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Physical Properties of Tall Vegetation for Resistance to Flow
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Abstract: Physical properties of vegetation have a considerable effect on the resistance to flow for both water
mn vegetation zone of rivers and air in forest canopies. For tall vegetation, these properties include leaf density,
shape and the general flexibility of tree species. To estimate the resistance coefficients (1.e., coefficient of drag,
the Darcy-Weisbach friction factor, f, or Manning’s n value) of flow inside tall and flexible vegetation, an index
is required to account for the effects of vegetation type and properties. In this study, an index is proposed to
characterize physical properties of tree species. The index is derived based on the resonance frequency of
the first mode of vibration of the trees and a fundamental relationship for the homogeneous beams. The
estimated indexes for four species of coniferous trees were used in a mathematical model for estimation of the
friction factor (f) and were able to account for the differences due to the leaf density, shape and rigidity of

the tree species.
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INTRODUCTION

Vegetation resistance to flow of water and air 1s an
important subject dealing with land-water conservation,
crop protection, wind load and fences. Estimation of water
level in flood events and examimation of the ability of trees
to withstand high winds are examples which show the
applicability range of the resistance to flow study.
Resistance to flow for vegetated surface is very sensitive
to the flow velocity and physical condition of vegetation.
The resistance to flow decreases rapidly as the flow
velocity increases, due to the streamlining and the
resulting reduction of the frontal area of vegetation. The
fundamental vegetation properties to be considered in
establishing a resistance equation are leaf density, shape,
flexibility and manner of defection of the tree species
(Kouwen and Fathi-Moghadam, 2000, Jarvela, 2004). A
mathematical model has been developed by Fatlu-
Moghadam (2006) to estimate the flow resistance
coefficients (including the Darcy-Weisbach friction factor,
f and Manning’s n value) for flow inside tall and flexible
vegetation in rivers. Using dynamic similarity between the
flow of water and air through vegetation, the model 1s
capable of estimating the drag coefficient of vegetation in
forest canopies. Details of the modeling can be found in
Fatln-Moghadam and Kouwen (1997). The model 1s based
on a dimensional analysis supported by a series of
experiments in water and air conducted on four species of
coniferous trees including cedar (Thuja occidentalis),
spruce (Picea glauca), white pine (Pimus strobus) and
Austrian pine (Pinus palustris). Using the model, effects
of flow depth and land slope on the friction factor was
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investigated in Fathi-Moghadam (2006) for non-
submerged vegetated lands.

In order to develop a single mathematical model to
estimate flow resistance coefficients for all species of
coniferous trees, a vegetation index (symbolized as EE) is
required in the model to account for the effects of leaf
demsity, shape and rngidity of individual trees. The
purpose of this study is to present a practical procedure
for estimation of the vegetation index (EE) and identifying
the physical properties of vegetation for the above model
calculations.

MATERIALS AND METHODS

Theoretically, any beam, tree or plant stem with mass
and elasticity may exhibit one or more resonance
frequencies of vibration depending on damping
(Timoshenko and Gere, 1961, McMahon and Kronauer,
1976; Niklas and Moon, 1988). For small damping, these
resonance frequencies are close to the natural frequencies
of the beam. Natural frequencies result from the cyclic
exchange of kinetic and potential energy when a structure
such as a beam or plant stem 1s vibrated. The kinetic
energy is proportional to the square of the velocity of the
structural mass, while the potential energy is proportional
to the square of the elastic strains. The rate of exchange
between kinetic and potential energy i1s the natural
frequency of vibration.

The resonance frequencies, f (with j = 1,2.3,..n,
where f, 13 the fundamental or base natural frequency and
f; . are higher modes of natural frequencies) of a linear
and homogeneous beam depend upon its length (7), mass
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per umit length (m), second moment of inertia (T), modulus
of elasticity (E), as well as a dimension less parameter (4,)
which is a function of beam geometry and the boundary
conditions under which the beam 1is tested. The
relationship between the resonance frequencies and the
above variables is given by the following equation
(Timoshenko, 1961; Clough and Penzien, 1975):
b

&

where FI 15 flexural stiffness.

f M )
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The values of (A,) have been theoretically calculated
for a variety of beam geometry (ie., prismatic, non-
prismatic and tapered beams) and methods of attachment
(i.e., boundary conditions) which can be found in
advanced dynamic and vibration standard texts. Wang
and Worley (1966) presented numerically based tables of
natural frequencies and nodes for transverse vibration of
tapered beams. The tables cover the whole range of
elliptical tapering.

