

 OPEN ACCESS Information Technology Journal

ISSN 1812-5638
DOI: 10.3923/itj.2017.1.10

Research Article
Energy Management of the System: An Empirical Investigation of
Virtualization Approaches in Static and Dynamic Modes

Basheer Riskhan, Ke Zhou and Raza Muhammad

School of Computer Science, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, China

Abstract
Background: Energy management has a vital impact on success of virtualization. Power consumption and generation of heat play critical
roles in the core concept of energy management. Presently, energy consumption is continuously growing due to high usage of system
resources and rising of demand in computer density. The high power usage and high heat generation lead to instabilities of their
hardware systems and cause system reboot more often. Materials and Methods: To avoid above malfunctions and save from permanent
damage to the system resources, this study are investigated and tested the power consumption and heat generation during the usage
of low-level performance application, online education application and high-level performance application, respectively via the
implementation of XEN, KVM and Docker virtualization technologies in between static and dynamic modes. Results: The result proved
the power consumption and heat generation is higher for hypervisor-based virtualization and very low for container-based virtualization
in all kind of applications. Even though the XEN and KVM are the same type of hypervisor is offering similar features but the output has
deviated from each other. The limitation of VM/Docker on top of physical machine would control by mathematical formula, which created
from our experiment. Conclusion: The overall analysis proved that XEN, KVM and Docker as the order of the power consumption rate and
heat generation rate for all applications in high, medium and low, respectively.

Key words: Container, energy management, high performance application, hypervisor, low performance application, online education application, virtual
machine, virtualization technology

Received: September 15, 2016 Accepted: November 04, 2016 Published: December 15, 2016

Citation: Basheer Riskhan, Ke Zhou and Raza Muhammad, 2017. Energy management of the system: An empirical investigation of virtualization
approaches in static and dynamic modes. Inform. Technol. J., 16: 1-10.

Corresponding Author: Basheer Riskhan, School of Computer Science, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan,
China Tel: 0094714469676

Copyright: © 2017 Basheer Riskhan et al. This is an open access article distributed under the terms of the creative commons attribution License, which
permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

http://crossmark.crossref.org/dialog/?doi=10.3923/itj.2017.1.10&domain=pdf&date_stamp=2016-12-15

Inform. Technol. J., 16 (1): 1-10, 2017

INTRODUCTION

In recent trend the significant use of computers
associated with the daily life. The development of computer
technology has grown in such a way of cloud computing,
machine learning and so on. Due to the said above reason and
extended requirement of computer resources, the level of
power consumption and heat generation rapidly growing as
compare to the previous stages. In 2006, IT infrastructure in
the USA consumption of the electricity was estimated at
4.5 billion dollars and in 2011 it tended to be double1. Above
were the critical parameters during the usage of computer
applications, which would impact on the performances,
operational costs and deployment cost which created a
negative impact on computer equipments2. Furthermore, the
hardware devices consumed the power and converted into
heat, which lead to increase the substrate temperature3. In
addition, high heat creates the more degradation effects,
which lead to change the time dependent during the
operating characteristics of devices4. Considering the above
overheads, there is a need to introduce and implement a new
technology for energy management which is crucial. Also high
performance, miniaturization and multi-functions were
increased the generation of heat. So, control the heat
generation effectively to the performance improvement and
computer life extension5. Under this circumstance, came to
know from the previous literature, developers considered
vertical optimization or optimize the I/O or hypervisor or
kernels would be the solution to improve the above
overhead6. But according to the virtualization definition and
understanding, hope that the Virtualization Based Approaches
(VBA) would be better solution for energy management.
Further this study discusses how PM power consumption and
heat generation are influenced by the execution of different
kind of application as well as different kind of virtualization
technology.

Hypervisor Based Virtualization (HBV) and Container
Based Virtualization (CBV) are the popular virtualization
approaches were used in this study. Hypervisor can be
implemented directly or separately on Physical Machine (PM),
which creates the Virtual Machine (VM) and provides the
virtualization hardware resources6. Single PM has the capacity
to execute multiple VM but the PM must have advocate
amount of resources for smooth operation7. Each VM runs on
its own Operating System (OS). Currently users are rapidly
increasing. This would result in an increasing need for VMs,
which leads to increasing the demand and workload of PM. So,
that resources should be shared more efficiently. Host OS can
be used as the base in containers and it virtualizes the OS
rather than the hardware8.

