrees f, and frequency of occurrences of a data value
contained in a leaf node f, are computed. After
preprocessing the XML document, two indices are built
m the approach to expedite the keyword query
processing. The first index built is called tag_info table,
which stores tag name (structural node name) ft,,
frequency of occurrences of structural node (path-wise)
in T-typed nodes and their subtrees f, and prefix path of
T-typed node, path. The worst case space complexity is
O(N_). where N_ is the number of structural nodes in
XML database. Number of structural nodes in XML
database is considerably high.

The second index built is called data info table,
which stores data value of data node d, leaf tag (node)
containing data value t,, id of data value d contained in
leaf tag t,, and frequency of occurrences of data value
contained in the corresponding leaf node f; In addition,
a path_info table for data node is built to store path of d
contained 1n t, based on id. Its worst case the space
complexity is O(DxN,,) where D is the number of data
nodes and N, is the mumber of leaf nodes in XML
database. As mentioned earlier in the previous section,
the data info table stores d, t, and f,. Hence, the size of
the data_info table is reasonably higher than the tag_info
table.

In addition, a path_info table for data node is built to
store path of d contained in t,based on id.

Query processing: The main algorithm for the
proposed approach XDMA is shown in Algorithim 1. It
consists of three procedures, namely, get IndexInfo,
get MutualScore and get SimilarityScore. Initially, the
get IndexInfo gets the information about keyword
matching tags and tag containing keyword matching data
values for each query keyword. For each extracted prefix
path, the get MutualScore procedure compute the mutual
score between keyword matching tags and leaf tags
containing keyword matching data value. The procedure
get SimilarityScore calculates the similarity among the
leaf nodes of XML data and the query to grade the
relevant nodes.

Algorithm 1: Keyword search for desired node type
Input: Query (@ containing n keywords

1 get_IndexInfolguery keywords)

2 get MutualScore(keyword matc k)

3 get SimilarityScore(dma keywords)

The algorithm for finding index information,
get IndexInfo s presented in Algorithm 2. To identify
whether each keyword 15 a tag or a data value, two-level

matching between both indices is used. By calling
function tagExist, the procedure get IndexInfo checks
whether a keyword exists in the tag_info table and also,
by calling Function dataFExist, it checks whether a
keyword 1s 1n the data_info table (line 1-5). Then for each
tag keyword (k,), the procedure obtains the information of
keyword matching tags from the tag_info table by calling
function getFromTag_info and stores them 1n both taglist
and slist (line 6-10). Also for each data keyword (k,), it
selects the name of leaf tag containing keyword matching
data values from the data_info table and obtains leaf tag
information from the tag info table by calling function
getFromData_info and, stores them in both datalist and
slist (line 11-16).

Algorithm 2: Get IndexInfo(query)
input: Query { containing 1 keywords
ffIdentify each keyword as tag or data
1 lor each keyword k; € Query do

2 il tagFaist(k,) = true then

3 { k iz a tag keyword}
4 else il dataFxist(;) = trie then
5 {k, is a data keyword}

ffStore information of each tag in a taglist))
6 for each tag keyword € Query do

7 rs = getFromTag_info (¢,)

8 while (rs.next)

9 result =1, + f +path

10 taglist(resudt), slist(reswif)

ffStore information of each data in a datalist()
11 for each data keyword € Query do

12 rs=getFromData_infoa,)

13 while (rs.next)

14 result=1,+f +pah

15 datalist (reswdfy; slist (resuif)

16 retumn slist();

It can be proved that the get IndexInfo algorithm
presented in Algorithm 2 precisely gets the information of
keyword matching tags and leaf tags containing keyword
matching data values for a given query as described in the
previous section. Let the query be Q contaimng n
keywords. The time complexity of the get IndexInfo
algorithm 18 O(ntnxk, +n,<k). In the time complexity of
get IndexInfo, n denotes the number of query keywords,
n, is the number of k, and k., is the number of keyword
matching tags m the tag_info table. Here, n,1s the mumber
of k; and k, ;18 the number of leaf tags (in the tag_info
table) containing keyword matching data value (in the
data_info table). For the worst case only, the time
complexity of the get IndexInfo algorithm is computed.

