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Abstract
Background and Objective: In response to the challenges of poor mapping outcomes and susceptibility to obstacles
encountered by indoor mobile vehicles relying solely on pure cameras or pure LiDAR during their movements, this paper
proposes an obstacle avoidance method for indoor mobile vehicles that integrates image and LiDAR data, thus achieving obstacle
avoidance for mobile vehicles. Materials and Methods: This method combines data from a depth camera and LiDAR, employing
the Gmapping SLAM algorithm for environmental mapping, along with the A* algorithm and TEB algorithm for local path
planning. In addition, this approach incorporates gesture functionality, which can be used to control the vehicle in certain special
scenarios where “pseudo-obstacles” exist. The method utilizes the YOLO V3 algorithm for gesture recognition. Results: This paper
merges the maps generated by the depth camera and LiDAR, resulting in a three-dimensional map that is more enriched and
better aligned with real-world conditions. Combined with the A* algorithm and TEB algorithm, an optimal route is planned,
enabling the mobile vehicles to effectively obtain obstacle information and thus achieve obstacle avoidance. Additionally, the
introduced gesture recognition feature, which has been validated, also effectively controls the forward and backward movements
of the mobile vehicles, facilitating obstacle avoidance. Conclusion: The experimental platform for the mobile vehicles, which
integrates depth camera and LiDAR, built in this study has been validated for real-time obstacle avoidance through path planning
in indoor environments. The introduced gesture recognition also effectively enables obstacle avoidance for the mobile vehicles.
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INTRODUCTION

The autonomous navigation of mobile vehicles is
currently a prominent focus in the field of artificial intelligence.
Path planning, a critical component of this capability,
necessitates not only the utilization of algorithms to identify
collision-free routes from starting points to designated
destinations but also the capacity to dynamically adapt to
obstacles within intricate and ever-changing environments.
The efficacy of trajectory planning and obstacle avoidance
performance is directly contingent upon the algorithms
employed. Consequently, research efforts are concentrated on
the development and refinement of path planning and
obstacle avoidance algorithms.

Path planning is divided into global path planning and
local path planning1. Global path planning algorithms are
primarily responsible for finding a collision-free path from the
starting point to the destination within a global map.
However, they generally lack the real-time dynamic obstacle
avoidance feature. Global path planning algorithms include
Dijkstra’s algorithm2, A* 3, D* 4, ant colony algorithms5, genetic
algorithms6, among others. On the other hand, local path
planning algorithms are applied in situations where only a
part of the environment is known or the environment is
entirely unknown. These algorithms utilize information
obtained from onboard sensors to provide real-time obstacle
avoidance and planning capabilities. Local path planning
algorithms encompass the dynamic window approach
(DWA)7, Artificial Potential Field Method8 and time elastic band
Algorithm (TEB)9, among others. Among these algorithms,
Dijkstra’s algorithm lacks constraints during the search
process, resulting in a large search space and reduced
efficiency. In contrast, A* algorithm’s heuristic search
characteristic offers advantages over Dijkstra’s algorithm in
terms of search efficiency10. The DWA algorithm has a high
computational complexity, making it challenging to achieve
real-time dynamic obstacle avoidance. Additionally, the
mobile vehicle designed in this study employs an Ackermann
chassis, which does not track paths generated by DWA local
path planning effectively. In contrast, the TEB algorithm not
only directly supports the Ackermann chassis model but also
provides time-optimal local path planning, enabling real-time
and effective obstacle avoidance for local dynamic obstacles.

Achieving flawless obstacle avoidance for mobile vehicles
demands the creation of precise maps. In many scenarios,
single  sensors  are  employed  to  reduce  costs.  However,
these individual sensors exhibit inherent limitations that are
challenging to circumvent. For instance, LiDAR, while useful,
generates point cloud data with limited information content,
leading    to    incomplete    road    surface     perception     and

significantly reduced detection accuracy in adverse weather
conditions11. Camera sensors perform well in static scenes but
exhibit inadequate perception capabilities in dynamic
environments. They are also susceptible to environmental
factors, leading to inaccurate positioning in harsh weather
conditions like strong winds or rain12. Ultrasonic sensors can
identify transparent and reflective objects but have a limited
detection range and provide subpar three-dimensional
information. To address these challenges, this paper proposes
an  obstacle  avoidance  method  for  indoor  mobile  vehicles
that  fuses  image  and  LiDAR  data.  This  design  combines
LiDAR and depth cameras, employs the Gmapping SLAM
(Simultaneous Localization and Mapping) algorithm for map
construction and utilizes A* and TEB algorithms for path
planning and obstacle avoidance. Additionally, this method
incorporates a gesture control feature, which can be used to
control the vehicle in scenarios with “pseudo-obstacles”. The
obstacle avoidance functionality of this design is validated
through an experiment conducted on a built mobile vehicle
platform. This approach not only accurately constructs
environmental maps but also enables precise obstacle
avoidance.