This study decided to implement and test the power
consumption and heat generation using different kind of
virtualization technologies during the execution of the various
applications. For that, this study is mainly concerned about
XEN and KVM in HBV, Docker in CBV. Application was divided
as Low-level Performance Application (LPA), Online Education
Application (OEA) and High-level Performance Application
(HPA). The LPA includes small application such as office
packages. The OEA is the powerful educational learning tool
that includes the prompt technological resources such as
learning management system, eBooks library, E-learning
resources, learning record management. The OEA was
developed using PHP, HTML 5 and CSS. MySql has been
chosen as the back-end database. The HPA include on energy
hungry game, “Flight gear”. The energy consumption contain
in two different modes as static and dynamic. Static energy
consumption when idle and dynamic energy consumption
due to different kind of workloads executed in PM. The
measurement tools start to execute during the usage of VM
and the usage of Docker during the execution of LPA, OEA
and HPA. Overall power consumption and heat generation of
system are the elements were used to measure the matrices
during the 180 sec execution. Finally this study propose
better platform with power efficiency and heat efficiency of
virtualized application by quantitative analysis approach.

MATERIALS AND METHODOS

Hypervisor Based Virtualization (HBV): A hypervisor is called
as Virtual Machine Monitor (VMM) that is executed on top of
the real physical hardware with host OS. It is software that is
offering the abstraction for VM and isolation9. Hypervisor
allows to running multiple VMs with multiple OSs on top of
single PM6. Hypervisor is controlling the entire processes and
allocating the resources such as processor, memory, network,
applications and I/O devices. Each VM are fully isolating from
others and executing in its own OS through virtualization
technology, while running on the same hardware. Hypervisor
is categorizing as bare metal virtualization and hosted
virtualization shown on Fig. 1. Both categories were work
based on hardware level or vitalizing hardware resources. The
VMM and VM are directly mapping with the hardware
resources and the processing is comparable to the native
execution in bare metal virtualization. It’s providing better
security and higher level of virtualization efficiency. Hosted
virtualization is only appearing between a host OS and VM.
This approach is the most suitable for the development
purpose10. Due to that reason the implementation of bare
metal virtualization is the appropriate method in this
experiment.

2

Inform. Technol. J., 16 (1): 1-10, 2017

Bare metal virtualization Hosted virtualization

Physical resources

VMM

Host OS

Physical resources

VMM

VM VM VM VMVMVMVMHost
OS

Application software

Host OS (Windows/Linus)

Hardware

Network

Container engine

System libraries

System software

Client A Client B

Application software

Container engine

System libraries

System software

Client A Client B

Fig. 1: Types of virtualization

Fig. 2: Architecture of container based virtualization

Container Based Virtualization (CBV): The CBV is called
as OS-level virtualization9. In this approach, container is using
as an alternative for hypervisor11. Container works at OS level,
which is fastest and lightweight process virtualization by
the support of cloud computing9. Figure 2 exploring the
architecture of CBV and container engine consisted in
between host OS and binaries/libraries. Basically most
container technology is performing and executing as a
stand-alone server and it’s including root access, memory,
system libraries, IP addresses, files, users and application.
Recently these technologies are getting a fair amount of
attention as compare to other virtualization technologies in
terms of its performance, scalability and security. Currently
CBV has several implementation technologies such as LXC,
OpenVZ, Linux-VServer, Dockers, Parallels Virtuozzo and so on.
The organization and business firm is implementing these
technologies depends on container configuration, number of
OS and its environment, application capacity and demand of
virtual resources. Docker is one of the approaches of
application container, which is more supportive to package
and compact an application into the virtual container12.

Docker is enabling the portability, reusability, repeatability,
continues integration, flexibility and fast development cycle.

