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Abstract
Background: This study implemented an algorithm geometrically interpolating a given polygon using uniform B-splines with parallel
computing within GPU by OpenCL. Methodology: Parallel matrix calculation and multi-partition methods were proposed to accelerate
computing ability. Results: The results showed the implementation within GPU had greater advantage in computing than CPU.
Conclusion: The GPU’s implementation took less extra cost for improving the accuracy than CPU’s. The GPU had great value on high
precision applications with numerous interpolated points.
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INTRODUCTION

Interpolating  a  parametric  curve  to  scattered  points
had  been  widely  investigated  due  to  their  extensive
applications  in  a  variety  of  fields  such  as  economics,
medicine,    computer    animation,    manufacturing,   CAGD
and   signal   processing1-6.   Though   one   may  imposed
different requirements on generated curves depending on
applications1,7, it was common that the interpolative curves
should look pleasing and had little jerk,  namely and they were
as fair as possible.

Interpolation using parametric curves could state as
follows: Given polygon (P1, P2, ..., Pm) and parametric curve:

   
m

i i
i 1

C t PB t


 

where, Bi (t) and Pi were respectively base functions and
unknown control points thus, needed to find {Pi} and
t1<t2<...<tm such that:

 i iC t P ,  i 1, 2, , m  

A straight forward method could directly specify {ti} and
reduced   the   problem  to  the  solution  of  a  linear  system
on {Pi}. This method usually exhibited shortcomings such as
overshooting and undulating. Hence, a great number of
parameterization methods had been proposed to alleviate the
artifacts8-10.  Among  these,  arc-length  parameterization  and
its variants were most popular in practice and efficiently
alleviated the artifacts in most linear system. However, no
solution could be viewed as the best in any case11-13.

Hoschek11 proposed an intrinsic parameterization to
attack the curve-fitting problem. Parameter values computed
implicitly by finding the nearest point from the data point to
the fitting curve and then employed to fit a new curve. A
nearest point was also called a foot-point. The approach
iteratively refined the solution by repeating the process. Saux
and  Daniel12  explored  a  new  improvement  of  the  method
with higher efficiency12 while Wang  et  al.14  extended the
approach  with  several  new  fitting  errors.  Unfortunately,
these approaches degenerated to straightforward methods if
applied to interpolating problems instead of fitting tasks.
What was more important and computing overload weakened
the process ability with time extending.

Recently, Maekawa  et  al.15  exploited a geometric
interpolation algorithm to go through vertices of a given mesh
using subdivision surfaces15. The algorithm iteratively modified

each control vertex of the mesh using a deviation from the
foot-point to its corresponding data point. Maekawa  et  al.15

discussed two types of foot-point, the nearest point on the
subdivision surface to the data point and the limit position of
the corresponding control point on the surface to the data
point (Parametric distance deviation). As neither requiring
solution  of  large  linear  systems  nor  yielding  minimization
of smooth energies, the approach was quite efficient in
interpolating points. In addition, the approach could generally
produce results with high quality using the first type of
correction due to its essence of intrinsic parameterization.
Chen  et  al.16  extended  the  algorithm  to  Catumll  Clark
subdivision surfaces16. Gofuku  et  al.17  further studied the
interpolation of tangents and normal using the geometric
algorithm17.  Xiong  et  al.18  investigated the convergence of
geometric interpolation algorithm geometrically interpolating
a  given  polygon  and  presenting  a  practical  sufficient
condition  under  which  the  algorithm  was  convergent,
linear and time-saved, for quadratic and cubic B-splines,
respectively18. In this implementations, within both CPU and
GPU were under this sufficient condition.

When built an accurate curve model using B-splines and
due with large quantity of data in which there would be many
points to interpolate. It would take much time in the
implementation of the geometric interpolation algorithm
within  CPU.  As  each  step  of  geometric interpolation, using
B-splines had to traverse all the interpolated points and the
operations for each interpolated points were the same.
Therefore, it was very compatible to implement geometric
interpolation   using  B-splines  within  GPU  and  implement
the algorithm by OplenCL. The process for OpenCL and
implement the algorithm within GPU by OplenCL could
design. To improve the performance even more, parallel
matrix calculation, multi-partition method and elimination
game algorithm used to accelerate the computing of the
algorithm by parallel computing. Finally, in experiments,
compared with traditional serial implementation of CPU
showed  the  efficiency,  GPU  had  great  advantage  in
computing time and process ability. Where many interpolated
points in GPU and there were less extra cost for improving the
accuracy in finding the foot-point.