The published values for A, E and I can be used in
Eq. 1 with sufficient accuracy for linear and homogeneous
beams. If the geometry of beam does not resemble the
geometry of beam presented in the literature, then a model
can be constructed with specified dimensions and known
material properties, i.e., known El; after measuring £, the
value of (&) can be computed and then used to determine
flexural stiffness EI for a given beam.

Niklas and Moon (1988) measured flexural stiffness
and modulus of elasticity of flower stalks using multiple
resonance frequency analysis (MRFA) of spectra. The
flower stems were attached to a shaker and their
vibrations were tracked by an Optron camera and
analyzed by a spectrum analyzer. For small and symmetric
shape vegetation elements such as flower stems, the use
of published E, T and A-values in Eq. 1 to estimate a
material property may be appropriate. Obviously, such
amethod or methods for simple structures (like beams)
are less applicable for large scale and complex
structures like trees.

Development of a semi-em pirical method to characterize
tall vegetation: Tn classical mechanics of materials, a
vegetative biomass is classified as a non-homogeneous
visco-elastic material (Niklas, 1992). For large trees, this
non-homogeneity will be much greater than short grass or
analysis of small plant segments. Trees have different
classes of branches and significant difference in ratios of
hardwood and softwood in their segments. It should be
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noted that the vegetal drag coefficient for the leafy trees
was found to be three to seven times that of the leafless
trees (Jarvela, 2004).

The complexity and large non-homogeneity of the
visco-elastic materials of large trees disqualify the use of
theoretical values of E, T and A to characterize a tree
species. This defines a need to derive a semi-empirical
relationship based on extensive tests on various tree
species for the estimation of a vegetation index and
quantification of the physical properties of species.

In order to avoid errors resulting from the use of
theoretically-based values for A, T and E in Eq. 1 and to
minimize the number of unknowns, several simplifications
have been made in this study. The dimension less ratio of
(I inEq. 1 together with the parameter [A (21)"'] can
be assumed to be a single parameter, symbolized as £ for
the base mode of vibration. This parameter characterizes
height, mass or leaf density and the moment of inertia of
a tree. Substituting the tree’s height (h) for the beam
length (1) in Eq. 1 and transferring the measurable
parameters to the right side, Eq. 1 for the first mode of the
natural frequency (f;) will be:

where m, = m . h, the total mass of the tree and £E is
called the vegetation index of a tree species. Measuring a
tree’s height, mass and recording its natural frequency of
the first mode of vibration, the vegetation index can be
estimated by Hq. 2. The developed vegetation index
includes all physical properties of a tree species for their
leaf density, shape, stiffness and mamner of deflection.

mS

h

(2

éE—flz(

Experiment procedure and apparatus: The heights,
weights and natural frequencies of the first mode for four
species of coniferous trees were measured for 30 samples
1n three categories of size including small, mid-size and full
size trees with average heights of 0.3, 1.2 and 3.0 m,
respectively. The natural frequency of small and medium
sized categories was recorded using an accelerometer,
dynamic analyzer and a frequency spectra plotter. A small
silicon accelerometer with a manufacturer reported bias
of +0.1% was used for small and medium sized model
testing. The natural frequency of the first mode of
vibration was clearly defined m the spectrum by shaking
models from side to side. The recordings were started
when the models were released from loading and were
allowed to freely vibrate.

Figure 1 shows a plot of the natural frequency
spectrum for the medium sized Austrian pine tree No. 1
listed m the Table 1. The average of five excitations was
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used to mark the first and second modes of vibration.
Similar plots were recorded for all the small and medium
sized samples and species which are reported in Table 1.
The frequency spectrum for the model support was
recorded before testing any of the models to avoid any
confusion in later analysis of the spectra. In general, the
second mode of the natural frequencies was damped
much faster than the first mode due to its interaction with
the vibration of the tree’s laterals. Although the second
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Fig. 1: Frequency spectrum of medium sized Austrian
pine tree No. 1 recorded by a dynamic analyzer

Table 1: Physical properties and vegetation indices of coniferous trees

mode of vibration was not taken into account for the
analysis in this study, future work is needed to ascertain
its lack of importance. Within the tested species, cedar
had a better response and clearer distribution between the
first and second modes of vibrations compared to the
others. Spruce had the least distinct response and the
highest damping.