Experimental background: This experiment was conducted
in real time environment and it has mainly involved with PM,
VM and Docker. The LPA, OEA and HPA were the target
application. All the matrices were measured in the same
physical host using java and shell programming with the
support of Linux benchmark tools that were executed with VM
and Docker. This experiment could get error free correlation
during the comparison between VM and PM with Docker due
to use of same physical resources and could calculate the
mean value throughout the whole experiment. Power showed
the average power consumption during the certain interval of
time by the unit of watts. Temperature is recorded by sensor
on the hardware resources by the unit of celsius. The
experiment executed in the following steps:

C Setup the PM with high configure resources
C Evaluation tools were executed in the PM in order to get

static state native execution result
C Reporting the evaluations matrix of power and

temperature after completing the 180 sec execution
C Running the LPA, OEA, HPA and evaluation tools were

executed in the PM in order to get dynamic state
execution result

C Reporting the evaluations matrix of power and
temperature after completing the 180 sec execution

C XEN and VM were installed on the top of PM, after VM is
being activated

C Evaluation tools were executed in the PM in order to get
static state single VM execution result

C Reporting the evaluations matrix of power and
temperature after completing the 180 sec execution

C Running the LPA, OEA, HPA on single VM and evaluation
tools were executed in the PM in order to get dynamic
state single VM execution result

C Reporting the evaluations matrix of power and
temperature after completing the 180 sec execution

C Next VM was increased one by one on top of PM and
evaluation tools were executed in the PM in order to get
the X number of VM execution result in static state.

C Then LPA, OEA, HPA running on top of each VM,
evaluation tools were executed in the PM in order to get
the X number of VM execution result in dynamic state

C All the same above steps were continued to KVM and
Docker

C The reported matrices of native execution, XEN, KVM,
Docker of power consumption and temperature
generation had been taken for further analysis

3

Inform. Technol. J., 16 (1): 1-10, 2017

This experiment faced technical issues at the beginning
of the experiment such as continues execution of evaluation
tools, reading the matrices during the selected interval time,
stopping the execution in the particular time and storing the
execution output. To overcome the above mentioned issues
shell programming and java programming were used as
evaluation tools.

Experiment resources: The matrixes are measuring in PM that
are hosting and executing the several VM and Dockers. This
experiment did not measuring in VM/Docker because it is not
purely hardware2. The HDD, processor, memory and several
internal components having the power consumption and heat
generation, that can be measured using build-in meter tools
and build-in sensors. Control unit, ALU, IO control, interrupt
handling, instruction pipeline, fetch and decode hardware
were the important computational task performed by system
resources which too leads to consume power and generate
heat. Further cache memory is also having the power and
heat, which were added to the processor to improve
execution. Considering the above fact about the energy
management and indented to conduct this experiment.
Table 1 expresses the system configuration, which used in this
experiment.

Physical machine: The PM is the crucial part of our
experiment, because VM/Docker is not physically bounded in
hardware and one or more VM/Docker can host in a single PM.
Further determining the number of VM/Docker and its
workload are depends on hosted PM configuration. In
order to that this experiments were conducted on large-scale
multi-core PM with high processing power, huge memory
and multi-core accelerate processor.

Virtual machine: The first approach of this experiment was
conducted using the VM. The VM was installed on top of the
PM. The same PM and same configuration were used in
second experiment approach too. So, it could be avoided the

conflict of the machine configuration. This experiment
conducted in order to measure the power and heat during the
execution of VM. It was using bare metal virtualization, which
brought to near native execution comparing to hosted
virtualization.

Dynamic resource allocation method used to this
experiment. That trims the issue of insufficient resources of
VM, because PM offers the resources to the VM if needed. The
XEN 4.0, KVM+QUMU were installed as a hypervisor that was
controlling the resources, host process and allocating the
needed resources to the correct VM in the correct time.
Ubuntu 14.04 LTS was installed as their guest OS, that
handling the aggregation of I/O request, internal memory and
run the OES. Table 1 shows the specification of VM.

Experimental variables: Power and heat of the system were
used as variables in this experiment, that were the most
appropriate element for estimating the number of VM/Docker
hosting on PM. Power consumption indicates that the
sufficient amount of power or energy was needed to execute
the workload of running application2. Heat is another variable
depends on the characteristics of system and its component.
Overheating system resources is the main issue of high heat
that was lead to instability in the hardware of the system and
its reboots. The measuring unit of the power is watts and heat
is celsius.