The algorithm for computing the mutual score,
get MutualScore, 1s shown in Algorithm 3. The procedure
get MutualScore computes the mutual mformation
between query keyword matching tags and leaf tags
containing query keyword matching data values. First, it
computes the sum of frequencies of keyword matching
tags f(t,) by calling function getTagFrequency (line 1-2).
Second, it computes the sum of frequencies of leaf tag

Inform. Techrnol. ., 13 (4): 643-651, 2014

containing keyword matching data values f(t,) by calling
function getDataFrequency (line 3-4). Thern, it calls
function getCombinedFrequency to compute the
combined frequency of the tags t and t, by executing the
designed structured query based on the combination of
tag and data keywords in input keyword query (line 5-11).
Using the Eq. 6, it calculates the mutual score between t,
and t, for every prefix path extracted (line 12-13). Finally it
adds path and path-wise mutual score value to mlist
(line 14).

Algorithm 3: Get MutualScore(query, keyword match)

/iCompute sum of frequencies of keyword matching tags

1 for each keyword matching tag € Query do

2 ity =getTagFrequency (query)

/f Compute sum of frequencies of leaf tag containing keyword matching data
values

3 Tor each kevword matching data value © Query do

4 fity) =getDataFrequency(query)

//Compute combined frequency

5 Based on combination of tag and data in query, assign a value to cvalue
6 lor each resudt € siist() do

7 Split path from siist(); tagpath(path)

8 Based on cvalue, Construct querpString ; queries(querpString)
9 lor (each queryString ¢ queries()) do

10 d = getCombinedFrequency (queryString)

11 St +=d

12 msum = logn(fit, 1) Aog(f ())

13 mscore = Msum *paerD
14 mlist(path, mscore)
15 retum miist();

Tt can be proved that the get MutualScore algorithm
shown in Algorithm 3 computes the mutual score between
the retrieved tags and query key words to find desired
T-typed node. As explained in the previous section, the
time complexity of the algorithm is O(n+ngtk, >q.) where
k,, 18 the number of keyword matching tags and leaf tags
containing keyword matching data values and ¢ is the
number of queries to compute the combined frequency
f(t,,ty) based on the combination of tag and data in the
query. In the worst case, for each k, frequency of
keyword matching tags are added together to get f(t,). For
each k,, frequency of leaf tag containing keyword
matching data values are added together to get f(t,). For
each prefix path extracted, queries are executed to
compute f(t,t,) based on keyword combination in query.
Tt is noted that this is the worst case complexity and the
get MutualScore algorithm can finish earlier.

The algorithm for computing the sumilarity score,
get SimilarityScore, 1s shown in Algorithm 4. The
procedure get SimilarityScore looks for the similar data
(text) values for every k; from the data info table by
calling getFromData info and stores d, t,, f; and 1d of
these data (text) values in dsimilar (line 1-5). For each
sinilar data value, f; of each keyword matching data value
d stored in dsimilar] 1s compared with each other and leaf

649

tag with biggest frequency is stored in stag in the form of
< Yy, £y 1d> (line 6-8). For each leaf tag and its mformation
stored 1n stag, the function callReferences 1s called to
obtain f; and path, through which leaf tag occurs, from
path_info (line 9-12). This path 13 compared with each
path stored in mlist. If it matches with path stored in
mlist, the corresponding minfo 1s extracted from mlist
(line 13-15). In line 16, frequency of occurrences of
keyword matching data
node f; is obtained. Using Eq. 9, Similarity Score is
computed (line 17-18). Grading of query results is
determined based on Eq. 10 (line 19).

value contained in leaf

Algorithm 4: Get SimiliarityScore{data kevword)
{/{Find relevant tag for each data keyword
1 Tor each datakeyword oy, © Query do

2 rs = getFromData_info(d,;)

3 while (rs.next)

