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Abstract
Remote Procedure Call (RPC) is defined as a model for inter-process communication in distributed systems. RPC is simple as well as
powerful. However, most of the RPC systems used synchronously in nature and synchronous RPC systems are not able to exploit fully
parallelism in distributed applications. Therefore, various asynchronous RPC systems have been designed to achieve higher parallelism
while retaining the simplicity of synchronous RPC. Asynchronous RPC calls do not block the client and the replies can be received when
they are needed. Asynchronous RPC calls can be categorized into two types depending on whether the calls return a value. Most
asynchronous RPC systems only support calls that do not return a value.  An analysis and comparison of various asynchronous RPC systems
were  presented  in  this  paper.  Among  several  asynchronous  RPC  interfaces,  the  Mercury  interface  seems  to  be  appropriate to use
in high-performance computing systems where a large volume of data needs to be transferred.
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INTRODUCTION

Many distributed systems have been based on an explicit
message exchange between processes. Remote Procedure
Call (RPC) is a technique that follows a client/server model and
allows local calls to be transparently executed onto remote
resources1. RPC is a widely-used communication mechanism
in distributed systems and applications such as Amoeba
distributed operating system.

Sprite Net system and Andrew File System, the local
function parameters are serialized into a memory buffer and
then sent to buffer to a remote target where deserialization
takes place and the corresponding function call gets executed.
Libraries that implement such a technique can be found in
various domains such as web services with Google Protocol
Buffers2. RPC realization can also be achieved using a more
object-oriented approach with frameworks such as CORBA or
Java RMI3 where abstract objects and methods can be
distributed across a range of nodes or machines. In a
distributed system, the various steps of an application
workflow need to be distributed. Most of these RPC systems
are synchronous and hence fail to exploit fully the parallelism
inherent in distributed applications. This severely limits the
kind of interactions the distributed application can have,
resulting in lower performance. To achieve concurrency, the
user has to resort to other means such as light-weight
processes  (threads)  or  the  low-level  inter-machine
message-passing mechanism. If the host operating system
does  not  support  thread  as  in  the  case  of  Unix,  costly
heavy-weight processes have to be used instead. Both of
these solutions are not attractive to the users. The first solution
is difficult to debug and does not scale well in a large
distributed environment. The second solution is much more
difficult to use than the RPC mechanism. Because of this,
various asynchronous RPC systems have been designed and
implemented to achieve higher parallelism while retaining the
familiarity and simplicity of synchronous RPC. Asynchronous
RPC calls do not block the caller and the replies can be
received as and when they are needed, thus allowing the
client execution to proceed locally in parallel with the server
invocation.

The asynchronous RPC mechanisms included in the
discussion are Athena Non-blocking RPC, NCA Maybe RPCo
Sun Batching RPC, Remote Pipes, Stream (Promises), Future
and ASTRA. The comparison is based mainly on the following
characteristics of the asynchronous RPC mechanisms" Support
for the receipt of the reply message, Transport protocols order
of delivery of call and replies messages, Call semantics,
Optimization for low-latency or high-throughput.

The design of an asynchronous RPC mechanism is
motivated mainly by the need to achieve high parallelism
while retaining the simplicity and familiarity of the RPC
abstraction. The limited degree of parallelism can be achieved
by creating multiple lightweight processes (threads) for each
RPC call3. This allows the client to make multiple calls to
multiple servers and still be able to execute in parallel with the
servers. The existing RPC interface follows a client-server
architecture where a remote call results in different steps
depending on the size of the data associated with the call.
Every RPC call sent through the interface results in the
serialization of function parameters into a memory buffer,
which is then sent to the server using the network abstraction
layer interface. Therefore, it is required to limit memory copies
at any stage of the transfer, especially when transferring large
amounts of data4,5. Therefore, if the data being sent is small, it
is serialized and sent using small messages, otherwise, a
description of the memory region that is to be transferred is
sent within this same small message to the server. A large
amount of data needs to be transferred to several nodes in a
distributed system. Therefore, the resulting overhead during
communication among several nodes needs to be minimized
and there should be the efficient transfer of a large volume of
data. The main purpose of this study was to analyze and
compare various asynchronous RPC systems.

