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Abstract: For implementing wavelet transform in analog hardware systems with very low power consumption
and small size, a particle swarm optimization method is employed in the approximating of wavelet functions.
First, utilizing the least-squares error criterion, a general mathematical model for approximating wavelet
functions is established. Then the technique of L., approximation based on Particle Swarm Optimization (PSO)
is presented, which is more attractive. These technicues are compared by means of a worked example, involving

some wavelet approximation. The L, approximation approach based on P3O is shown to exhibit superior

performance.
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INTRODUCTION

The Wavelet Transform (WT) is a merited technique
for analysis of non-stationary signals like cardiac signals.
Being a multiscale analysis techmique, it offers the
possibility of selective noise filtermg and reliable
parameter estimation. Often WT systems employ the
discrete wavelet transform, implemented 1n a digital signal
processor. However, in ultra low-power applications such
as biomedical implantable devices, it is not suitable to
implement the WT by means of digital circuitry due to the
high power consumption associated with the required
A/MD converter. For power consumption considerations it
therefore is preferable to perform WT in the analog
domain.

Low-power analog realization of the wavelet
transform with the techmque of analog circuits
(Karel et al., 2005, 2012, Gurrola-Navarro et ai., 2010,
Haddad et al., 2005) has been introduced. The quality of
such 1mplementations depends on the accuracy of the
approximations.
approaches reported for wavelet approximations include
mainly pade approximation method (Haddad et al., 2005)
and I., approximation method (Karel et al, 2005;
Haddad et «l, 2005). The Laplace transforms of
wavelet functions were approximated by
functions in the Laplace domain with Pade approximation

corresponding  wavelet Previous

rational

(Baker, 1975; Bultheel and Barel, 1986). However, there are
some problems which limit the practical applicability of
Pade approximation. One important issue concerns
stability. The stabile transfer function of wavelet filter
does not automatically result from the Pade approximation
technique. If the selection of the point s, 1s improper, the
result of approximmation will be unstable. Some poles of
the Morlet wavelet transfer function obtained by thus
method m Haddad et al. (2005) lie in the right half of the
s-plane, which indicates the transfer function is not
stable. Another important drawback is: the quality of the
approximation of the wavelet 13 not measured directly in
the time domain but in the Laplace domain, which results
in a larger error of approximation. The performance of
implementing WT in analog domain depends largely on
the accuracy of the approximations involved in this
approach. Karel et al. (2005), an alternative approach,
based on L, approximation that works directly in the
time domain, was introduced. A drawback of this
approach that the optimization of
objective function usually ends in local, non-global
optimization when starting point 1s not exactly
selected. To find a good starting point for T,
approximation, a method involving high-order FIR

18 numerical

a
approximation and balance-and-truncate model reduction

is used. However, it is a computational complex method
and limited to approximate such low order wavelet
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functions as the Gaussian and Daubechies. This method
has also some convergence problems when one tries to
approximate a function with many oscillations (high order
wavelet), such as the Morlet wavelet. So far, there is a lack
of the effective method to approximate various low or high
order wavelet functions, which i1s an obstacle for
umplementing WT in analog domain.

In this study, we focus on the wavelet approximation
for mnplementation in analog circuits. The mmovative
aspect of the present work 1s threefold. First, by extending
ploneering work (Karel et @f., 2005; Hongmin et af., 2008;
Lietal, 2010, Gurrola-Navarro ef al., 2010), we propose a
generalized optimization mathematical model of
approximating various wavelet functions, which is based
on the 1, approximation. Second, the Particle Swarm
Optimization (PSO) (Kennedy and Eberhart, 1995)
algorithm is introduced to solve the optimization problem.
The PSO algorithm is one of the most powerful methods
for solving global optimization problems and is effective,
efficient and fairly robust to mitial conditions. This
method overcomes these shortcomings of approximation
technique in Haddad et al. (2005) and Karel et af. (2005).
Using PSO algorithm, we have successfully approximated
various wavelet functions, especially the Morlet wavelet
(a high order wavelet).

WAVELET TRANSFORM

The wavelet transform provides a time-frequency
representation of the signal (Mallat, 1999; Walnut, 2004).
It was developed to overcome the short comimng of the
Short Time Fourier Transform (STFT), which can also be
used to analyze non-stationary signals. While STFT gives
a constant resolution at all frequencies, the wavelet
transform uses multi-resolution techmque by which
different frequencies analyzed with different
resolutions.