4 result =d +f; + 1, +id

5 dsimilar(restif)

6 Tor each resuit € dsimilar() do
7 Get tag with biggest frequency; ftag=#, +.f; + id
8 stag(ftag)

/Compare each tag with selected Path
9 for each ltag stag do

10 s = callReferences(id)

11 while (rs.next)

12 Get frequency f; Get path of ltag from path_info

13 Tor each data « miist do

14 il path in miist = path from path_info then

15 Getmscore from miist

16 J=k

17 S =F+log,f

18 SimilarityScore = mscore +S(n);

19 Grading = Max(Similarity.Score)
20 retum SimilarityScore

The get SimilarityScore algorithm shown in
Algorithm 4 calculates the similarity score among the
leaf nodes of XMI. data and the query. The similarity
score 1s subsequently used to determine the
precise data via the selected T-type mnode as
explained in the previous section. Consequently, the
time complexity of the get SimilarityScore algorithm is
O(nyde iy Ny Prser)- 101 the time complexity of
get SiumilarityScore, n, 1s the mumber of k, and k,, 1s the
number of similar data (text) values in the data_info table
for every k. Here, d,1s the number of siumilar data (text)
values for all k, and n,, is the number of tags selected
from similar data (text) values for all k, In the time
complexity of get_SimilarityScore, n,,, is the number of
selected tag paths and p,.... 18 the number of the extracted
path along with the computed mutual score. Also, the time
complexity of the get SimilarityScore algorithm 1s
calculated for the worst case only.

In the proposed approach, XDMA, it is estimated that
the worst case space complexity of tag_mfo table 1s O(N_)
and the worst case space complexity of data_mnfo table 1s

Inform. Techrnol. ., 13 (4): 643-651, 2014

O(D=N,,). In XReal (Bao et al, 2010a), the frequency table
has a worst-case space complexity of O(KxN). In this, K
represents the number of keywords that are distinct and
N represents the number of node types. Tt is shown that
by using XDMA, m comparison with XReal, space
requirement can be considerably reduced.

It is computed that, in the worst case, the time
complexities of get IndexInfo, get MutualScore and
get Similarity Score of XDMA are O (ntn»k 1,7k,
O (ndngk*qe and O (ke *di e, Mg Pror)
respectively. With regard to time complexity analysis, the
comparison of algorithms could not be dealt in depth.
This is because the time complexity of algorithims of XReal
(Bao et al.,, 2010a) has not been given. However, the time
complexity of XDMA can be shown to finish in less time.
The proposed approach XDMA against the previous
studies (Xu and Papakonstantinou, 2005; Liu and Cher,
2007, Bao et al., 2009, 2010a) in XML keyword search will
be experimentally compared to demonstrate the
effectiveness of XDMA.

CONCLUSION AND FUTURE WORKS

A dual indexing and mutual summation based
keyword search algorithm, namely, XDMA for XML
databases have been designed and developed. XDMA
constructs two indices, namely, tag info table and
data_info table for each tag of structural node and data
value of data nodes m XML databases respectively.
Unlike earlier works in XML keyword search, the
approach XDMA identifies whether each query keyword
15 a tag or a data value and moreover, deals with each
(structural node) tag and data (text) value in XML
database separately using the two indices in order to
simplify query processing and resolve key word
ambiguity problems. A searching technique of selecting
all possible T-typed nodes for a given query
applying the matching between both indices is
developed By incorporating the dependence of two
indices and mutual summation, a formula 15 defined to
compute mutual score of node type to be a search for and
a similarity grading scheme to captivate the graded
structure of XML databases. The future work includes
experimentation on different XML datasets with various
XML keyword search algorithms and evaluation of the
results to prove the effectiveness of the proposed
approach.

REFERENCES

Bao, 7., I. Lu, T'W. Ling and B. Chen, 201 0a. Towards an
effective XMI. keyword search. TEEE Trans.
Knowledge Data Engine., 22: 1077-1092.