LITERATURE REVIEW

A  large  data  can  be  transferred  in a network file system
by making use of remote procedure call, where the
serialization of arbitrary data structures takes place resulting
stream of bytes, which are sent to a remote resource, which
can de-serialize and get the data back from it. By providing a
network abstraction layer, the RPC interface gives the ability
to the user to send small data and large data efficiently, using
either small messages or Remote Memory Access (RMA) types
of transfer that fully support one-sided semantics present on
recent. With the popularity of the Internet and the
improvement of information technology, digital information
sharing increasingly becomes a trend. Several universities pay
attention to the digital campus and the construction of the
digital library has become the focus of the digital campus.
Manageable, authenticated and secure solutions are needed
for remote access to make the campus network be a transit
point for the outside users. Remote Access IPSEC Virtual
Private  Network  provides  the  solution  of  remote  access to
e-library resources, networks resources and so on very safely
through a public network4.
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ASTRA is built within the framework of SHILPA-a
Distributed Computing Environment5. The main design
objective of SHILPA is to provide a generic distributed
computing  platform  for  building   distributed  applications
on  the  interconnection  of  local  area  networks  in  a
heterogeneous environment. ASTRA calls are similar to stream
and future calls in that they can defer receipt of results. The
client can make an ASTRA call in the C language using the
following primitives: RPCXID RPC. Cintasycail (cinthandler,
service, call_option, ...)

Decoupled and Asynchronous Remote Transfers (DART)6,7

project provides a similar type of work but DART is not defined
as an explicit RPC framework. A large amount of data is
transferred using a client/server model from applications
running on the compute nodes of an HPC system to local
storage or remote locations. DART requires explicit requests to
be sent by the user and there is no inherent limitation for the
integration of such a framework.

A similar project named I/O Forwarding Scalability Layer
(IOFSL) makes use of RPC to specifically forward I/O calls. It
defines an API that locally serializes function parameters and
sends them to a remote server, where they can in turn get
mapped onto file system-specific I/O operations. IOFSL not
only sends a specific set of calls, like the ones that are defined
through the API but also handles a various set of calls, which
can be dynamically and generically defined. IOFSL allows
support for dynamic connection as well as fault tolerance. In
addition, it defines two types of messaging i.e. unexpected
and expected.

Sandia National Laboratories’ Network Scalable Service
Interface (Nessie) system provides a simple RPC mechanism
originally developed for the Lightweight File Systems project4.
It has an asynchronous RPC Mechanism. The RPC interface of
Nessie  directly  relies  on  the  Sun  XDR  solution  which  is
mainly designed to communicate between heterogeneous
architectures, even though practically all High-Performance
Computing systems are homogeneous.

It provides a separate mechanism to handle bulk data
transfers, which can use RDMA to transfer data efficiently from
one memory to the other and supports several network means
of transport. The Nessie client uses the RPC interface to push
control messages to the servers.

DESIGN CRITERION

Existing   synchronous  RPC  systems  are  designed  for
low-latency  to  improve  the  response time, whereas the
asynchronous RPC systems are mostly designed for high-

throughput. It is desirable to structure an asynchronous RPC
system such that either low-latency or high-throughput can
be achieved. In this case, the user can specify explicitly the
optimization needed at run-time and mix low-latency calls
with high throughput calls. There are many criteria required in
the design of an asynchronous RPC system.

Firstly, an asynchronous RPC system must have the look
and feel of an asynchronous RPC system, except that the client
does  not  wait  for  a  reply  after  making  an  asynchronous
call. In this case, the client may or may not be able to defer
receipt of return replies. In addition, all calls should be
received and executed by the server in the order called by the
client to preserve the correct call semantics. Therefore an
asynchronous RPC system should retain all the benefits that a
conventional synchronous RPC system has to offer and yet
allow parallel execution of the client and the server.

Secondly, an asynchronous RPC system must be designed
to be transport independent to suit different types of
application needs. Generally, clients and servers are involved
in two kinds of interactions, intermittent exchange and
extended exchange. By intermittent exchange we mean the
client makes a few occasional Request-Response (RR) types of
calls. By extended exchange we mean the client is either
involved in bulk data transfer or makes much RR type of calls
to a particular server. An asynchronous RPC system should
ideally incorporate both virtual-circuit and datagram transport
protocols, to allow the application to choose the best
transport that meets its needs. To achieve optimum
performance, a virtual circuit could be selected for extended
exchange since it provides better flow and error control with
negligible processing overhead. On the other hand, the
datagram is more suitable for intermittent exchange due to its
simplicity. Thirdly, an asynchronous RPC facility must be
optimized for intra-machine calls. Existing synchronous RPC
systems are designed for low-latency to improve the response
time, whereas the asynchronous RPC systems are mostly
designed for high-throughput. It is desirable to structure an
asynchronous RPC system such that either low-latency or
high-throughput can be achieved. In this case, the user can
specify explicitly the optimization needed at run-time and mix
low-latency calls with high-throughput calls. IPSEC Virtual
Private Network establishes a safe and stable tunnel that
encrypts the data passing through it with secured algorithms.
It is to establish a virtual private network on Internet so that
the two long-distance network users can transmit data to each
other in a dedicated network channel. Using this technology,
the multi-network campus can communicate securely in the
unreliable public internet8.
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Fig. 1: Taxonomy of RPC calls