Experiment tools: Java and shell programming were used
as experiment tools. POWERSTAT and SENSOR are the Linux
Kernel modules that used to measuring the power
consumption of mobile PC and measuring the current reading
of the heat in all sensor chips, respectively. But default
powerstat (powerstat <interval >< No. of sample >) has given
some issues such as starting time of execution and limiting the
number of sample. The default sensor command has given
some issues such as interval time, limitation of execution. So,
that, Linux kernel module tools were inserted inside java code
and Linux shell code to the experiment requirement and runs
in the PM.

Table 1: Resources configurations
Physical machine configuration Virtual machine configuration Container configuration
Processor: Intel core 4200 series 2.4 GHz Processor: Intel core 4200 series 2.4 GHz Container: Docker engine
Host OS: Ubuntu server 12.04.3 LTS Guest OS: Ubuntu 14.04 LTS OS image: Ubuntu 14.04 LTS
Web server: Nginx Web server: Nginx Web server: Nginx
Application: LPA/OEA/HPA Application: LPA/OEA/HPA Application: LPA/OEA/HPA
Memory: 8 GB Memory: 1 GB
Hard disk: 1024 GB SATA Hard disk: 20 GB
Cache memory: 1642 MB Resource allocation method: Dynamic
File system: Ext 3 Hypervisor XEN 4.0

4

Inform. Technol. J., 16 (1): 1-10, 2017

Shell coding which includes Linux Kernel module: Measure the power
consumption in 180 sec execution, interval 3 sec

#!/bin/bash
powerstat 3 180-d 0>tmp0 &
sleep 180
kill-9 $!
echo ' '
cat tmp0 | grep '0.0' | awk '{print $10}'>mp1
sum = 0
echo $sum
for line in `cat tmp1`
do
echo $line
sum = $(echo "scale = 2;${sum}+${line}"|bc)
done
avg = $(echo "scale = 3;${sum}/60" | bc)
printf "Average watts: %s\n" ${avg}
rm-f tmp0 tmp1

Java coding which includes Linux Kernel module: Measure the Heat in 180 sec
execution, interval 3 sec

public class cputempsecond {
public static void main(String[] args){
try {for (int i=1; i<=60; i++)
{ Thread.sleep(3×1000);
System.out.println ("NO" + i);
DateFormat df = new SimpleDateFormat ("HH:mm:ss");
Date date = new Date();
System.out.println ("current time is" + df.format(date));
String shellCommand = "sensors";
String[] cmd = { "/bin/sh", "-c", shellCommand };
Process ps = Runtime.getRuntime().exec(cmd); ps.wait For ();
BufferedReader br = new BufferedReader(new
InputStreamReader (ps.getInputStream()));
StringBuffer sb = new StringBuffer(); String line;
while ((line = br.readLine()) != null)
{ sb.append(line).append("\n"); }
String result = sb.toString(); String filePath = "tmp.txt";
File file = new File(filePath);
FileWriter fw = new FileWriter(file, true);
BufferedWriter bw = new BufferedWriter(fw);
bw.write(result); bw.close(); System.out.println(result);}}
catch (Exception e) {e.printStackTrace(); }}}

RESULTS

This experiment was conducted first for static state and
second for dynamic state successfully. The matrices were
started to read in normal mode for static state and in the
beginning of the application execution for dynamic state. The
experiment was started in 3 states such as native execution,
VM/Docker install on PM and level of VM/Docker extended
one by one. Further mathematical equations were formed by
us for power consumption and heat generation using least
square method, that’s helps to limit the extended resources
accepted by PM and got to the know the workload of
application before the execution. Each test was contained the
different workload of application with different parameters.
Power consumption is the hardware measurable parameters
and it’s showing the energy units in per seconds or current
power consumption rate. Table 2 showed the noted power
consumption during the extended level of VM/Docker in static
and dynamic mode.

Heat is another parameter of this experiment that
generates the heat from all the hardware devices include hard
drives, graphics cards, processors connected with the system.
It varies from one device to another depending upon its
component and running applications. Table 3 shows the
generated heat during the extended level of VM/Docker in
static and dynamic mode.

