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Abstract: This study presents the novel RBPF for mobile robot SLAM using stereovision
to extract landmark information. The particle filter is combined with Gaussian Mixture
Unscented Particle Filters (GMUPF) to extending the path posterior by sampling new poses
that integrate the current observation that drastically reduces the uncertainty about the robot
pose. The landmark position estimation and update is also implemented through GMUPF
which a single update step from moving and sensing can be done and the change to the map
certainty can be done in constant time. Furthermore, the number of resampling steps is
determined adaptively, which seriously reduces the particle depletion problem. The 3D
natural point landmarks are structured with matching Scale Invariant Feature Transform
(SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with
a KD-tree which introduce the Mahalanobis distance instead of the Euclidean distance for
matching features in the time cost of O (log2™. Experiment results on real robot in our
indoor environment show the advantages of our methods over previous approaches.
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INTRODUCTION

A key prerequisite for a truly autonomous robot is that it can simultaneous localizes itself and
accurately map its surroundings. The problem of achieving this is one of the most active areas in mobile
robotics research, which is known as Simultaneous Localization and Mapping { SLAM). Most of the
present research on SLAM is based on Extended Kalman filter (EKF) (Leonard et af., 2002), whose
primary advantage is that it estimates the fully posterior over landmark maps and robot poses in an
online fashion. However, the use of the EXF in practice has two well-known drawbacks. The first one
is that linearization can produce highly unstable filters if the assumptions of local linearity is violated.
The second one is that the derivation of the Jacobian matrices is nontrivial in most applications and
often leads to significant implementation difficulties.

Recently, particle filter have been at the core of solutions to higher dimensional robot problems
such as SLAM, which, when phrased as a state estimation problem. RBPF (Murphy and Russell,
2001) is proposed as an effective way of representing alternative hypotheses on robot paths and
associated maps. More recently, RBPF is used widely to building map (Stachniss er /., 2005).
Daily and Parmchkun (2005) describe the application of Fast SLAM using a trinocular sterco
camera. Se ef @f. (2002) demonstrate the use of SIFT point features as landmarks for the SLAM
problem using a trinocular Sterco vision. Gil ef af. (2000} describes an approach that builds three
dimensional maps using visual landmarks extracted from stereo images of an unmodified environment
and solves the SLAM problem.
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In this study, we present an investigation into the use of stereo vision (Elinas ef al., 2006) for
SLAM in indoor environment with 3D feature landmarks, which are structured from the SIFT feature
matching pairs. These 2D SIFT features are used to structure 3D landmarks because they are invariant
to image scale, rotation and translation as well as partially invariant to illumination changes and affine
or 3D projection and their description is implemented with multi-dimensional vector (Lowe, 2004).
This combination can result in many highly distinctive landmarks from environment, which simplifies
the data association problem to only distinguishing unique landmarks. We present a fast and efficient
algorithm which introduce the Mahalanobis distance instead of the Euclidean distance for matching
features in a KD-Tree in the time cost of O(log2™). Following, our approach applies RBPF to estimate
a posterior of the path of the robot, where each particle has associated with an entire map, in which
cach landmark is estimated and updated by a novel algorithm to recursively update the posterior
density of SLAM called the Gaussian Mixture Unscented Particle Filters (GMUPF) (Wendel ef al.,
20035). The filter has equal or batter estimation performance when compared to standard particle filters
and the Unscented Particle Filter (UPF) (Julier ef &f., 2000), at a largely reduced computational cost.
The GMUPF combines an Importance Sampling (IS) based measurement update step with an
Unscented Kalman Filter (UKF) based Gaussian sum filter for time update and proposal density
generation.

NOVEL RBPF FOR SLAM

Consider the case of a mobile robot moving through an unknown environment consisted of a set
of landmarks. The landmark n is denoted ©,. The robot moves according to a known probabilistic
motion model p(s t|ut, S, } » where, s, denotes the robot state at time t and the control input u, carried
out in the time interval [t-1,t]. As the robot moves around, it takes measurements z, of its environment
through observation model P(Zt|5t»9:nt) , where, 8 is the set of all landmarks and n, is the index of the
particular landmark observed at ime t.