MATERIALS AND METHODS

Geometric interpolation: Let (P1, P2, ..., Pm) be a closed
polygon and C (t) be the uniform cubic B-spline curve defined
by  (P1,  P2,  ...,  Pm)  with  knot  vector  (-1,  0,  1,  ...,  m+2) where,
the  uniformity  was  not  essential  because  the  local
parameterization   polished   up   the   curve   shape  under  the
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frame work  of  geometric  interpolation.  Therefore,  uniform
B-splines  in   this  implementation  used.  Geometric
interpolation iteratively modified the position of the control
points such that finally the B-spline curve was determined by
the new control points interpolate (P1, P2, ..., Pm).

Algorithm 1: Geometric interpolation using B-splines
Step 1: Initialized the control points          with interpolated points, namely,0

iP

set                           = (P1, P2, ..., Pm) 0 0 0
1 2 mP , P ,..., P

Step 2: Supposed that         was obtained. Constructed the parametric curvek
iP

with the control points: k
iP
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where Bi, n (t) were B-spline base functions with n-degree.
Step 3: Found the foot-point           of           on the curve 'k

iP  0
iP

Step 4: Computed the deviation vectors:

k 'k 0
i i ie P P 

Step 5: Checked error                         . If ek<0, it was finished. Else, modifiedk k
i ie max e

the control points as follows:

k 1 k k
i i iP P e  

and return to step 2.

In the case, the foot-point was a nearest point. It solved a
non-linear optimization problem with a polynomial as the
energy function. Subsequently, it needed to find zero points
of a polynomial.

Parallel computing algorithm: As the computation for each
interpolated points were the same and independent relatively
and they  could  simply  parallelize.  However,  it  should  be
attention to control the data consistency. In algorithm 1, the
computation of each step in all the processes should not start
until all the computation before the step in all the processes
had been finished.

For OpenCL, algorithm 1 with the process illustrated in
Fig. 1. Sub-processes (1-5) could be computed parallel and
there  should  be  a  data  consistency  control  before  each
sub-process.

Matrix  calculation:  Because  of  using  uniform  B-splines,
sub-process 2 was just a matrix multiplication for each
segment of the parametric curve. In sub-processes 3 and 5, the
computation  of  error  vectors  and  the  modification  of
control points were vector calculation. These computing and
processing could implement independently for each element
of matrices or vectors so that they could parallelize simply.

Since the independency, these computing and processing
could parallelize combining with the first layer of
parallelization. For OpenCL, it was just to add a dimension to
the workspace for the first layer (For the interpolated points).

Multi-partition method: Let function di (t) be the distance
from  the  interpolated  point        to  the point Ck (t) that on the 0

iP

Fig. 1: Process of geometric interpolation using B-splines for
OpenCL Furthermore, three kinds of computing and
processing could accelerate through parallel methods.
These were the second layer of parallelization
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Fig. 2: Five partition method

curve. In sub-process (2), the foot-point  of       ,  it  was  usually0
iP

to calculate the roots of the differentiation        and  thentd (t)

calculate and compare the values of di (t) at these roots and
the terminals of the domain to find the minimum one of them.
For real-number function, there were many algorithms to
calculate the roots of it. All these algorithms were to iteratively
narrow down the interval which had a root to get the precise
solution. Bisection method was the easiest one that it
calculated the value of the midpoint in the interval and
narrows down half of it.

Bisection method could not calculate even multiple roots,
but the extreme points of di (t) were found which were not on
the   even   multiple   roots  of           .    It   was   not  that  all  thetd (t)

extreme points  were  needed and just  minimum  points  were

needed. It was easy to prove that a function di (t) for n-degree
B-spline had at most n+1 minimum points.

With parallel computing, the interval could partition to
granular parts and calculated the values of the partition-points
simultaneously in Fig. 2.  However,  the checking of the signs
of the values had to be serial because it was not
independence. Because the number of partition was not large
and the comparing process was easier than the computation
of the values and this method could be more efficient than
bisection method with parallel computing though it had done
more computing.

After  the  roots  had  found,  calculation  of  the  values  of
di (t) at these roots could parallelize. Nevertheless, the
comparison of these values to find the minimum one also  had
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points to the new interval array
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precision?