The definition of the Continuous Wavelet Transform
(CWT) for a real valued time signal x (t) is given as
(Mallat, 1999):

arc

WT, (a.1) = %_f:x(t)qf(%) dt (1

where, a 1s scale parameter (ac (0, R)) and T 1s translation
parameter (T<R). The base function ¥ (t) ('F (1)eL(R)") is
called the mother wavelet. The mother wavelet used to
generate all the basis functions i1s designed based on
some desired characteristics associated with that
function. The translation parameter T relates to the
location of the wavelet function as it is shifted through
the signal. Thus, it corresponds to the time information in
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the Wavelet Transform. The scale parameter ¢ is defined
as  |I/frequency| corresponds frequency
information.  Scaling  either dilates (expands) or
compresses a signal. Large scales (low frequencies) dilate
the signal and provide detailed information hidden in the
signal, while small scales (high frequencies) compress the
signal and provide global information about the signal.
The above equation shows that the wavelet transform
performs the convolution operation of the signal and the
basis function.

The mother wavelet must satisfy two restriction
conditions. One is:

and to

jiq,l(t) dt=0 (2)

This ensures the mother wavelet has no DC
component and 1s fast in decaying rate. The other 1s the
admissibility condition, i.e,:

rmdw (3)

= w]

where, W (w) is the Fourier transform of the mother
wavelet 1 (t). The second restriction in Eq. 3 is stronger
than the first one. The reason for requiring this condition
1s to guarantee that the reconstruction of the original time
signal from the continuous wavelet transform is possible.
Wavelet transforms usually cannot be implemented
exactly in analog electromc hardware. If a time signal x (t)
1s passed through a linear system, then x (t) 13 conwolved
with the impulse response h (t) of that linear system,
producing the output signal:

j:x(t)h(t—t)dt

On the other hand, from the definition of WT given by
Eq. 1, the analog computation of WT, (a, t) (scale a) can
be achieved through the implementation of a linear filter
of which the impulse response satisfies:

R

7 w(-t/a) (4

hit)=

For obvious physical reasons only the hardware
implementation of (strictly) causal stable filters is feasible.
In other words, a linear filter will have a (strictly) proper
rational transfer function H (s) that has all its poles
the complex left half plane. Because the h (t) will then
be zero for negative t, any mother wavelet ¥ (1)
which does not have tlus property must be
time-shifted to facilitate an accurate approximation of its
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(correspondingly time-shifted) wavelet transform WT,
(a, t). This may result in a truncation error for a wavelet
that does not have compact support, such as the
Gaussian wavelet. Note that an approximation error will
also be due to the fact that a wavelet does not usually
possess arational Laplace transform.

L, APPROXTMATION OF WAVELET FUNCTIONS
BASED ON PSO ALGORITHM

Generalized optimization model of |, approximation of
wavelet functions: The theory of 1, approximation
(Karel et af., 2005) provides an alternative framework for
studying the problem of wavelet approximation which
offers a number of advantages. On the conceptual level it
1s quite appropriate to use the L, norm to measure the
quality of an approximation h (t) of the function
Wit) (pit) = wit, —t)) . Indeed, the very definition of the
wavelet transform itself mvolves the L, inmer product
between the signal x (t) and the mother wavelet P (t). Tt is
also desirable that the approximation h () of (v
behaves equally well for all time instances t since h (1) is
used as a convolution kernel with any arbitrary shift. This
property holds naturally for T, approximation but it is not
supported by the Pade approximation approach. Another
advantage of L, approximation is that it allows for a
description in the time domain as well as in the Laplace
domain, so that both frameworks can be exploited to
develop further insight. According to Parseval’s equality
the squared L, norm of the difference between (1) and
h (t) can be expressed as:

H&M*hmW:fuﬁﬂrhﬂﬁdzéj:ﬁﬁerﬁﬂF&v

)

Mmimization of || y(t)—h(t)|f 1 therefore equivalent
to minimization of the L., norm of the difference between
the Laplace transforms (1) and H (s) over the imagmary
axis s = iw.