ASYNCHRONOUS RPC SYSTEM
 

Asynchronous RPC calls are divided into two types
depending on whether the call returns a value. Most
asynchronous RPC systems only support calls that do not
return a value and few support both classes. A classification of
the asynchronous RPC is shown in Fig. 1.

ASYNCHRONOUS RPC WITHOUT RETURN VALUE MIT
PROJECT ATHENA NON-BLOCKING RPC

The objective of MIT's project Athena9,10 was to integrate
various computing and communication resources for
educational purposes. Athena RPC was developed under the
constraints imposed by the coherence model 0 of Project
Athena. Some of the constraints included no modification to
the Unix kernel, support of RPC in a heterogeneous
environment and support of multiple language suites. It was
implemented as a prototype in the BSIM. RPC provides both
blocking (synchronous) and non-blocking (asynchronous)
calls. Athena non-blocking RPC was developed primarily to
improve the performance of applications where no
information or status needs to be returned from the called
procedure.  To  reduce  latency,  Athena  non-blocking  RPC
sends out its call message immediately after each call. In
addition, it does not differentiate between inter-machine and
intra-machine calls and hence no optimization is performed
for local intra machine calls.

NCA MAY BE RPC

NCA/RPC10,11 was developed by HP/Apollo as part of the
Network Computing Architecture(NCA). It provides a rich set
of RPC calls for the programmer: A normal blocking RPC which
is termed send-wait-reply, an asynchronous RPC which is
called maybe RPC, broadcast RPC and broadcast/maybe RPC.

NCA may be RPC does not attempt to buffer the call messages,
the  call  message  is  sent  immediately  to  achieve  low
latency. In addition, it does not optimize intramachine calls
since  it  does  not  distinguish  between  intra-machine  and
inter-machine calls.

SUN BATCHING RPC

Sun ONC/RPC was developed by Sun Microsystems as
part of Open Network Computing (ONC). Sun batching RPC is
one of the call types provided by Sun RPC, others are normal
synchronous RPC and broadcast RPC. Batching RPC allows a
series of calls to be made from the client to the server. Each
RPC call in the pipeline requires no reply from the server and
the server can not send a reply message. The last call must be
a normal blocking RPC to flush out the pipeline of calls.

Sun RPC provides two types of interface for application
programmers. One is available as library routines. The other
interface uses an RPC specification hmguage (RPCL) and a
stub generator (RPCGEN). The RPCL is an extension of the
External Data Representation (XDR) specification. To use
batching RPC, one can use RPCGEN or the library routines. Sun
batching RPC makes use of TCP to buffer call messages and
send them to the server in one Unix write () system call. This
greatly decreases the system call overhead, thus improving
performance and throughput. However, no optimization is
done for intra-machine calls in Sun batching RPC.

REMOTE PIPE

The remote pipe was designed to allow bulk data and
incremental results to be efficiently transported in a type-safe
manner. These objectives are realized using a communication
model called the Channel Model. The Channel Model consists
of three basic elements: remote procedure, remote pipe and
channel groups. In the Channel Model, a node is similar to a
process. A node may contain several channels. A channel is
either a remote procedure or a pipe. The difference between
a remote procedure and a pipe is that the former is a
synchronous RPC while the latter is an asynchronous RPC that
does not return a value. A node can import any channel
exported by any other node or possibly re-export them to
other nodes. This makes the channel a first-class value that can
be freely exchanged among nodes. The importing node can
group channels into a set called a channel group. A channel
group controls the sequencing of the calls, data sent to a
channel within a channel group are received in the order sent.
The performance of the Channel Model can be optimized by
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buffering and combining pipe calls destined for the same sink
node into a single message to reduce the message-handling
overhead and hence improving the throughput. This is similar
to Sun batching RPC. Other optimizations include combining
pipe calls with procedure calls to flush out the buffered pipe
calls, combining pipe returns to a single message to reduce
message handling and system call overheads, pre-allocating
processes   in   a   process   pool   to   eliminate   fork   overhead
and factoring packages and groups to save space. In the
Channel  Model,  no  attempt  is  made  to  differentiate
between inter-machine and intra-machine calls. As a result,
intra-machine calls are not optimized.