Record the midpoints of the intervals to the minimum points array
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Calculate the values of the minimum points simultaneously

Compare the values and f ind the minimum one 

Fig. 3: Finding footpoints

to be serial and was easy. There were at most 2 and 3
minimum points (Including the terminals of the domain and
the  numbers  were  3  and  4)  for  using  quadratic  and  cubic
B-splines, respectively.

For OpenCL, an enough large array should be created to
record the intervals that a root in it and an integer to record
the number of intervals. An array should also be created to
record the minimum points that should be calculated the
deviation values and an integer to record the number of them.
For  instance,  an  array  should  be  created  with  6  numbers
(2 numbers to record an interval) to record the intervals and
an array with 4 numbers to record the minimum points for
using cubic B-splines. Sub-process 2 implemented and
illustrated in Fig. 3.

Elimination game algorithm: In sub-process 4, the
computation of norms        of  each  deviation  vector in DVk

ie

could parallelize, but the comparing processing could not.
Although the comparing processing was not hard, it took
much time when there were many interpolated points. A
method like an elimination game used to search the
maximum with parallel computing in Fig. 4.  Each round of the
game could parallelize. Nevertheless, the processing should
ensure the data consistency.

There should be a synchronization control before each
round of the game. So, it also took some computing time on
these synchronization controls. The number of values
increased to compare in one game to take the balance with
the   cost   of   synchronization   controls  (Fig.  5).  For  different
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Fig. 4: Elimination game algorithm

Fig. 5: Elimination game algorithm (4 values in one match) Although it was like a sorting algorithm, the data need not to sort and
just need to get the maximum, namely. In the implementation, the maximum value in each match would be record in the
space of the front value. Algorithm 2 in C-code is given

platforms and devices and the number of values should adjust
in one match to get the best performance. This method was
more efficient in the case with large number of interpolated
points.

Algorithm 2: Elimination game algorithm
//E is the array of errors.
//n is the total number of values.
//m is the number of values in one match.
//There are (n/m+1) compute units.

for (i = 1; i<n; I* = m)
   {

if ( compute_unit_id% i == 0)
{

o = i*m*compute_unit_id;
for (j = o+i; j<n && j<o+i *m; j+ = i)

E [o] = E [o]>E [o+j] ? E [o]:E [o+j];
}
Synchronization();

}

All the computing of the algorithm could put into GPU,
but there is a limit of compute units by the devices. In
addition, the synchronization control in GPU would take much
cost of time. Therefore, the outer loop control put in CPU and
implemented the synchronization by OpenCL events
(Command queue in order execute mode).

These   three   methods   had   not   reduced   the  amount
of    calculation    and    multi-partition   method    in   searching
foot-point even increased it. Nevertheless, within parallel
implementation, these three methods could decrease the cost
of time.

RESULTS

These experiments focused on the computing speed
contrasting between implementation within GPU and
traditional implementation within CPU (Table 1). Repetitious
computing could be in each case and record the average
computing time.

OpenCL platform used for GPU programming and
perform these experiments on a computer as follow:

DISCUSSION

To observe the efficiency, some sets of random points for
universality generated. All these points had 3-dimensions and
were placed in cube [0, 1]×[0, 1]×[0, 1]. Double precision
number data type used to set the precision. Each set of points
and its experimental results were as following:

C Computing time for different numbers of values was in
one match for elimination game algorithm. A data with
50000 values used to test the algorithm within GPU. The
results listed in Table 2 and illustrated in Fig. 6. It was
obvious that setting the number of values in one match
about 30 could take the balance with the cost of
synchronization controls and perform most efficiently
within GPU on the environment of this experiment

C Computing time for different numbers of partitions was
in multi-partition method. A data with 10000 points was
used and set the precision for the multi-partition method
to be . The number of values in one match for elimination
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Fig. 6: Computing time for different iterative times

Table 1: Experiment platform
CPU Intel Core i7 860 (2.8 GHz)
Memory 8G DDR3 1333 MHz
GPU NVIDIA GeForce GTX 580 (772 MHz)
GPU Memory 1536M GDDR5
OS Windows 7 Ultimate 64bit
OpenCL Platform NVIDIA CUDA 4.2

Table 2: Computing time for different number of values in one match for
elimination game algorithm

No. of values in one match 2 4 8 16 32 64 128 256
Computing time (µsec) 642 281 234 219 218 250 375 577