Particularly in the case of low order approxmmation,
the L, approximation problem can be approached in a
simple and straightforward way in the time domain. As is
well known from linear systems theory any strictly causal
linear filter of finite order n can be represented in the time
domain by the impulse response fumction h (t) (its Laplace
transform H (s)). For the generic situation of stable
systems with distinct poles, the impulse response
functon h (t) 18 a linear combination of damped
exponentials and exponentially damped harmonics. For
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low order systems, this makes it possible to propose an
explicitly parameterized class of mmpulse response
functions among which to a good
approximation of w(t). For mstance, if a Nth order
approximation 1s attempted, this parameterized class of
functions h (t) may typically have the following form:

search for

k m
hity="ae"+%" [c]eﬂlJt sin(f, 1) +g; e cos (f, 2] (6)
in1 =1

{(k+2m =N,t =0)

where, the parameters b, and d must be strictly negative
for reasons of stability. When the expression of wavelet
functions includes sine term A cos({t), such as the
Morlet Wavelet, the h (t) may be given by:

hit)= [i a, e" + i[cj e sin (£, t) +g, e* cos(f, 1)]] )

cos(C2t, —t)) (k+2m=N,t =0)

Note that wavelets typically are oscillatory functions
so that a good fit requires the contribution of sufficiently
many damped harmonics, which further explains the
structure of this class. Given the explicit form of the
wavelet y(t) and the parameterized class of functions h
(t), the L, norm of the difference ||y (t)—h(t)|? can now be
minimized in a straightforward way using standard
numerical optimization techniques and software. The
negativity constraints on b, and d which enforce stability
are not difficult to handle.

One common property of a wavelet function (1)
that wasn’t discussed so far is that its integral is usually
equal to zero:

(|, windt=0)

If this property 1s not shared by the approximation h (t),
this will cause an inwanted bias mn the approximation of
the wavelet transform. So we have that:

["hepdt=0 (8)

This yields the explicit nonlinear condition, if such an
extra nonlinear condition 1s not conveniently handled by
the optimization software, then it can easily be used to
eliminate one of the variables from the problem. Based on
the analysis above, generalized optimization
mathematical model of approximating various wavelet
functions is then given by:

a
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M- .
min E(ab,c,df,g)= D [hnAT)— wnAT)f
n=0
s.t. b« O,dJ <0,1=,2--k j=12--m,
[“hiydt=o,
k m
hity=>"ae" + > [ce™ sin(ft)+g e cos(ft)] or
=1 it
e ©
h(t)=[> ae" + > [ce” sin(ft)+g.e™ cos(fit)]]
i=1 j=1
cos(C(t, —t)) (k+2m=N,t =0),
a={(a, a, aﬁ"'ak)T> b=(b b, bz"'bk)T>
e=(c, ¢ &gy
d=(d, d; d, "'dm)Ta f=E £ £ ”'fm)T=
g=(& & 8 &)
This is a typical nonlinear and constrained

optimization question. Tt is difficult to obtain the global
optimal selution using common numerical optimization
techniques, which in general provide no global optimality
guarantee and give different local optima with different
starting points.

Particle swarm optimization (PSO) algorithm: The
PSO algorithm is one of the most powerful methods for
solving global optimization problems and is effective,
efficient and fairly robust to mitial conditions. In order to
optimize parameters of h (t), we use the Particle Swarm
Optimization (PSO) algorithm to solve the optimization
question in (9), search the whole parameters space
effectively and globally.

Particle swarm optimization algorithms (Kennedy and
Eberhart, 1995) are evolutionary computation. The particle
swarm optimizer algorithms find optimal regions of
complex search space through the interaction of
individuals in a population of particles. The rapid speed
of calculation and simple realization are its excellent
performance. Precision is not good. PSO 1s a population-
based, bio-inspired optimization method. Tt was originally
mspired m the way crowds of individuals move towards
predefined objectives, but it is better viewed using a
social metaphor. PSO 15 similar to the other evolutionary
algorithms in that the system is initialized with a
population of random solutions. However, each potential
solution is also assigned a randomized velocity and the
potential solutions, call particles, corresponding to
individuals. Each particle in PSO flies in the D-dimensional
problem space with a velocity which 1s dynamically
adjusted according to the flying experiences of its own
and 1ts colleagues. The location of the ith particle is
represented as X = (X, ..., Xig ... » Xip), Where X, € [1,, 1],
d € [1, D], 1, uyare the lower and upper bounds for the dth
dimension, respectively. The best previous position
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(which giving the best fitness value) of the ith particle is

