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Abstract: The unique characteristics of the underwater acoustic commurnication channel, such as three
dimensional volunies of the environment and the limited energy, make it necessary to design and develop new

routing algornthms. In this study, we propose an immovative energy-efficient multi-hop routing scheme for
three-dimensional sensor networks based on compressed sensing. During each frame, a randomly chosen
subset of nodes participates in the sensing process instead of all nodes delivering their message to the Sk
node. Every chosen node finds a tour to the Sink node. As the message travels through the tour, each node
computes the product of its sensing data and a random weighted coefficient and adds value to the intermediate
result received from the last node. Analysis and simulation results show that our proposed algorithms are able
to give an accurate approximation of the monitoring field and prolong network lifetime.
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INTRODUCTION

In recent years, the development and utilization of
marine resources has become a trend and maritime rights
and interests are paid more and more attention, n this
background the Underwater Wireless Sensor Network
(TWSN) has become a research hotspot. UWSN can
momnitor, sense and collect information of a variety of
environments or momtored objects m the network
distribution underwater area and then deal with the
measurements to obtain detailed and accurate mformation
about the concerned region. With the arising of Internet
of Thins (IOT) and the development of TWSN, people
have concerned more about the information resowrce from
the underwater area, as well as from the terrestrial domain.
As the extension of Wireless Sensor Networks (WSN)
mto ocean, UWSN has potential values m the wide
application fields, such as oceanographic nformation
collection, hydrological and environmental monitoring,
resources exploration, disaster forecast, underwater
navigation and military defense et al., (Heidemann et af.,
2006; Cui et al, 2006). At present, there are mainly two
kinds of topological structure (Akyildiz et al, 2004),
namely two-dimensional underwater sensor networks
and three-dimensional underwater sensor networks where
sensor nodes are suspended at different depths in the
ocean. In this study, we consider a 3D UW SN where node
localization is essential to information collection. There
are two types of underwater positioning technology
(Ou et al, 2008), namely range-based positiomng
technology and range-free positioning technology. In this

study, we assunie node localization has been completed
in advance and then we consider mformation collection
problems.

A 3D region of interest to monitor a physical
phenomenon 1s considered in this study. In the traditional
case, each sensor node communicates its observations of
the field to a central node. As we all know, the underwater
sensor network 1s a typically energy-limited and
bandwidth-limited system, the techmcal bottleneck of
which is the asymmetry between the demand for
large-scale information acquisition and the limited network
resources. The traditional information acquisition
methods can not solve the above problem radically; while
the newly arising Compressed Sensing (CS) theory
provides a chance for breaking through the bottleneck.
The promising theory stipulates that under certain
conditions, exact signal recovery 1s possible with a small
number of random measurements (Candes et al., 2006,
Donoho, 2006). In the recent few years, the researchers
have attempted to utilize CS technology in the aspects of
analog-to-information converter, wireless
communications, image processing, compressive radar,
wireless networks et al.

In view of the techmcal advantages of CS, we employ
compressed sensing to reduce the energy consumption of
the underwater sensor networks based on the fact that
most natural phenomena are compressible (sparse) n an
appropriate basis.

CS 18 envisioned as a highly promising tool for
iumproving the performance of the resource-limited
underwater sensor networks. There has been a number of
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works exploiting CS in wireless sensor networks dealing
with space-time correlated data as in Quer et al. (2009)
and Wang et al. (2010) based on the decentralized
compression techmques presented in Haupt et al. (2008)

and Fazel et al. (2011). Random access compressed
sensing scheme 18 proposed for energy-efficient
underwater wireless sensor networks. Each node

determines to participate in sensing with a certain
probability. The selected node transmits its packet to
fusion center by one hop. Chou et al. (2009) proposes
adaptive compressed sensing in UWSN. The authors
determine the projection vector so as to optimize the
information gain per energy expenditure.