Table 3: Experiment platform
No. of partitions 2 3 7 15 31 63
CPU computing time 7457 7004 6739 9173 12948 35038
(msec)
GPU computing time 18658 12777 8580 7815 12496 18642
(msec)
No. of partitions 127 255 511 1023 2047
CPU computing time 67548 108592 210117 603065 1186830
(msec)
GPU computing time 128455 18642 54772 85676 169556
(msec)

game algorithm was 50. The results listed in Table 3 and
illustrated in Fig. 7.  It  shown that 15-partition was the
best choice to perform most efficiently within GPU on the
environment  of  this  experiment.  Within  CPU,  it
performed best with 7-partition in this experiment,  not
with bisection (2-partition) because of the cost of
recursive calling. It meant that similar method could be
also used to optimize the performance of some CPU
programs in which there were recursive calling. Although,
the results of big numbers were useless, the capability of
GPU for parallel computing contrasting to CPU could be
seen

C Computing time for different precisions needed the
multi-partition method. A data with 10000 points used
and took bisection method for CPU and 15-partition
method for GPU. The number of values in one match for
elimination game algorithm was 50.  The  results  listed  in

Fig. 7: Computing time for different numbers of partitions in
multi-partition method, the abscissa is using
logarithmic coordinate

Table 4: Experiment platform
Precision for multi-partition 10G3 10G4 10G5 10G6 10G7 10G8 10G9

method
CPU computing time (msec) 4072 4868 5492 9173 10764 11997 13276
GPU computing time (msec) 4665 5335 6068 6771 6708 7503 8175

Table 5: Experiment platform
No. of values in one match 10 100 1000 10000 20000
CPU computing time (msec) 10 94 1279 6099 18782
GPU computing time (msec) 78 119 1778 7847 14648
No. of values in one match 30000 40000 50000 60000
CPU computing time (msec) 29282 48001 71714 92876
GPU computing time (msec) 21278 28064 34913 41059

Table 4 and illustrated in Fig. 8. Here the whole slopes of
the curves in Fig. 8 could be focused which represent the
extra cost of accuracy improvement within each
implementation. It was obvious that the implementation
of GPU here took less extra cost to improve the accuracy
with 15-partition method

C Computing  time  was  different  with numbers of points.
7-partition method for CPU was used, 15-partition
method   for   GPU   and   set   the   precision   for  the
multi-partition method to be 10G9. The number of values
in one  match  for  elimination  game  algorithm  was  50.
The  results  listed  in  Table  5  and  illustrated  in  Fig.  9.
The experimental results demonstrated that the
implementation  of  GPU  had  great  advantage  on
computing time in the cases with large number of points
because of the great data parallel computing capability of
GPU. This was the main reason that the GPU should be
choose. In the cases with small number of points, CPU
perform was more efficiently than GPU due to its higher
frequency (About 4 times of GPU’s) but in the cases of
large number of points, GPU perform was better since the
parallel computing and that GPU was fit to do these
parallel computing with large quantity of data
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Fig. 8: Computing time for different number of interpolated
points

Fig. 9: Computing time for different number of points

C Compared with other GPU optimizations, LFR network
datasets were chosen for the artificial network datasets
which was proposed by Lancichinetti and  Fortunato19. It
could strengthen the results that GPU perform was better
in the parallel computing. The scale of the network ranges
from about 100-50000. Now-a-days, it had been widely
used as the standard datasets. As for the real network,
some common large network data were adopted,
including Email, Facebook, the data of Scientists
Websites--Netscience and Slovenia scientists, national
grid data and so on. However, these network datasets
were all for social network, it had not been used in
uniform B-splines optimizations

CONCLUSION

Geometric interpolation, iterative algorithm to construct
control polygons and meshes. However, they have not run on
GPU devices. This study applied this algorithm using uniform
B-splines  with  parallel  computing  within  GPU.  To  improve
the  performance  even  more,  parallel  matrix  calculation,
multi-partition     method   and   elimination   game   algorithm
were   proposed   to   accelerate   the   computing   of   the 
algorithm by parallel computing.

According to the experimental results, the parallel
computing implementation of geometric interpolation using
uniform B-splines within GPU had great advantage of
computing time than CPU in the cases with large quantity of
data. In addition, with parallel computing and multi-partition
method, GPU’s implementation took less extra cost for
improving the accuracy than CPU’s. It had great value on high
precision applications with numerous interpolated points or
large linear systems.

Non-uniform B-spline would be considered in the future
study. Constructing curve would not be just a matrix
multiplication using non-uniform B-spline. Another interesting
work was geometric interpolation for parametric surfaces and
subdivision surfaces.
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