ASYNCHRONOUS RPC WITH RETURN VALUE

The RPC systems discussed to provide some form of
asynchronous implementation but do not include a
mechanism to support return results. This shortcoming limits
the design of distributed applications to strictly unidirectional
exchange from client to server. There are three choices open
to the application programmer in these systems: First,
program the application using synchronous RPC call and
sacrifice concurrency, second, structure the application in such
a way that no reply from servers is needed, Third, directly
program on top of the transport layer. Because of these
shortcomings asynchronous RPC systems that can defer
receipt of replies such as stream (promises), future and ASTRA
have been developed.

STREAM

Stream in the MIT Mercury system is the first RPC system
that combines synchronous and asynchronous calls with
return value in a clean and uniform way12. Stream provides
three kinds of calls: normal synchronous RPC calls, stream calls
and send. Stream calls is a kind of asynchronous RPC call with
a reply message. Send, on the other hand, is similar to Sun
Batching RPC and remote pipe calls, in that the client is not
interested in the reply. In addition to the above three calls,
stream provides a "flush" primitive that can be used to flush
out the buffered call or reply messages and a "synch" primitive
that will block the caller until the processing of all the earlier
calls has been completed. A stream-based transport protocol
such as TCP is used for transporting and sequencing the
stream call and reply messages reliably. It simplifies the
implementation of the stream and also provides at-most-once
call semantics. However, the fact that the stream relies solely
on a specific reliable stream-based transport makes it more

suitable for bulk data transfer rather than low-latency calls.
Moreover, the use of TCP leads to higher overheads for most
transactional applications where a request-response protocol
is more appropriate. Like Sun batching RPC and remote pipes,
it was designed mainly to achieve high-throughput where call
messages are buffered and flushed when convenient. This is
to reduce the system call overhead. Although low latency can
also be achieved by explicitly flushing out the calls, it is
however somewhat inconvenient.

Again, no optimization is done for intra-machine calls.
Recent smartphones have the capacity for capturing most of
human characteristics. The biometric information is stored in
the bank’s server in encrypted form which is used to verify
mobile banking user’s identity over secured communication
channel13,14.

ASTRA

ASTRA7 is built within the framework of SHILPA-a
Distributed Computing Environment for the Department of
Information Systems and Computer Science (DISCS) at the
National University of Singapore (NUS). The main design
objective of SHILPA is to provide a generic distributed
computing platform for building distributed applications on
the interconnection of local area networks in a heterogeneous
environment. ASTRA integrates both low-latency and high-
throughput communication into one single asynchronous RPC
model. The user can specify explicitly whether low-latency or
high-throughput is the main concern for an invocation and
the system will optimize the call accordingly. It differs from
other asynchronous RPC systems such as stream and future
that are designed to achieve only one of them but not both.
Unlike stream and future ASTRA provides highly optimized
intra-machine calls. For an intra-machine call ASTRA will
bypass the data conversion and network communication and
directly uses the fastest native IPC mechanism provided by the
local operating system. This is a unique feature provided by
ASTRA. However ASTRA does not incorporate concepts like
Future Set and Funnel. The flow control in ASTRA is done by
the underlying transport protocol.

FUTURE

Future15 is an asynchronous RPC provided in the CRONUS
system. A future is an object that is returned after each client
invocation. It can be used to claim the result of an invocation
at a later stage. Futures are created and claimed by the stub
procedures which are automatically generated from a
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specification of the remote operations. Future also provides an
abstraction called Future Set. This allows multiple futures to be
grouped into a set. Future Set facilitates the management of
futures and eliminates the strict ordering of claim operations.
Future was implemented on both TCP and UDP. TCP is the
main transport protocol supported in future. With TCP, the
delivery of the call and reply messages are guaranteed. On the
other hand, the future does not provide any end-to-end
mechanism on top of UDP. Thus UDP-based future calls are
neither reliable nor dependable.  Although TCP is a sequenced
transport protocol, the future makes no guarantees
concerning  the  order  of  delivery  of  the  call  messages.  The
call messages may be reordered in the process of buffering
before it is transmitted. This is a serious drawback since the
order of execution in the server may be different from the
order called by the client. Unlike most of the asynchronous
RPC  systems,  future was designed mainly for low-latency. The
call message is sent immediately for each request made and
the returned results can be claimed in any order. In the current
implementation, the future does not bypass the expensive
data conversion and  network  communication  for  intra-
machine calls16. It was investigated that most of the banks are
using the card management software and most of them are
not efficient enough to satisfy the need of users using it and
the institutions. It is recommended that the institutions should
implement few concepts to minimize the operational risk  and
add extra features to the existing system13,14.