However, the existing
algorithms in wireless sensor network using compressive
sensing are aimed at two-dumension network. In this work,
we comsider a 3D network that measures a physical
The proposed method based
compressed sensing results in an energy-efficient scheme
referred to as Distributed Random Multi-hop Compressed
Sensing (DRMCS). These randomly selected nodes find
a towr with weighted coefficient as the projection vector
to sink. The random coefficient values of nodes along this
tour form the projection vector. We believe that this
information collection scheme is particularly suitable for

information cellection

phenomenon. on

the energy-limited 3-D network due to the following
advantages: (1) Sink reconstructs momnitoring area
information using a small number of observations instead
of all nodes sending observed values, (2) The residual
energy 1s considered when we decide the next-hop node.
Thus, balanced energy consumption i1s achieved and
(3) The projection vector using all sensors along a path
will give more accurate information with less energy.

INFORMATION COLLECTION FRAMEWORK

Due to the generality and universality of routing,
consider a 3D underwater sensor network shown in
Fig. 1, which consists of N sensors randomly distributed
within a three-dimensional region. The sink node 1s
located in the middle of square water surface. Assume
that the location of each node 1s known in advance by
location algorithm. All nodes in this network have the
same structure and the same parameters such as initial
energy.

The 3D network is deployed to monitor a physical
phenomenon and we assume that all the sensors are
synchronized. A snapshot of the temporal-spatial field is
considered. Each sensor makes a measurement at a
particular time t. The measurement at sensor node 1 (where

I=1..,N) s z = x+te, where x 15 the noise-free
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Fig. 1. An area sensor network consisting of N sensor
nodes

measurement of sensor node 1 and ¢, is the sensor noise.
We use x to denote the vector [x,, x,...., %], where T
denotes matrix transpose; the vectors ¢ and z are similarly
defined. We are aimed to obtam an approximation
% = [%, %,,.... k] of the original data field x. The relative
€eITor:

lx—%|

(B3]

1s used to measure the accuracy of the reconstructed data

field where:

N 2
w1 Xi

<=
denotes the 2-norm of x.
As we all know, for a monitored field which 1s
spatially correlated, such as the underwater temperature
or salinity, the observed natwral phenomena have a
compressible representation in a certain sparse domain. In
this study, we assume that the vector x is compressible in
a basis YeR** and x = P60 where 0 are the coefficients of
x 1n the basis ¥. If we denote by y the projection values
of M random paths, the received data vector at the sink
node can be expressed as:

y = ®, = Dxte) )
where, ® 15 an Mx>N random observation matrix. For
simplicity, we ignore the noise. Noting that x = W6, Eq. 1
can be re-written in terms of the sparse vector 0, as
shown below:
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y=ox = O¥6 (2

The sink node firstly tries to recover sparse vector 0
as accurately as possible, then uses it to reconstruct x.
Given the observations y, the random selection pattern @
and the sparse basis P, reconstruction can be performed
by solving the following mimimization problem:

3)

minéHéHn st Oyb=y

According to the theory of compressed sensing, the
solution to the convex optimization problem 3 is equal to
0 with high probability as long as the number of randomly
picked observations 1s greater than M, = CKlogN. Here K
1s the sparsity of the original signal and C 1s a constant
that is independent of N and K.

In this scheme, we randomly select M sensor nodes
as starting nodes. Every starting node finds a path to the
sink node according to a routing principle which will be
stated in the following sections. The received data at the
sink node from every route is shown as:

“4)

N
¥i= 2, o (i=1 M)
i

Each row of the observation matrix @ namely
@; = (G=1,2,.,N)represents a routing. The sensor nodes
not contained in the ith route correspond to zero elements
in the row vector ¢, = (j = 1, 2...., N). In other words, the
nmumber of nonzero elements in each row vector equals to
the number of sensor nodes on a corresponding path.
Each column of @ represents a sensor node.

DISTRIBUTED RANDOM MULTI-HOP
COMPRESSED SENSING IN UWSN

In this
compressed sensing in underwater wireless sensor
network is discussed. The nodes in the network decide to
send data with a probability p = M/N. This can be
achieved by equipping the sensors with mmdependent,
identically distributed Bernoulli random generators.
Nodes that send data become the open nedes of different
routes. Due to the number of network nodes N is huge, M

section, distributed random multi-hop

paths are generated in statistical terms. We regard the

current node that 1s collecting data as the source node.
The proposed Distributed Random Multi-hop

Compressed Sensing (DRMCS) 18 summarized

below:
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Step 1: At the beginning of the information acquisition
process, every node tosses a coin to determine
whether 1t participates in sensing with
probability p