The SLAM problem is to recover the posterior distribution p(s', 0,,....8,,/ 2. ¢, n%), where, M is
the number of landmarks observed so far and the notation s denotes ..., s, (and similarly for other
variables). Murphy and Russel (2001) provide an implementation of RBPF for SLAM:

p(s.6,.....0,

M
Zu',n")=p(s'|z,u', 0 )] [ pe,]s,2'.n") 8y
n=1

This can be done efficiently, since the factorization decouples the SLAM problem into a path
estimation problem and individual conditional landmark location problems and the p(8,',z' n") can be
computed analytically once s* and z' are known and the amount of computation needed for each
incremental update stays constant, regardless of the path length. Each map is constructed given z° and
the trajectory s represemted by the corresponding particle. Each particle is of the form
s = {st® ) g0 Oz Where (i) indicates the index of the particle; s*© is its path

1,120 "“’M,t’
estimate, u¥_, and X©_ are the mean and variance of the Gaussian representing the m-th landmark
location.
In our methods, the i-th new pose s is drawn from the posterior p(s |s"™"", u’,2",n"), which
takes the measurement z, into consideration, along with the landmark n, and s+ is the path up to time
t-1 of the i-th particle. It can be shown that ps, ‘ 740tz n®) can be approximated as closely as

desired by a Gaussian Mixture Model {(GMM) of the following form:
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Where:
G = The number of mixing components
a® = The mixing weights

N, §Eg)’('),P§g)’(')) is a normal distribution with mean vector ggg)’@ and positive define
covariance matrix p @,
GMUPF Algorithm

By using the UT transformation (Miaohai ez af., 2000), we follow GMUPF algorithm to extend
the path s*® by sampling the new poses s from the posterior pis, ‘ SO 3ttty

Calculate the Sigma Points

A = FOF0 + ’(L +2)PY 3 3

Using Motion Model to Predict
At time t-1, assume the posterior state density is approximated by the G-component GMM:

p, (8|28 = Z AONEP 50 poe)y €]

and the process and observation noise densities are approximated by the following T and J component
GMDMs, respectively

P, (Vi) = 2, BUN(v, ul Q) )
I 1 1 1
P (0= ¥N(oul.RY) ©
Where:
V,, = The process noise
0,, = The observation or measurement noise

Forj=1,...,], set p,(0,)= N(Ot;u(l)’R(J)) CForj=1,....], set (v, ) =N{v,_:u
forg=1,...,G, sct f)g(S Eijl‘z(lﬁl) N(sm “(0@ pt(i)l(g)) .

) Q(l)) and

Vi1 ?

For g = 1,...,(3, use the motion model to calculate a g" =1,.. ,G" Gaussian approximate and
update the mixing weights. For g" =1, ,G", complete the measurement update step to alculate a

Gaussian approximate p,-(s EO ZEO) - N(SED : gt(iﬂg”) ,pt@(g")) , update the mixing weights.

Generate the Proposal Distribution
The predictive state density is now approximated:
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py (s

ziy= Z e 1oc§g')N(s§1); §0E_ pidedy (7
e
The proposal distribution is approximated by the GMM:

p (s

Z0y= Z;:laig")N(S?) [§OED pREy (8)

Measurement Update
Draw N samples {4":1=1, N} from the proposal distribution p,(s ¥ ‘Zt@) and calculate their
corresponding importance weights:

w0 = L )pg(x?)‘ZH) ©)
t
P, (x| Z,)

Normalize the weights: ® = © /ZN w0
t t =1t

Use a weighted EM (WEM) algorithm to fit a G-component GMM to the set of weighted
particles {w'? y®:1=1,  N}:

t 2

N s o
p, (3 O ZzOy= ZEZIGEE)N(SEO 0 pie)y (10)