recorded and represented as P; = (p;,..., P ---» Pip)> Which
is also called pbest. The index of the best particle
among all the particles in the population is

represented by the symbol g. The location Pg is also
called gbest The velocity for the ith particle 1s
represented as V, = (v, ..., Vig, ..., Vip), 18 clamped to a
maximum velocity V.. = (Vo - Ve - Vi) Which 1s
specified by the user. The particle swarm optimization
concept consists of, at each time step, changing the
velocity and location of each particle toward its pbest and

ghbest locations according to the Eq. 10 and 11,
respectively:
Vig = W+ Vi + ¢ -1and () (py — Xy (10)
+¢;-rand() - (pg, — xid)
Xig = Xitvig (11)

where, w 1s inertia weight, ¢, and ¢, are acceleration
constants and rand() 15 a random function m the range
[0, 1]. For Eq. 10, the first part represents the inertia of
pervious velocity; the second part is the “cognition” part,
which represents the private thinking by itself; the third
part 1s the “social” part, which represents the cooperation
among the particles. If the sum of accelerations would
cause the velocity vy on that dimension to exceed
Vo them v, 1s limited to v .

APPROXIMATION OF THE COMMON WAVELET
FUNCTIONS

Approximation of gaussian and morlet wavelet: To
demonstrate the proposed method, we first discuss how
to approximate Marr wavelet base. Marr wavelet is a
favorite choice in many signal processing applications.
The Marr wavelet ¥ (t) 1s the second derivative of a
(Gaussian probability density function:

wit)=(1-t*)e 2,0 <t<w® (12)

Select the time-shuft t, = 4, get time-reversed and time-
shifted Marr wavelet ¥ (4-t). Let h (t) be the impulse
response of Marr wavelet filter to be designed and the
order of wavelet filter N be 9, then the parameterized class
of functions h (t) given by:

h(ty=a,e™ +ae™ sin(a;t)+a,e™ cosfat)+ae™ sina,t)
+a,,e* cos(a,t)+a, e sin{a,t)+a,,e" cos(a,t)
{t=0)

a3t

apgt

+a,e™ sin(a,t)+a,.e"" cos(a,t)

(13)
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Note that choice of order of wavelet filter involves an
important trade-off between optimal solution and
complexity of filter circuits. If N 1s chosen too small, the h
(t) may be far away from the versatile wavelet. On the
other hand, if N is chosen too large, a more complex
analog IC is demanded to realize wavelet transform. We
define the distance between h (t) and ¥ (t-4):

se(a)=[h() -yt -4 = [lhO-we-nra 14

where, a = (a,, a, a,, ..., a;)' is an undetermined parameter
vector. To sample D (a), the fitness function 1s given:

090

minE (a) = min 3 [, (-nAT) - (~(nAT -4 )]

n=0

(15)

The optimization model of approximating Marr
wavelet function 1s described as:

min E(a)
s.t. a,<0a,<0a,<0,a,<0a,<0
a4 iyt auX,  —a,3, + a3,
2 2 2 2
a, a," +a, a; +a, (16)
-a;a,+a.a, -4 +a,3
+ 11 ;3 3'122 14+ 15a;7 12 12 :0
alE +al$ alﬁ +al?
T
a=(a a, a,--3,).3 R

This 15 a nonlinear constrained optimization
question. Using the proposed hybrid algorithm to
solve Eq. 16, the parameters for PSO are set as:
Population size i = 100, Tnertia weight factor w,;, = 0.4,
W, = 0.9, acceleration constant ¢, = ¢, = 2, maximum
iteration N = 9000. The position and the velocity of the i
th particle and the fitness function of corresponding
sampling point in the nth iteration are denoted by
a™ ={a,,a, -a,)™ . Its local best position and the global
best position of the particle swarm are denoted as P,
and P, , respectively. The PSO optimization program is run
i MATLAB 7.1 and the search process of PSO 1s shown
m Fig. 1. Because PSO 15 a stochastic algorithm, it 1s
difficult to guarantee a global optimal solution only by a
certain experiment. Here, the number of experiments 1s set
to 25. After finishing many times test, the best global
solution are selected, winch 1s shown in Table 2. To
replace the parameters in Eq. 13 with a in Table 1, the
following Marr wavelet filter transfer function can be
obtained:
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Table 1: Optirmun a for Marr wavelet approximation