The analysis is discussed in following different ways based
on collected power and heat measurement. The native
machine reading is the base value and it is considered to be
constant during the discussion:

C Is virtualization environment has given the near native or
how the native execution varies from the virtualization
environment

Table 2: Power consumption
Native
--

Dynamic state
--

Static state LPA OEA HPA
10.33 11.37 12.93 14.47

XEN KVM Docker
-- -- ---
Dynamic state Dynamic state Dynamic state
-- --- --

No. of VM/Doc Static state LPA OEA HPA Static state LPA OEA HPA Static state LPA OEA HPA
1 resource 44.01 44.10 46.14 48.72 43.93 45.05 45.92 47.28 41.70 42.62 43.89 45.61
2 resource 45.17 46.25 46.65 50.02 45.02 46.11 46.38 49.15 41.91 42.93 44.57 46.26
3 resource 45.82 47.13 48.01 50.97 45.37 46.97 47.11 50.34 42.27 43.22 45.33 46.99
4 resource 46.14 47.69 48.89 52.01 45.96 47.62 48.17 51.19 43.32 43.67 45.92 47.75
5 resource 47.09 48.88 49.12 53.36 46.69 48.01 48.94 52.82 43.71 44.19 46.62 48.87

5

Inform. Technol. J., 16 (1): 1-10, 2017

Table 3: Heat generation
Native
--

Dynamic state
--

Static state LPA OEA HPA
41.04 42.11 43.24 44.97

XEN KVM Docker
--- --- ---
Dynamic state Dynamic state Dynamic state
--- -- --

No. of VM/Doc Static state LPA OEA HPA Static state LPA OEA HPA Static state LPA OEA HPA
1 resource 44.01 44.1 46.14 48.72 43.93 45.05 45.92 47.28 41.7 42.62 43.89 45.61
2 resource 45.17 46.25 46.65 50.02 45.02 46.11 46.38 49.15 41.91 42.93 44.57 46.26
3 resource 45.82 47.13 48.01 50.97 45.37 46.97 47.11 50.34 42.27 43.22 45.33 46.99
4 resource 46.14 47.69 48.89 52.01 45.96 47.62 48.17 51.19 43.32 43.67 45.92 47.75
5 resource 47.09 48.88 49.12 53.36 46.69 48.01 48.94 52.82 43.71 44.19 46.62 48.87

Table 4: System power consumption (x: No. of resources)
Static stage power consumption in XEN hypervisor y = 0.446x+12.30 (R² = 0.919)
Dynamic stage power consumption for HPA in XEN hypervisor y = 0.617x+17.95 (R² = 0.974)
Dynamic stage power consumption for OEA in XEN hypervisor y = 0.481x+14.33 (R² = 0.962)
Dynamic stage power consumption for LPA in XEN hypervisor y = 0.398x+12.97 (R² = 0.919)
Static stage power consumption in Docker container y = 0.371x+11.54 (R² = 0.975)
Dynamic stage power consumption for HPA in Docker container y = 0.545x+17.16 (R² = 0.994)
Dynamic stage power consumption for OEA in Docker container y = 0.382x+13.64 (R² = 0.982)
Dynamic stage power consumption for LPA in Docker container y = 0.313x+12.58 (R² = 0.983)

C How the hypervisor differs from container based
virtualization

C Get the idea of power intensive and heat management
for the various kind of application

The vast deviation of power consumption was noticed in
between native execution and virtualization execution in both
static and dynamic stage. The matrixes were gradually
increased while extending the level of resources. Scheduling
the multiple processing tasks during the extended level of
VM/Docker might be the reason of increasing the power
consumption. Same number of core usage or more core usage
in the virtual environment has led to busier. When the
processor gets busier, it has drawn more power. The XEN,
KVM in HBV and Docker in CBV also have different power
consumption but not the same as native execution. This might
be the reason of VM loaded their own OS, load process has
taken more time and more power when compared to Docker.
Further needed some storage to the hypervisor to keep the
track of number of parameters over the small period and
increased I/O process has a chance to consume more power
too. Figure 3 describes clearly about the flow of all power
consumption. The XEN was consumed more power when
compared to KVM. But Docker was consumed less power as
compared with XEN and KVM. The created mathematical
equation of power consumption shown in Table 4, which was
helps to limit the number of VM/Docker.