Step 2: The current source node T broadcasts HELLO

routing information in a radius R containing the
information of node location and transmission
power. Node j within broadcast radius R
calculates the distance dis_ij to the source node.
Node j determines whether it becomes the next
hop node by its own depth and distance dis_1j.
The selected next node meeting our conditions
relies to the sending node

As shown in Fig. 2, let the source node be N, and it
broadeasts HELLO routing information within radius R.
Figure 2 shows that there are four nodes N,, N, N, N,
within the radio range. Because node N; 1s deeper than N|
1e., dep No>dep N, node N, does not make any
response. The cylinder radius of node N, is denoted

by:

r_N, :.‘}dis_ng - depth_Nl2 (5)

where, dis N, is the distance between the sink node and
node N,, depth. N, is the depth of node N, The cylinder
radiuses of other nodes are similarly calculated. As shown
in Fig. 2, the depth of node N, 1s less than the depth of N,
but it’s obvious that the cylinder radius r N, is greater
than r N, node N, doesn’t reply. Both N, and N, satisfy
the conditions of depth and radial, so they send the
response information to node N, respectively, containing
distance mformation dis N, and dis_N;. Node N, chooses
the best next-hop node and adjusts transmission power
according to the received response mformation.

f E Sink

Fig. 2: Selection of the next-hop node
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Step 3: As mentioned above, there may be more than
one node making response. The source node
determines the best next hop using the following
weight equation. The weight equation
concerned with energy of nodes and distance 1s
expressed as:
w:a5+(1—a)w (6)
E, dis_ij
where, 3 is the weighting factor balancing energy and
distance; dep iand dep_j is respectively the depth of the
sowrce node and the answer node’s; dis_1j 1s the distance
between the source node and the answer node.E, is the
current energy of the answer node and E, 1s the imtial
energy. The answer node having the maximum weight W
through Eq. 6 is chosen as the next hop node.
Step 4: The source node measures the physical quantity
of interest and multiplies it by a random data
value, then encodes the result into a packet of T,
bits. The sensor’s location and the random data
are included in the packet
The source node sends the packet to the next
node. The next node generates a packet in the
same way and adds it to the intermediately
received result. The added result is what the
next-hop node transmits
The next-hop node becomes the source node,
finds the next node and transmits nformation
according to the above method. This doesn’t
end untl the sink node 1s within the broadcast
routing range of the source node
The sk node uses the received packets to
reconstruct the data using 1, minimization (or
other sparse recovery methods (Tropp and
Wright, 2010)

Step 5:

Step 6:

Step 7:

SIMULATION AND PERFORMANCE ANALYSIS

In this section, we compare the performance of
DRMCS scheme with that of a conventional scheme. In
the traditional case, all the sensor nodes transmit their
collected mformation to the sink node instead of M
senders in ow scheme. The relay node is selected
according to the scheme above. The relay node doesn’t
participate in sensing process and only relays the packet
of the source node. Fach node’s packet is forwarded to
the sink node through multi-hop transmission.

We consider a 3D sensor network model as shown in
Fig. 1 m owr simulation. There are 400 sensor nodes
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Table 1: Sirmilation parameters

Parameters Values
Initial energy of each node (I) 1
Transmission energy (uJ bit™) 60
Received energy (uJ bit™) 3
Packet length (bit) 100
Reply packet length (bit) 10
Acoustic signal frequency (kHz) 25
Weight factor 9 0.5
0.10 7
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Fig. 3: The average reconstruction error versus No. of
measurements

randomly distributed ina  240x240x240region. We refer
to the attenuation model of underwater acoustic signal in
Ref. 13. Table 1 gives the parameter values i the
attenuation model.

In our scheme based on compressed sensing, the
sink node reconstructs the original mformation map using
the received M measurements. Figure 3 shows the
average reconstruction error plotted versus the number of
measurements. As seen in the figure, with the increase of
M, smaller reconstruction error will be achieved.

In an underwater deployment, network energy is of
utmost importance since re-charging batteries 1s difficult.
Energy consumption thus naturally emerges as a figure of
merit for system performance. Consequently, one of the
performance measures that we consider in this study is
the average energy consumption of the network needed
to sense a given area.