MATERIALS AND METHODS

Study area: The study was conducted at Xichang University in
Xichang from April to September, 2023.

Gmapping SLAM: The Gmapping algorithm proposed by
Grisetti and colleagues is an improved SLAM algorithm based
on RBPF (Rao-Blackwellized Particle Filter)13. Its primary
contribution lies in enhancing the proposal distribution and
resampling selection, allowing for accurate estimation of the
state of a mobile vehicle using a small number of particles and
effectively addressing particle degeneracy issues. In particle
filtering, the proposal distribution model typically directly
employs odometric motion models. However, these odometric
motion models often lead to substantial discrepancies
between the proposed distribution and the true distribution.
By utilizing the observation model from LiDAR data, a more
concentrated distribution can be established, aligning more
closely with the actual distribution14.

The G mapping algorithm incorporates data obtained
from LiDAR scans into the proposed distribution, thereby
improving the proximity of the proposed distribution to the
target. The enhanced proposal distribution can be
represented by Eq. 115:
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Table 1: Pseudocode for A* algorithm
A* Algorithm
1. The initial node S is placed into the OPEN set.
2. If the OPEN set is empty, then
3. return failure
4. else
5. repeat
6. Select Bestnode, from the OPEN set and move it to the CLOSE set
7. If Bestnode is considered as the target node
8. Success
9. else
10. Add Bestnode and calculate g(SUC) = g(Bestnode)+h(Bestnode, SUC)
11. If SUC is not present in both OPEN and CLOSE sets, then
12. Integrate Successor into the OPEN set
13. else
14. SUC=OLD, add it to the successor nodes list of Bestnode
15. if g(GUC)<g(OLD) then
16. Determine the parent node of OLD as BES and update the g(n) and f(n) values in the parent node. Mark g(OLD)
17. end if
18. Calculate h(n)
19. end if
20. end if
21. Until all nodes have been traversed
22. end if

In Eq. 1, ut-1 represents the recorded self-motion
information of the mobile vehicle at time t-1 during its
movement, xt signifies the estimated motion trajectory of the
mobile vehicle at time t, zt denotes the environmental
information detected by the sensors at time t,  representsi

t-1x
the  state  of  down-sampled  particles  at  time  t-1,  i

t-1m
represents the environmental map at time t-1.

To address the issue of particle degeneracy, the effective
number of particles is calculated using Eq. 2. By comparing it
with a predefined threshold, when Neff is less than this
threshold, the particle is considered as having a significant
deviation and is subject to resampling. Otherwise, if Neff
exceeds the threshold, the particle is discarded. This approach
reduces the frequency of resampling and mitigates the
problem of particle degeneracy:

(2) eff 2i

1N =
w

In Eq. 2, Neff represents the variance of particle weights
and wi represents the weight of the i particle.

The Gmapping SLAM algorithm excels in localization and
map construction due to its fusion of information from both
odometry and LiDAR. It exhibits remarkable capabilities in
small-scale scenarios and delivers high precision.

A* algorithms: The A* algorithm is a heuristic search
algorithm   and   its   essence   lies   in   the  design  of  the  cost

function. The mathematical model of its cost function can be
represented as Eq. 3:

f(n) = g(n)+h(n) (3)

In Eq. 3, g(n) represents the actual cost from the initial
node to the current node n and h(n) represents the estimated
cost from the current node n to the goal node. The cost
function h(n) can be expressed as Eq. 4:

(4)   2 2

n g n gh(n) = x x + y y 

In Eq. 4, xn, yn represents the coordinates of the current
path node’s grid center and xg, yg represents the coordinates
of the grid center of the target node. The implementation of
the A* algorithm requires the maintenance of two sets,
namely, the OPEN set and the CLOSE set. The OPEN set
contains all nodes that have been generated but not yet
visited, while the CLOSE set contains nodes that have already
been visited. Here is a pseudocode description of the
implementation  process  of  the  A*  algorithm  as  shown  in
Table 116.