i a i a i a
1 -1.2770 7 5.5216 13 3.1158
2 -0.5560 8 -0.6533 14 0.0608
3 -0.7840 9 0.8171 15 3.1098
4 -0.6923 10 -5.4567 16 -0.6675
5 -1.5380 11 0.6425 17 -2.2809
6 10.1590 12 -0.5593 18 -3.4943
Table 2: Optimum a for Morlet wavelet approximation
i a i a i ar
1 4.8141 5 -0.8994 9 1.8803
2 -0.7705 6 -5.6811 10 0.8807
3 1.7134 7 0.7495
4 -0.7390 8 -0.6190
) a) 0.0208356 = marrlike( [ 18 inputs])
10
10t
i
>
g 10°
Qo
[=2]
107
10
0 2000 4000 6000 8000
Epoch
Particle dynamics
(b) ® Current particles
st O pbest
gbest
4 -
3
s °f 2
2 Ve, e PR
g s e .
E 2} ‘
o L]
l -
O -
1 L 1 1 1
-1 0 1 2 3
Dimension 1

Fig. 1{(a-b): Search process of PSO for approximating
Marr wavelet

h(t)=—1.28e™"" — 0.78e™ " sin{—1.54t) + 10.16e™"**
cos{—1.54t)+5.52¢ "% sin(0.82t)
—5.46e "% cos(0.82t)+ 0.64e" " sin(3.12t) + 0.06e " cos(3.121t)
+3. 16 sin(—2.28t) - 3.49e " cos(—2.280) (1> 0)

(17)
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—s— 9th order L 2 approximation
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——Time-reversed/shift marr

0.5
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Fig. 2: Approximation of the Marr wavelet

—0.0087s" + 0.1178s7 - 1.84055" + 8.44645" - 47.8295" +100.2585° - 259.4125° + 33825
& +5.78° +32.3757 + 101.65° + 271.565° + 457545 + 683.465° + 625.135% + 37485+ 97.91

(18)

His)=

where, H (s) 1s the wavelet filter to realize Wt,, (1, T) under
scale 1. By the theory of Laplace transform, the transfer
function of analog wavelet filter under certain scale a 1s
expressed as aH(as) . The ime-domain waveform of
approximated Marr wavelet in Fig. 2 it inherits the
excellent qualities of Mar wavelet.

Now, we consider approximation of the Morlet
wavelet. Morlet wavelet ¥ (t) 1s defined:
(19)

-0 5t? (—oo<t<ao)

Wit)=cos(5t)e
Choosing the time-shift t, = 3, this gives rise to the
following time-reversed and time-shifted wavelet function:

Plt) = cos(5(3-t)e ™Y (Lo <t <o) (20)

To obtain a stable 10th order approximation of yt),
the L, approximation techmque was applied using the
parameterized class of functions h (t) given by Eq. (7):

h(t)=[(ag™ +ae™ sin(a.t)+ae™ cos(ast)+ae* (21)

sin(agt)+a,,e™ cos(a,t))] cos[3(3-t)] t >0

where, the parameters a,, a, and a; must be strictly
negative for reasons of stability. Given the explicit form of
wit) and the parameterized class of functions h (t), the
sqquared T, norm of the difference between ) and h (t)
is expressed as:

se@- [ -nf - fmo-wora @2

o
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where, a=(a,, a, a,, ..., a,,)" is parameter vector. The sum
of squares error of nonlinear functions is expressed by
E (a):

599

E(a)=Y [h(nAT)— y(nA)]

n=0

(23)

where, the sampling time interval equal 0.01 (AT = 0.01).
The optimization problem 1s described as:

min Ef(a)

s.t. a,<0,a,<0a <0

. (24)
L hit)dt =0

az(al a; az”'a1u)T=aj €R

From:
j:h(t) dt=0

this yields the constramed condition:

[5sin(15)a, - a,a, cos(13)])/[ a; +25]+[(a, +5)(0.5cos(15)a, +0.55n(15)a, ) + 0.5sin(15)a,a,
—0.5c0s(1 5)a‘a§]f[a‘2 +0a; + 5)1]+[(a5 - (0.5cos(15)a, — 0.5sin(15)a, ) - 0.551nC1 Ma,a, —
0.5c0s(150a,3,)/Ta,? +(a; — 5371+ [(a, + 5X0.5c0s(15), + 0.55in(15)a,, ) + 0.55in(15)a,a, —
0 Seoa15inga,, Mag + (2, +50° 14+ [(3, — 530 50050159, — 0 551001508, — 0 55in(15hm,8, —
0.5cos(1 08,8, 8, + @, -5 =0

(25)

Using the Particle Swarm Optimization (PSO)
algorithm to solve Eq. 26, the parameters for carrying out
PSO are: Population size T = 80, Tnertia weight factor
W = 0.4, w,.. = 0.9, acceleration constants ¢, = ¢, = 2,
maximum iteration N = 6000. The optimum parameter
a=(a, a, a,, ..., a,) was obtained in Table 2.

The following filter was obtained:

H(5)=(-0.01" + 0.1155° — 2.88%7 +18.775° — 74.755 + 254.39s" + 4.88-10°
—1.05-10%% + 3.455)/(s"” + 6978 +155.555" + 787.285" + 8.58-107" +
3.06-10%° + 2.08-10°° + 4.82 -10°" + 2.18-10%" + 2.54-10°5 + 7.58 -10%)

(26)

The corresponding wavelet approximation h (t) 1s
shown in Fig. 3, yielding an L, approximation error equal
to 0.0015.

APPROXIMATION PERFORMANCE COMPARISON

To determine the quality of the wavelet
approximations obtained with the three kinds of
techniques: pade approximation (Haddad et al., 2005), L,
approximation (Karel et af., 2005) and L, approximation
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Table 3: Comparison of approximation performance
Pade approximation T approximation  Tpapproximation
Wavelet Order (Haddad et al., 2005) (Karel ef al., 2005) Based on PSO

Gaussian  Sth 0.01620 0172 0.02490

wavelet  7th 0.03100 0.0294 0.01410

Marr Tth 0.02160 0.0131 0.00820

wavelet  9th 0.00437 0.0029 0.00046

Morlet 10th N/A N/A 0.00150

wavelet  12th N/A N/A 0.00090
1.0

— Time-reversed/shift morlet wavel et
— 10th order L 2 approximation based on PSO|
0.5 ]

0.0

-0.5

-10 10 12 14 16 18

Fig. 3: Approximation of the Morlet wavelet

based on PSO, one may resort to the computation of their
L, approximation errors. L, approximation errors have been
calculated for three different wavelet approximations: the
approximation of Gaussian wavelet, the approximation of
Marr wavelet and the approximation of Morlet wavelet.
The calculated results are listed in Table 3. From the
results in Table 3, the approximation errors using 1.,
approximation based on P3O are the least. One major
advantage of the L, approximation based on PSO is that
it can approximate excellently various wavelet functions.
In the pade approximation (Haddad et al., 2005), this
improper selection of the point 3, = 0 resulted in an
unstable transfer function of Morlet wavelet. With a
longer nunming time, L, approximation (Karel ef af., 2005)
algorithim 1s capable of finding the global optimal
parameters for low order wavelets. However, this method
has some convergence problems when one tries to
approximate a function with many oscillations (high order
wavelet), the From the
comparigon, it is obvious that the T., approximation based
on PSO methed is superior to Pade approximation and T,
approximation.

such as Morlet wavelet.

CONCLUSION

For implementing wavelet transforms in analog
circuits, a novel method to approximate various wavelet
funetions 1s proposed. To approximate a wavelet with this
method, an optimization mathematical model based on the
1.; approximation must be given. Then, the Particle Swarm
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Optimization (PSO) algorithm is used to solve the
optimization problem. Because the PSO algorithm is one
of the most powerful methods for solving global
optimization problems and is effective, efficient and fairly
robust to initial conditions, the proposed method
overcomes these shortcomings of approximation
technique i Haddad et af. (2005) and Karel et af. (2005).
With proposed approach it can approximate wavelets that
can not be approximated sufficiently well with an
acceptable order m a straightforward way with the Pade
approach or L, approximation.
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