Figure 4 shows the total energy consumption for one
field information collection versus the broadcast radius.
In our DRMCS scheme, M = 50 paths are generated, that
18, the sk node receives M = 50 observations. From
Fig. 3, the reconstruction error is Pe = 0.095 when M = 50.
As seen m the figure, for the same broadcast radius,



Inform. Techrol. 1., 13 (5): 941-947, 2014

0.08 Im Conventional

ODRMCS
o
-
Z 0.06
=
=]
S
5
g
Z 0.04
8
B
L
=]
L
S 0.02 1
s
0.00 -
100 150 200 250 300

Broadcast radius m '

Fig. 4: Total network energy consumption vs. broadcast

radius R, M =50
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Fig. 5: Packet success rate versus broadeast radius,

M =350
DRMCS requires less energy compared to the
conventional scheme. With the broadcast radius

mncreasing, the network consumes more energy. The
reason is: finding routing consumes more energy and the
source node requires more energy to transmit packets
because the next-hop is more distant.

Packet success rate is related to the reliability of the
algorithm. Figure 5 illustrates the probability of packet
delivered successfully versus the broadcast radius R.
Since nodes are randomly distributed and M paths are
randomly selected, there is so little difference between
the probability of the conventional scheme and DRMCS.
The rate mcreases when the broadcast radius becomes
larger. We determine the radius referring to the network
size, nodes distribution density, etc.
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In the practical applications, a new information map
of the monitoring field 1s obtained periodically. Figure 6
shows the total energy consumption versus the network
monitoring rounds with the proposed DRMCS scheme.
Assuming the broadcast radius is 200 m and each node
participates in sensing process with probability 0.5, that
is, there are M = 200 nodes sensing data in the 400
survival nodes. From Fig. 3, we can see the reconstruction
error 18 Pe = 0.032. When the nodes are all dead, the total
energy 400 J 1s consumed. It can be seen from Fig. 6 that,
in the DRMC'S scheme, the total energy of network will be
exhausted after 210 rounds with the weighting factor
3 =0.9, whle it will be exhausted after 1 50 rounds with the
weighting factor d = 0.1. As a contrary, for the
conventional case, all nodes die out after 125 rounds.
Figure 7 shows the number of curent survival nodes
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Fig. 9. The reconstructed mformation map with 100
measurements, reconstruction error 1s 0.09521

versus the network monitoring rounds wunder the same
simulation aconditions with Fig. 6. The sumulation results
show that owr DRMCS scheme is superior to the
conventional scheme in prolonging the network lifetime
and the larger the weighting factor d, the longer network
lifetime 1s achieved because the energy consumption
among nodes is commendably balanced.

In order to prove the feasibility of the algorithm, we
employ DRMCS to sense a real field. We consider zonal
current data collected at South Califormia Bay at 3GMT on
May 16, 2012 at latitudes [34.3, 34.5°] and longitudes
[-122.2, -122.0°] and depth (100 600). The original
mnformation map and the reconstructed information map
with 200 measwements are given m Fig. 8 and 9,
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Fig. 10: The average reconstruction error versus the
number of measurements

0.09521.
Furthermore, Fig. 10 shows the normalized reconstruction
error versus the number of measurements of the zonal
current field. We can see that our scheme 1s suitable for
3D underwater sensor networks.

respectively. The reconstruction error is

CONCLUSION
We proposed an energy-efficient multi-hop
information collection scheme, DRMCS, for underwater
sensor networks based on compressed sensing in this
study. This scheme 1s suitable for 3D networks, saving
network energy and prolonging the network life. The
underlying condition 1s that the measured physical
phenomenon is compressible in a sparse basis. We
consider the residual energy of each node when next-hop
node is determined. Thus the balanced energy
consumption is ensured. Our performance evaluation with
simulated data shows that our scheme gives accurate
estimation of the unknown data. The performance of
DRMCS was analyzed in terms of the energy
consumption, the packet success rate and so on. Tt is
obvious that our scheme 1s superior to the conventional
scheme. This study provides a valuable reference solution
for large underwater wireless sensor network.
Furthermore, the proposed scheme can be easily used in
other suitable scenarios of multi-hop sensor networks.
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