650

Bao, 7., T. Lu, T'W. Ling, L.. Xuand H. Wu, 2010b. An
object-level XML keyword
Proceedings of the 15th International Conference on

effective search.
Database Systems for Advanced Applications, April
1-4, 2010, Tsukuba, Japan, pp: 93-109.

Bao, Z., T.W. Ling, B. Chen and J. Lu, 2009. Effective
XML keyword search with relevance oriented
ranking. Proceedings of the 25th International
Conference on Data Engineering, March 29-April 2,
2009, Shanghai, China, pp: 517-528.

Cohen, S., J. Mamou, Y. Kanza and Y. Sagiv, 2003.
XSHarch: A semantic search engine for XML.
Proceedings of the 29th International Conference on
Very Large Data Bases, September 9-12, 2003, Berlin,
Germany, pp: 45-36.

Guo, L., F. Shao, C. Botev and J. Shanmugasundaram,
2003. XRANK: Ranked keyword search over XMI,
documents. Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data,
Tune 9-12, 2003, San Diego, CA., USA., pp: 16-27.

Hristidis, V., N. Koudas, Y. Papakonstantinou and
D. Srivastava, 2006. Keyword proximity search in
XML trees. 1EEE Trans. Knowledge Data Engine.,
18: 525-539.

Li, G., B.C. Qoi, I. Feng, J. Wang and L.. Zhou, 2008.
EASE: An effective 3-in-1 keyword search method for
unstructured, semi-structured and structured data.
Proceedings of the International Conference on
Management of Data, Tune 9-12, 2008, Vancouver,
Canada, pp: 903-914.

Ly, I and I. Wang, 2009. XQSuggest: An interactive XML
keyword search system. Proceedings of the 20th
International Conference on Database and Expert
Systems Applications, August 31-September 4, 2009,
Linz, Austria, pp: 340-347.

Li, T, C. Ly, R. Zhouand B. Ning, 2009. Processing XMI.
keyword search by constructing effective structured
queries. Proceedings of the Jomnt International
Conferences on Advances m Data and Web
Management, April 2-4, 2009, Suzhou, China,
pp: 88-99.

L1, I, J. Wang and M. Huang, 2009b. XKMis: Effective
and efficient keyword search m XML databases.
Proceedings of the Database
Engineering and Applications Symposiwm,
September 16-18, 2009, Calabria, Italy, pp: 121-130.

Ly Y., C. Yu and H.V. Jagadish, 2004. Schema-free
KQuery. Proceedings of the 13th International
Conference on Very Large Data Bases, August
31-September 3, 2004, Toronto, Canada, pp: 72-83.

International

Inform. Techrnol. ., 13 (4): 643-651, 2014

Liw, Z. and Y. Chen, 2007. Tdentifying meaningful return
information for XML keyword search. Proceedings of
the ACM SIGMOD International Conference on
Management of Data, June 12-14, 2007, Beijing,
China, pp: 329-340.

Liw 7. and Y. Cher, 2008. Reasoning and identifying
relevant matches for XML keyword search. Proc.
VLDB Endowment, 1: 921-932.

Schmidt, A., M. L. Kersten and M. Windhouwer, 2001 .
Querying XML documents made easy: Nearest
concept queries. Proceedings of the International
Council for Open and Distance Education, March 14,
2001, Hong Kong, pp: 321-329.

651

Sun, C., C.Y. Chan and A K. Goenka, 2007. Multiway
SLCA-based keyword search in XMIL data.
Proceedings of the 16th International Conference on
World Wide Web, May 8-12, 2007, ACM New York,
USA., pp: 1043-1052.

Temehchy, A. and M. Winslett, 2011. Using structural
mformation in XML keyword search effectively.
ACM Trans. Database Syst., Vol. 36.

Xu, Y. and Y. Papakonstantinou, 2005. Efficient keyword
search for smallest LCAs in XML databases.
Proceedings of the ACM SIGMOD International
Conference on Management of Data, Tune 14-16,
2005, Baltimore, MD., USA., pp: 537-538.

	ITJ.pdf
	Page 1