Inference

The conditional mean state estimate §Ei) =E[s El) Zgi)] and the corresponding error covariance

f)t(i) = E[(Stm — ggﬁ)(sgﬂ — §51))T] can be calculated in this ways:

ORI o RN ) R CH14))
St1 *lelwtl th

B N 1 (R 1~
pt(i) — 21:1Wt®( )(XS)U _ SS))(XEIJ() _ SE!) )T

(1)

IMPLEMENTATION DETAILS OF USING STEREO VISION

SIFT Feature Extraction Based Stereo Vision

LetIY and I, denote the right and left gray scale images captured with a stereo camera at a time
t. we compute image points of interest from both images by selecting maximal points in the scale space
pyramid of a Difference of Gaussians. We extract natural landmarks that correspond to points in the
3-dimensional space. Each landmark is a vector 1 = {P%, C% «.,5,f}, such that P% = {X® Y% 7%} is a
3-dimensional position vector in the map’s global coordinate frame, C is the 3x3 covariance matrix
for P® and «,s,f describe an invariant feature based on the Scale Invariant Feature Transform (SIFT).
Parameter « is the orientation of the feature, s is its scale and f'is the 128-dimensional key vector which
represents the histogram of local edge orientations. Each point is accompanied by its SIFT descriptor
and then matched across images. The matching procedure is constrained by the well-known epipolar
geometry of the stereo rig and the Euclidean distance of their SIFT keys. In addition, a comparison
between SIFT descriptors is used to avoid false correspondence. As a result, at a time # we obtain a
set of B observations denoted: 0. ={0,...,0,}"
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o, ={FL = (X5, Y5, Z5 1ot = {50, 11,0505} (12

Where, p:' ={r

ARy is the mage coordinates of the pointand ;e 2, n] -
ED-Tree Based Feature Maiching

Here we describes KD-tree algorithim for deteroning the matched SIFT featmre pairs of left
and right images captured along the robot’s path byra stereo vision systern. We use each associated
SIFT descriptor to irapecrve the data sssociated process. Each SIFT descriptor is a 128-long wector
cormputed frorm the image gradient at a local neighbourhood of the terest point. In the approache s
i Tvlianhal of @f., 2006}, data associstion isbased on the separe d Euclidean distance between descriptors.
Howrerver, when the sare point is viewed from sigraficantlsy diffe rent wiewpoints, the difference in the
de scriptor is remarkable. In the presence of similar looking landmarks, this fact canses a significant
rmber of false comespondences. In order to reduce the false conespondence problern, we propose
a different wethod to present the distance function. We consider different views of the same visual
landrnark as different pattens belonging to & Whenever a landmark is found, it is tracked along p
frarmes and its descriptors dy,d,...d; are stoed Ther, forsach landeark ) we comprte a mean value
d, and estimate a covariance matix F, assuriing the elements in the SIFT deseriptor independent.
Bazed on this data we compter the Ivlahalanobis distance

vi, <E[d <d|<|d <&l (1%

8 =& = J@ -BRE -3)7

Where, 1, 15 4 diagonal covariance rmati associated with the class C, with rean walue g - We
corpnter the Mahalanobis distarce for all the landwarks in the map of each particle and assizn the
correspondence to the landraark that rivdrnizes Ibhalanchis distanee . Then we can uge the following
equation to judze the matching for teo kes-points:

[kpy <= kpl/|kp, < ke < {14

Whete, A 15 constant and 0 = & = 1, if this inegualitiy iz satisfled, then the matehing iz sucee ssful
and siremltaveonsly elivaiva tes the filse raatching . Fizure 1 shows anexaraple of SIFT feature matehing
for a pairimage fiorn the labor with stereo visionand we obtain 76 matched pairs which the matching
accurate rate iz higher than 90%.