Full trees with an average height of
approximately 3.0 m were only tested for their first mode
of vibration. A silicon micro-machined accelerometer
Model 3145 with a standard range of £2 g and +2 volt
output (i.e., precisely 988 mv g '), stable up to frequency
of 250 Hz and a manufacturer reported bias of £0.2% was
used for full size tree measurements. The accelerometer
was attached to the top half of the main stem. Trees were
fixed at their base and were shaken from side to side at the
top of the tree. The sinusoidal vibration of the shaken
trees was converted to an output signal by the
accelerometer, amplified ten times and recorded. The high
frequency of data acquisition (one hundred readings per
second) provided a smooth sinusoidal graph and the
number of swings per second could be easily determined.
Thus an estimate of the first mode of the resonant

size

frequency was found. Figure 2 shows a plot of the natural

General Tree Sample Height Weight Mass ms 1st mode 2nd mode Index EE Average EE
size species name (h), m (W)L, N (m), kg (kgm™) Nf, sec™! Nf, sec™! Nm™? Nm™
Small size  Cedar C93 0.30 1.03 0.10 0.35 3.75 15.50 4.90 490
models Aus. Pine AP93 0.30 1.27 0.13 0.43 4.00 19.75 6.92 6.92
Mid size Cedar Cl 1.40 17.50 178 127 1.38 375 241
models C2 1.15 8.62 0.88 0.76 1.63 5.00 2.02 1.97
C3 0.85 4.19 0.43 0.50 1.73 5.25 1.49
Spruce S1 1.55 22.02 2.25 1.45 1.65 338 3.94
S2 1.25 16.82 1.72 137 1.60 4.00 3.51 325
S3 0.65 491 0.50 0.77 1.73 12.50 2.30
Aus. Pine AP1 1.25 25.60 2.61 2.09 1.13 425 2.64
AP2 1.15 18.79 1.92 1.67 1.38 425 3.15 391
AP3 0.75 8.65 0.88 1.17 225 775 5.95
Full size Cedar CWI 2.95 62.07 6.33 2.14 1.05 - 2.34
trees cw2 3.30 83.40 8.50 2.58 1.02 - 2.68
Cw3 3.10 83.87 8.55 2.76 0.92 - 2.35
Ccw4 2.85 51.93 529 1.86 1.08 - 2.17 2.11
Cws 2.50 3378 3.44 1.38 1.12 - 1.73
CW6 220 31.78 3.24 1.47 1.07 - 1.67
CwW7 1.90 28.59 291 1.53 1.09 - 1.81
Spruce Swi 3.45 103.59 10.56 3.06 1.10 - 3.67
SW2 235 46.30 472 2.01 1.43 - 411
Sw3 3.15 81.36 829 2.63 1.13 - 3.33 3.41
Sw4 2.65 4022 4.10 1.55 1.24 - 2.39
Sws 3.85 267.81 27.30 7.09 0.71 - 3.57
White Pine ~ WPW1 2.80 102.42 10.44 3.73 0.86 - 2.73
WPW2 2.15 86.29 8.80 4.09 0.92 - 343 2.99
WPW3 1.90 54.58 5.56 2.93 0.98 - 281
Aus. Pine APWI 2.95 116.44 11.87 4.02 1.09 - 4.78
APW2 3.20 133.30 13.59 425 0.94 - 3.75 5.02
APW3 3.10 149.83 15.27 493 1.05 - 543
APW4 3.25 186.80 19.04 5.86 1.02 - 6.10
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Fig. 2: Output signal of natural frequency of first mode for
full sized spruce tree No. 5

frequency of the first mode for a full size spruce tree
No. 5. The average of three excitations (Fig. 2) was used
to calculate the frequency of the first mode of vibration.
Similar plots were recorded for other full size trees as
reported in Table 1.