In heat generation, compared to the native execution, the
Docker shows less different because, light weight OS executed
separately inside the PM. But hypervisor generated more heat
than native execution, because VM installed and executed its
full OS inside the PM. Further VMs/Dockers were generated
more heat in terms of usage of more CPU, high CPU intensive
process and higher resource utilization. Figure 4 explores the
heat generation that generated the heat in descending
order to XEN, KVM and Docker, respectively. The XEN, KVM
processes their own memory and it can be run in many
instances as compared to Docker that leads to generated
more heat. The created mathematical equation of heat
generation shown in Table 5, which helps to limit the number
of VM/Docker.

DISCUSSION

This study is mainly discussing about the system energy
consumption deviation between HBV and CBV in static and
dynamic modes. Currently power consumption and heat
generation rate are increasing due to high usage of system
resources and energy consuming application. Mobile phone
and tablet PC are enhancing their architectures but still remain
limitation of processing memory, power constrains and heat
management, application portability due to different device
platform. These overheads have created the issues to use all
applications properly and the performances of the devices not

6

Inform. Technol. J., 16 (1): 1-10, 2017

16

15

14

13

12

11

Po
w

er
 (W

)

(b)

22

20

18

16

14

Po
w

er
 (W

)

Nati
ve

Reso
urs

e-1

Reso
urs

e-2

Reso
urs

e-3

Reso
urs

e-4

Reso
urs

e-5

(d)18

17

16

15

14

13

12

Po
w

er
 (W

)

Nati
ve

Reso
urs

e-1

Reso
urs

e-2

Reso
urs

e-3

Reso
urs

e-4

Reso
urs

e-5

(c)

15

14

13

12

11

10

Po
w

er
 (W

)

(a)
Native
XEN
KVM
Docker

Fig. 3(a-d): Consumption of all applications, (a) Power consumption in static mode, (b) Power consumption for LPA, (c) Power
consumption for OEA and (d) Power consumption for HPA

Table 5: System heat generation (x: No. of resources)
Static stage heat generation in XEN hypervisor y = 0.713x+43.50 (R² = 0.966)
Dynamic stage heat generation for HPA in XEN hypervisor y = 1.127x+47.63 (R² = 0.996)
Dynamic stage heat generation for OEA in XEN hypervisor y = 0.820x+45.30 (R² = 0.954)
Dynamic stage heat generation for LPA in XEN hypervisor y = 1.100x+43.51 (R² = 0.943)
Static stage heat generation in Docker container y = 0.543x+40.95 (R² = 0.937)
Dynamic stage heat generation for HPA in Docker container y = 0.801x+44.69 (R² = 0.988)
Dynamic stage heat generation for OEA in Docker container y = 0.681x+43.22 (R² = 0.998)
Dynamic stage heat generation for LPA in Docker container y = 0.388x+42.16 (R² = 0.983)

equally supported to all application. The implementation of
proper virtualization technology is the significant solution to
above mentioned overheads. Based on the above output, the
researchers came to know how the different workload of
application has impacted by the different kind of virtualization
technology.

Patil and Bhavani13 has explored, VM must have
heterogeneous resources due to run different kind of
application and PM satisfied the needed resources of all VMs
running on it. Otherwise PM lead performance degradation of
its VMs while application runs on the VMs. The resource

utilization and memory utilization were improved by
minimizing the skewness. Due to save the power wastage of
PM in idle mode researcher has introduced the green
computing, which save energy by finding the rate of average
resource utilization. The cost of the running application and
cloud computing infrastructure are minimizing by cloud
computing. Xavier et al.11 has expressed, the Container Based
Technology (CBT) such as Linux-VServer, OpenVZ and Linux
container (LXC) has low overhead as compared to other
virtualization technology during the usage of HPC application,
because CBT is offering lightweight virtualization, better

7

Inform. Technol. J., 16 (1): 1-10, 2017

50

48

46

44

42

40

H
ea

t (
°C

)

(b)

50

48

46

44

42

H
ea

t (
°C

)

(c)

Nati
ve

Reso
urs

e-1

Reso
urs

e-2

Reso
urs

e-3

Reso
urs

e-4

Reso
urs

e-5

54

52

50

48

46

44

H
ea

t (
°C

)

(d)

Nati
ve

Reso
urs

e-1

Reso
urs

e-2

Reso
urs

e-3

Reso
urs

e-4

Reso
urs

e-5

48

46

44

42

40

H
ea

t (
°C

)