TEB algorithms: The fundamental concept of the TEB
algorithm is to optimize the spatial poses si of the mobile
vehicle and the time intervals )Ti between consecutive poses.
The  spatial  pose  of  the  mobile  vehicle  can  be  denoted  by
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Fig. 1: Mobile vehicle experimental platform

Eq. 5, while the sequences of car poses si and time intervals )Ti
are represented by Eq. 6 and 7, respectively:

si = (xi, yi, $i)T (5)

S = si (i = 0,1…n, n0N) (6)

τ = ΔTi (i = 0, 1...n-1, n0N) (7)

In Eq. 5, xi, yi represents the two-dimensional coordinates
of the mobile vehicle in the world coordinate system17 and $i
represents the pose of the mobile vehicle. The TEB trajectory
expression that includes the sequence of mobile vehicle poses
and time intervals is given by Eq. 8:

B: = (S, τ) (8)

On this basis, a weighted multi-objective optimization is
performed by considering various dynamic constraints such as
path optimality, avoidance of obstacles, car velocity and
acceleration. This optimization is subsequently solved using
the open-source G2O (General Graph Optimization, G2O)
library to obtain a locally optimal trajectory B* that satisfies the
specified conditions17. The functional expression for this
process is provided in Eq. 9:

(9)
k k

k
*

B

f(B) = γ f (B)

B = argmin f(B)







In Eq. 9, f(B) represents the total objective function, fk(B)
represents the objective functions associated with different
constraints, γk represents the weights assigned to each term
and B* represents the optimal TEB trajectory.

Fusion mapping with depth camera and LiDAR: The
experimental platform for the indoor mobile vehicle
established in this study was depicted in Fig. 1. This vehicle is
equipped with domestic sensors, including the RPLIDAR A1
LiDAR, the LeTMC-520 depth camera and an IMU odometer.
The    upper-level    computer    system    is    powered    by    a
9th-generation Core i7 CPU, GTX1660TI GPU and boasts 512GB
of memory. The lower-level control unit employs an
STM32F407 driver board and is controlled by a Jetson Nano
overseeing the upper-level system. The vehicle chassis
adheres to an Ackermann structure. Operating on the Linux
operating system, the upper-level computer utilizes the Robot
Operating System (ROS), with programming conducted in
Python and C++. The experiments were conducted under
enclosed indoor conditions, validating the system’s
performance.

The indoor conditions refer to the electronic information
laboratory at the school, which is primarily used for the
construction and debugging of the mobile vehicle platform.
The obstacle avoidance tests for the mobile vehicle are
conducted in a more complex home environment.

RESULTS AND DISCUSSION

Research  on  obstacle  avoidance  for  mobile  vehicles
has been extensive, with the majority of recent studies
adopting multisensory fusion techniques to attain accurate
maps for the implementation of mobile vehicles obstacle
avoidance2,17-23. The approaches adopted in these studies
generally follow a common technical route: Initially, an
algorithm is employed to construct an environmental map;
subsequently, another algorithm is utilized for path planning
to achieve obstacle avoidance. Finally, an experimental
platform is established for testing, aiming to validate the
effectiveness  of  obstacle  avoidance  and  to  assess  its
superior performance compared to single-sensor methods.
However,  none  of  these  prior  works  presents  a  specific
metric  for  quantifying  the  effectiveness  of  obstacle
avoidance. Consequently, this paper cannot be directly
compared  to  the  outcomes  of  the  previous  literature.  The
methodology employed in this paper follows a similar
technical route to previous works, with the distinctive
incorporation of gesture recognition capabilities, building
upon   existing   research.   This   augmentation   enables
effective  obstacle  avoidance,  even  in  the  presence  of
“pseudo-obstacles”.
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Fig. 2: Mapping using only the depth camera

Fig. 3: Mapping using only the LiDAR

Mapping and obstacle avoidance for the mobile vehicle:
When using only the depth camera for mapping, the depth
camera captures depth images of the real environment,
allowing the creation of a three-dimensional local
environment map. The result of pure camera-based mapping,
as shown in Fig. 2, exhibits poor mapping quality with
significant information loss and overlapping data. The image
shows numerous folds and distortions, primarily due to the
depth camera’s limited accuracy in providing distance
information, particularly when the vehicle speed exacerbates
image distortion and overlap. Alternatively, when using only
the LiDAR for mapping, the LiDAR collects information from
the real environment and generates a two-dimensional point
cloud contour of the indoor environment. Simultaneously, the
motor encoders record the number of rotations of the mobile
vehicle driving wheels, providing odometry data. This data is