Fig. 1: The SIFT feature matches based on KD-tree and the matchivg pairs are represented by red

rectangle. The mismatching pairs are represented byrblue +. The matched kes-points are 6.
The corrected are 62
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Observation Model Based Stereo Vision

In the stereovision case, we perform a linear search of the keys in the left image for the best match
to each key in the right, subject to epipolar constraints and determine its 3D position and covariance
according to the well-known stereo equations:

Z=fB/d, X =uZ/f,Y =vZ/f (15)

Where, fis the focal length of the camera, B is the based-line of the stereo vision, d is the
disparity between SIFT keys in the left and right images and [u,v] is the pixel position of the key in
the right camera.

An observation is defined as a set of k correspondences between landmarks in the map and the
current view. Let F, = {f,,....f.} be the k SIFT feature key-points observed at time t, in which there are
n key-points matching with the 3D landmarks in the map database: nlt =U,, .fisL £) and there

L2,...

are m key-points matching the 2D SIFT feature key-points which observed at time t-1 and are not

reconstructed and added to the map database: n? =), , f,,; =V ) Then the likelihood of the
observation Z,being obtained as:
p(zt|s£‘),8,nt) = p(zi sf),(%),ni)p(ztv SE‘),B,n;’)

Where, #, represented the observation F, = {f,...f} and z" represents the observation
F,={f.. .. L. P(Zi sfj,e,ni) represents the likelihood of the observation 2, given the matching

5@ 0,n)) represents the likelihood of the observation 27, given the matching

[

relation n', and p(z

relation n®, these two likelihood can be calculated separately as follows:

Inp(z,

s;7.0)= 3, lnp(f,

SEI):*LfJ)

SEI),B) _ Zn+m lnp(fj

1=n+1

Inp(z SE‘) R Vf] )

Where, pif,

St@ ,L, ) Tepresents the likelihood of the observation being £ when robot at pose s,

observing the landmark L, p(f,

SEI);VEJ) represents the likelihood of the observation being f when

robot at pose 5, observing the landmark V. A pose of the camera, s,, defines a transformation [R.T],,
from the camera to the global coordinate frame. Let the 3D coordinates of the landmark L be (XY, Y?,
Z9), using the Mahalanobis distance metric, we can obtain 1 pif, ‘SE”,L ;) as follows:

Inpif,|s”, L; y=-0.5 min (T, (I, - 1781, - 1))

t

S=IR.G RO (16)

Where:
I'= The Jacobian matrix of the observation equation
Gy = The covariance of L;

The maximum observation innovation T, is constant (in our case, 3.0), which is selected so as to
prevent outlier observations from significantly affecting the observation likelihood.
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While the feature V; has no 3D spatial information, 1 pf, ‘s?),Vf ) is only calculated according
to epipolar constrain: '

Inp(f,

sg'ﬁ,vf] )= ~0.5(dist(I,, H, )+ dist(I, ,H, )

Where, [; is the image coordinate of the feature Vg, Hy is the epipolar line on the image plane
corresponding to Vy at time t and H, is the epipolar line on the image plane corresponding to the feature
f at time t-1, dist(+) is the function of the distance between point and line.

After calculating the observation model p(z, |s .»6,1,) , which can be used to evaluate the i-th
particle weight w,® and w,¥ is taken as follows:

pz.[s;”.6.n,)

(17
N 1
3 Lp(z[s?.0m)

w =

Motion Model

An essential component to the implementation of RBPF is the specification of the robot’s motion
model. Let I, and T, represent the pairs of stereo images taken with the robot’s camera at two
consecutive intervals with the robot moving between the two. For each pair of images we detect points
of interest, compute SIFT descriptors for them and perform stereo matching, resulting in 2 sets of
landmarks L, , and L, We compute the camera motion using the Levenberg-Marquardt (LM) algorithm
minimizing the re-projection error of the 3D coordinates of the landmarks.