(a)
Native
XEN
KVM
Docker

Fig. 4(a-d): Heat generation of all applications, (a) Heat production in static mode, (b) Heat production for LPA, (c) Heat
production for OEA and (d) Heat production for HPA

resource sharing, custom environment and etc. In order to
that, researcher is expecting the near native performance from
the PM resources. Researcher said, all virtualization systems
obtained near-native performances. The XEN does not
perform natively for CPU intensive benchmarks and the
Memory. In disk performance, LXC and Linux-VServer were
obtained near native and OpenVZ was obtained similar native
performance. In network, native performances were obtained
in Linux-VServer, LXC and OpenVZ as followed. But overall,
XEN was obtained bad performance in all virtualization. In
container, poor isolation and less security were observed in
the resource management implementation. In isolation, XEN
has showed better performance due to non-shared OS.

Dhiman et al.14 proposed the concept of vGreen that is
the energy efficient software system which managed the VM
scheduling with implementation of different PMs. In vGreen
architecture, researcher represent vgnode as the cluster of
each PM, vgserv as the central server mange the VM
scheduling and vgpolicy as the policies running on vgserv.

Each vgnode consists of XEN (vgxen), Dom0 (vgdom) and
matrices evaluate using vgreen modules. The memory access
per cycle, instruction per cycle and different VMs utilization
were the matrices captured during the VM execution on
vgnodes. Finally researcher observed the 20% Improvement
of performance and 15% Improvement of system level energy
saving during the implementation of vGreen in real time.

Tikotekar et al.15 has raised the question, which was
related to performance impact such as. (1) How to quantify the
difference between the flexibility offered by two VM
configurations?. (2) Is the performance impact between two
VM configurations? to finding the answer, he was created two
type of VM with different configuration and executed the
LAMMPS application. He measured wall clock time for overall
performance. He conclude that there is a 3% performance
impact between different configurations VMs. Linux VM is the
better control then XEN in handling the application, resources.

According to the above literatures, understand that
the researches are ongoing regarding virtualization and its

8

Inform. Technol. J., 16 (1): 1-10, 2017

applications. So, as per my review of literature, less amount
of researchers has concerned about the issues of power
consumption and heat generation while using different
workloads. So, this study has enforced and investigated the
issues of power and heat.

CONCLUSION

In order to reap the benefits of virtualization technology,
reducing the current overhead of power consumption and
heat generation, recommendation is to provide better
platform for using high performance application, online
education application and low performance application. These
investigations were done based on the quantitative analysis
approach. Mainly this experiment was concerned with XEN,
KVM in hypervisor based virtualization and Docker in container
based virtualization through the static and dynamic mode.
The static is the native value, which is the basic and constant
value to the particular machine configuration. Online
education application is a web application, which was
developed and deployed on the cloud. Linux benchmark
office applications were used for low performance application
and “Flight gear” game was used for high performance
application. Power and heat was used as variables that were
measured by watts and celsius, respectively. Java and Linux
shell coding were used as experiment tools to execute on the
PM. Several kinds of tests were conducted for 60 times
consecutively with the 3 sec interval. Detail comparison was
done with the implementation of VM/Docker. The innovation
after our investigation resulted as follow:

C Each application and each virtualization technology
consumed different level of power and generated
different level of temperature

C In all 3 types of applications ascending order power
consumption and temperature generation rate was
observed in Docker, XVM and XEN, respectively

C The XEN and KVM is the similar type of hypervisor based
virtualization, even though it has consumed relatively at
the same amount of power and small deviation of heat
generation. But vast differences were noticed in Docker
container, which consumed very less power and less heat
generation than hypervisor based virtualization

C Limit the number of VM/Docker on top of physical
machine through the mathematical expression which
created from least square method with the use of
measured matrices

As a conclusion, this study recommended that the
Docker virtualization technology is providing better energy
management in static and dynamic mode to all 3 kinds of
applications.

SIGNIFICANT STATEMENT

The number of extending resources and extending
applications on top the physical host is consuming more
power and generating more heat as compare to native
execution that leads to instabilities of their hardware
resources. It has been identify through the implementation of
virtual machine using virtual box in my previous investigation.
This study demonstrated to execute the applications with the
implementation of Docker virtualization technology were
consumed less power and generated less heat among the
other virtualization technologies of XEN and KVM.