then input into the Gmapping algorithm, resulting in the
mapped output shown in Fig. 3. Figure 3 revealed inaccuracies
in laser distance measurements due to the presence of objects
with weak laser reflectivity in real-world conditions, such as
curtains, vegetation, wire fences and various flexible materials.
Therefore, this paper combines the maps generated by the
depth camera and LiDAR, resulting in a three-dimensional
fusion mapping as shown in Fig. 4. In this representation, the
black edges represent information provided by the LiDAR,
while all other information is obtained from the depth camera.
It  is  evident  that  the  fusion  mapping  provides  richer  and
more  realistic  information.  Consequently,  using  such  a
three-dimensional map, the vehicle can acquire obstacle
information and, in conjunction with A* and TEB algorithms,
plan  an  optimal  route,  thereby  achieving  obstacle
avoidance.
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Fig. 4: Three-dimensional fusion mapping

Fig. 5: Gesture recognition

Gesture recognition: Gesture recognition is equally important
in obstacle avoidance. It can be used to control the mobile
vehicle when encountering “pseudo-obstacles.” These
pseudo-obstacles might include small objects with low height
and volume on the road, such as stones or bricks, as well as
unexpected intrusions like birds, paper scraps, or leaves. These
are referred to as “pseudo-obstacles.”

In  this  paper,  the  YOLO  V3  algorithm  is  initially
employed for gesture recognition. Subsequently, recognized
gestures are used to implement basic motion control for the
mobile vehicle. Currently, only gestures 2 and 3 are configured
with functionalities, while other gestures have not been
assigned  specific  functions,  leaving  room  for  future
enhancements.  The  results  of gesture  recognition  were
shown in Fig. 5 and tests conducted on gestures 2 and 3,

which trigger predefined actions based on gestures, were
presented in Fig. 6.

In Fig. 6a, when performing Gesture 2 in front of the
camera, the mobile vehicle rear wheels start to rotate
clockwise, accelerating for 2 sec before stabilizing at a
constant speed. If the vehicle is placed on the ground, it will
accelerate in reverse and then maintain a constant speed in
reverse motion. On the other hand, when performing Gesture
3 in front of the camera, the mobile vehicle rear wheels start
to rotate counterclockwise, accelerating for 2 sec before
stabilizing at a constant speed (Fig. 6b). If the vehicle is placed
on the ground, it will accelerate forward and then maintain a
constant speed in forward motion. This validates the capability
to control the forward or backward movement of the mobile
vehicle through gestures, achieving obstacle avoidance.
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Fig. 6(a-b): Gesture recognition test results for mobile vehicle, (a) When Gesture 2 is made, the rear wheels of the mobile vehicle
will rotate clockwise, indicating a backward motion and (b) When Gesture 3 is made, the rear wheels of the mobile
vehicle will rotate counterclockwise, indicating a forward motion

However, there are some limitations:

C The logic connections between the main control and
subordinate modules are complex, requiring multiple
communication lines. The lack of standardized interfaces
has led to a messy tangle of wires, even if they are hidden
beneath the vehicle base. This makes troubleshooting
difficult

C Subordinate STM32 module needs to handle high
voltages and is susceptible to wear and tear. It cannot be
integrated into a single development board with the
main control, making it challenging to establish a perfect
communication solution

CONCLUSION

This study has developed a mobile vehicle platform that
integrates a depth camera with a LiDAR sensor. It employs the
Gmapping SLAM algorithm for environment mapping, uses
the A* algorithm for global path planning and utilizes the TEB
algorithm for local path planning to achieve real-time obstacle
avoidance. Additionally, it has implemented obstacle
avoidance through gesture recognition. Future research will
aim to address these issues. Efforts will be made to unify the
connections between the main control, subordinate modules
and various interfaces, ensuring both aesthetics and ease of
troubleshooting by providing designated wiring locations on
the  vehicle  body.  Additionally,  the  goal  is  to  integrate  the

main control and subordinate modules onto a single board,
improving communication efficiency.

SIGNIFICANCE STATEMENT

With the increasing frequency of traffic accidents, the
development of autonomous driving technology, which relies
on computer control instead of driver operation, serves as an
important means to mitigate human-operated risks and
effectively address this issue. Therefore, this article explores
autonomous driving technology by researching algorithms
related to mobile vehicles and obstacle avoidance.
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