MERCURY

It is an asynchronous RPC interface specifically designed
for use in High-Performance Computing (HPC) systems that
allows the asynchronous transfer of parameters and execution
requests and direct support of large data arguments. Mercury
interface is generic to allow any function call to be shipped.
Moreover, the network implementation is abstracted, allowing
easy porting to future systems and efficient use of existing
native transport mechanisms. It provides a reusable RPC
library for use in HPC that can serve as a basis for services such
as storage systems, I/O forwarding, analysis frameworks and
other forms of inter-application communication13.

The RPC interface follows a client/server architecture. It
involves two types of transfers: Transfers containing typical
function parameters referred to as metadata and transfers of
function parameters describing large amounts of data,
referred to as bulk data. Every RPC call sent through the
interface results in the serialization of function parameters into
a memory buffer, which is then sent to the server using the

network abstraction layer interface. It is required to limit
memory copies at any stage of the transfer, especially when
transferring large amounts of data. Therefore, if the data sent
is small, it is serialized and sent using a small message,
otherwise, a description of the memory region that is to be
transferred is sent within this same small message to the
server. Mercury provides direct support for handling remote
calls that contain large data arguments. Mercury’s network
protocol can support the scalability of up to thousands of
clients. However, mercury does not offer support for
cancelling ongoing RPC calls. Sharma et al.14  proposed a
framework that brings an abstraction and its infrastructure for
multimedia materials storage, management, real-time review
of multimedia on-demand and a shared whiteboard on web
browser to distance learner. For the design of the proposed
system, it is necessary to consider different requirement and
management of quality of service.

DECOUPLED AND ASYNCHRONOUS REMOTE TRANSFERS
(DART)

DART enables fast, low-overhead and asynchronous
access  to  data  from  a  running  simulation,  and  support
high-throughput, low-latency data transfers15,17. The primary
goal of DART is to efficiently manage and transfer large
amounts of data from applications running on the compute
nodes of an HPC local storage or remote locations, to enable
remote application monitoring, data analysis, code coupling
and data archiving. The key requirements that DART is trying
to satisfy include minimizing data transfer overheads on the
application, achieving high-throughput, low-latency data
transfers and preventing data losses. DART provides an
asynchronous transfer API for single-threaded environments
that are common on high-performance computing resources
tuned for scientific computing. While DART is not defined as
an explicit RPC framework, it allows the transfer of large
amounts of data using a client/server model from applications
running on the compute nodes of an HPC system to local
storage or remote locations, to enable remote application
monitoring, data analysis, code coupling and data archiving17.
The key requirements that DART is trying to satisfy include
minimizing data transfer overheads on the application,
achieving high-throughput, low-latency data transfers and
preventing data losses. Towards achieving these goals, DART
is designed so that dedicated nodes, i.e., separate from the
application compute nodes asynchronously extract data from
the memory of the compute nodes. Participatory Sensing is
more into action where people sense data from their devices
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and collaborate with other people for a different purpose. As
sensor data to be sent to servers, data are sent from different
media like 3G Service, Wi-Fi access point, etc.18

CONCLUSION

This study discovered the different RPC systems which
were designed to achieve higher parallelism while retaining
the  simplicity  of  synchronous  RPC.  Asynchronous  RPC  calls
do not  block  the  client  and  the  replies  can  be  received
when they are needed. Among several asynchronous RPC
interfaces, the Mercury interface seems to be appropriate to
use in high-performance computing systems where a large
volume of data needs to be transferred.

SIGNIFICANCE STATEMENTS 

This  study  discovered  that  the  mercury  interface seems
to be appropriate to use in high-performance computing
systems where a large volume of data needs to be transferred.
It can beneficial for comparing and analyzing various
asynchronous RPC systems. This study will help the
researchers to uncover the critical areas of RPC interfaces,
Mercury interface which is appropriate to use in high-
performance computing systems where a large volume of
data needs to be transferred.
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