REFERENCES

1. Kinger, S. and K. Goyal, 2013. Energy-efficient CPU utilization
based virtual machine scheduling in Green clouds.
Proceedings of the 5th International Conference on Advances
in Recent Technologies in Communication and Computing,
September 20-21, 2013, Bangalore, India, pp: 28-34.

2. Marcu, M., D. Tudor and S. Fuicu, 2011. Power consumption
and temperature measurement of virtualization solutions.
Proceedings of the 17th International Workshop on Thermal
Investigations of ICs and Systems, September 27-29, 2011,
Paris, pp: 1-6.

3. Calimera, A., E. Macii, D. Ravotto, E. Sanchez and M.S. Reorda,
2010. Generating power-hungry test programs for
power-aware validation of pipelined processors. Proceedings
of the 23rd Symposium on Integrated Circuits and System
Design, Sao Paulo, Brazil, September 6-9, 2010, ACM,
New York, USA., pp: 61-66.

4. Alam, M., 2008. Reliability-and process-variation aware design
of integrated circuits. Microelectron. Reliabil., 48: 1114-1122.

5. Oh, Y.K. and H.D. Yang, 2015. A study on control of heat
generation in computer using thermoelectric cooling system.
J. Korea Academia-Industrial Cooperat. Soc., 16: 43-49.

6. Riskhan, B. and M. Raza, 2016. Virtual machine performance
approaches in the online education system. Proceedings of
the International Multi Conference of Engineers and
Computer Scientists, March 16-18, 2016, Hong Kong,
pp: 94-99.

7. Selokar, A., S.D. Zade and C.U. Chavan, 2014. Survey on
dynamic resource allocation using virtual machines for cloud
computing environment. Int. J. Adv. Res. Comput. Commun.
Eng., 3: 6449-6452.

9

Inform. Technol. J., 16 (1): 1-10, 2017

8. Badola, V., 2015. Container virtualization: What makes it work
so well? Cloud Academy, October 27, 2015. http://
cloudacademy.com/blog/container-virtualization/.

9. Joy, A.M., 2015. Performance comparison between linux
containers and virtual machines. Proceedings of the
International Conference on Advances in Computer
Engineering and Applications, March 19-20, 2015, India,
pp: 342-346.

10. Scott, S.L., G. Vallee, T. Naughton, A. Tikotekar, C. Engelmann
and H. Ong, 2008. System-level virtualization research at oak
ridge national laboratory. Oak Ridge National Laboratory, Oak
Ridge, January 2008.

11. Xavier, M.G., M.V. Neves, F.D. Rossi, T.C. Ferreto, T. Lange
and C.A.F. de Rose, 2013. Performance evaluation of
container-based virtualization for high performance
computing environments. Proceedings of the 21st Euromicro
International Conference on Parallel, Distributed and
Network-Based Processing, February 27-March 1, 2013,
Belfast, pp: 233-240.

12. Adufu, T., J. Choi and Y. Kim, 2015. Is container-based
technology a winner for high performance scientific
applications? Proceedings of the 17th Asia-Pacific Network
Operations and Management Symposium, August 19-21,
2015, Busan, pp: 507-510.

13. Patil, S.S. and K. Bhavani, 2014. Dynamic resource allocation
using virtual machines for cloud computing environment.
Int. J. Eng. Adv. Technol., 3: 218-221.

14. Dhiman, G., G. Marchetti and T. Rosing, 2009. vGreen:
A system for energy efficient computing in virtualized
environments. Proceedings of the International Symposium
on Low Power Electronics and Design, August 19-21, 2009,
San Francisco, California, USA., pp: 243-248.

15. Tikotekar, A., H. Ong, S. Alam, G. Vallee, T. Naughton,
C. Engelmann and S.L. Scott, 2009. Performance comparison
of two virtual machine scenarios using an HPC application:
A case study using molecular dynamics simulations.
Proceedings of the 3rd ACM Workshop on System-Level
Virtualization for High Performance Computing, March 31,
2009, Germany, pp: 33-40.

10

	ITJ in Colors.pdf
	Page 1