RESULTS AND DISCUSSION

The measured height, mass, natural frequency and
the calculated vegetation index (EE) from Eq. 2 is recorded
in Table 1 for each tested sample. A simple averaging
technique was applied first to the calculated indexes (EE)
of each species in each category of sizes and then over
the size categories. The resulting representative indexes
are 2.07, 3.36, 2.99 and 4.54 Nm~ for cedar, spruce, white
pine and Austrian Pine, respectively. The representative
indexes (EE) are used to normalize the velocity. In a
relative sense, the representative indexes are in agreement
with the reported value of modulus of elasticity (E) in
Niklas (1992). The Austrian pine and cedar have the
maximum and minimum rigidity respectively, while the
white pine and spruce are in the medium range of rigidity
within all species of coniferous trees. It should be noted
that because the small sized models of cedar and Austrian
pine were low in number (Table 1), they were not used in
the averaging for calculations of the representative
indexes.

Validation of the vegetation index: Figure 3 shows the
relationship between correlated Darcy-Weisbach friction
factors (f) and average velocity for four species of
coniferous trees tested in air and water (Fathi-Moghadam
and Kouwen, 1997). The curves in Figure 3 are averages
of testing 10-12 samples in water flume and 3-5 samples in
air flow for each species of coniferous trees. The air
velocity data were converted to their equivalent water
velocity based on a dynamic similarity (same Reynolds
number) in Fig. 3. A noticeable difference in the Darcy-
Weisbach friction factor (f) from one species to another in
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Fig. 3: Correlation of Darcy-Weisbach friction factor (f)
with velocity (V) for four species of coniferous
trees tested in air and water flow
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Fig. 4: Correlation of Darcy-Weisbach friction factor and
normalized velocity for four coniferous species
tested in air and water flow

Fig. 3 may lead to criticism of the application of just one
mathematical model for all species of evergreen trees. The
difference in friction factors in Fig. 3 is due to variation in
shape, leaf density and material properties which are
entirely accounted for by the vegetation index (EE).

To incorporate the vegetation index and for the sake
of a more general mathematical model, the difference
between the curves is minimized by correlating the friction
factor (f) and the normalized velocity parameter in a form
of [Vp? (EW)™*] for each species, where V is average flow
velocity (m s™") and p is mass density of fluid (Kg m™).
Using unit mass density for the same fluid flow, the
resulting relationships are plotted in Fig. 4 for all species.
As was expected, the best fit curves for each species in
Fig. 4 are approximately 50% closer together than those in
Fig. 3. This will allow the curves to be combined for an
average curve (coniferous index curve) that represents the
physical behavior of most species of coniferous trees.
The final result of a linear regression of the data for flow
of water (p, =10’ kg m™) through coniferous trees is,
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£=398 Vp,}(2E)" | (3)

Equation 3 can be used to estimate the Darcy-
Weisbach friction factor (f) for water flow mside a stand
of coniferous trees on flood plains or in vegetated zones
of rivers. Using an average water velocity equivalent to air
speed (le., equal Reynolds number), the above
mathematical model can also be used to estimate the
friction factor and the wind momentum absorbed by
coniferous trees ina forest stand. Similar power functions
between f and V asin Eg 3 were suggested in the
literature (i.g., Freeman et al., 2000), but no index or
practical method was proposed to account for the effect
of vegetation properties on the friction factor.

CONCLUSIONS

Physical properties of tall vegetation have significant
mfluence on resistance to flow of water in vegetated
zones of river as well as on flow of air in forest canopies.
In the present study, a vegetation index 1s developed to
account for the effect of vegetation conditions and
properties (i.e., leaf density, shape, stiffness and manner
of deflection) on the friction factor (f). The vegetation
index (EE) was used to normalize flow velocity which
enables the elimination of the variation of friction factor
among different species of comferous trees. A single
correlation between the friction factor and the normalized
flow velocity results in a single mathematical model for
various species of comferous trees. The vegetation index
showed to be adequately capable of differentiating
between tree species and vegetation types in the model.
Using the vegetation index, the model estimated friction
factors for coniferous trees were consistent with the
reported friction factors by Tarvela (2002) for willows as
are compared m Fathi-Moghadam (2006). In the future,
estimation of the new vegetation index (EE) for each
species will require extensive sampling and testing of
trees having a greater variety in appearance and physical
characteristics. Assuming availability of vegetation
indices for different tree species, correlating the ground-
based measurements and high resolution satellite data will
make the analysis of large vegetated areas possible
(Rautiainen et al., 2003; Stenberg et al., 2003).
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