Let §, be the 3-dimensional vector §, = {roll,T,, T} corresponding to a given [R, T]. Our goal
1s to iteratively compute a correction term y:

e Y

3 CH

such as to minimize the vector of error measurement & for a known stereo vision calibration matrix K,
¢ 18 defined as:

ptD - K(Rptu_l +T)
_ Pi - K(R_P1—1 +T) (18)

& | |pr-K®RpL, +T)

Given an initial estimate for the parameters, we use LM algorithm to solve for y that minimizes
€ in three steps:

+  According to the vector of residuals e(y), compute its matrix of derivatives J with respect to the
components of y.

I [ﬁ: ﬂT (19)

«  Compute the update rule:
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r=—-H+A"g
Ha=4T1 (20

g=1"=0y)
» SetEY=F g

Where, the walue of & controls the distance tiaveled along the gradient direction and controls the
correrzence of the solution by switc hing between pure gradient descent and Newton’s e thod.

RESULT S AND DISCUSSION

The experiments are performed ona Pioneer 3-DE Iibhile Fobot incorporating an 200 IWHz irdel
Pentinr processor as showmn in Fig. 28, Motor contro] is performed on the on-board compter, while
a2 40H=z PC conrected to the robot by a wireless link prowide s the main processing power for stereo
vigion processing and the SLAN aoftware. & Point Grey Burnblebee Stereo-vision mounted at the
fromt of the robot 13 used for detecting the landmarks. The test ersdronmment is a robot lahoratory with
liredted space in Fig. 2B,

Ome of the most difficult issues in a SLANM implernentation is the data association probler,
where the hypothesis of assigrning an ohservation to an existing map location iz tested. In owr
implementation the KD-tree Based SIFT and Mbhalancbis distance solwes thiz peoblem. For
Ulustrating the advantages of our mwethods owver previous approaches, we itnplernent STAN with our
novel BBPF and predous method. This experiment is described as follows.

Firstly, the robot iz set at the distance of 4 fromw the lab door and the robot orientation is
paralle]l with the door, at the sarne titne, there are some obstacles in the front of the robot. While the
robot is moving ahead, the sterec pair itnage frarnes are caphired and processed, building the map of
the indoor ervironent.

In Fig. 3, the experitnent resalts. In the map, 5 represents the start point of robot path and °E’
represents the end point of the robot path, the red points re present the robot path particle, the 2D
view of 3D landrmarks in the map is represented with blue poirnts. As shown in Fig, 34, if we increase
the marrber of particles, the perfornmance of corerentional FREF willbe iraproved largely, howewver, the
storage wouirernent and caloulationburden is severely aggravate d, owning to each particle associated
with a view of the map Figure 3B shows the bt map with the novel BBEE, which adopts 50
particles and 100 particles. The performance of the nowvel BEPF changes a little with increasing the
rraber of particle, o we canbuild precise map only with few particles.

Lyother experiterd was caried out in oursingle ldb roora, where the corapact map is baailt with
onr rovel BEBPF method and 136 pair siereo image frames of size 320%240 are captared The real

o o

Fizg. 2: (&) Pioneer mobile robot and (B) e xperitmental ervironent
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B ) (i)

(i) iv)

Fig. 3: Experiment results of map building based (A) conventional RBPY: (1) 100 particles, (i1) 500
particles; (B) novel RBPF: (ii1) 50 particles, (1v) 100 particles

(A)

Fig. 4: Part of an image from the stereo camera (A) and the corresponding disparity image (B)

—»— Real measured path

—o— Odometer's path

2.0{ —o— Modifing path by Novel RBPF
E D

1.5
'ﬂgm-
0.5

0.04

—0.5 ¥ L] L] ] T T T L] L
-1.8-16 -1.4 -12 -1.0 0.8 0.6 0.4 -0.2 0.0
X (meter)

Fig. 5: The Comparison of the three paths, red line present the measured path of robot, green line
present the odometer’s path, the blue show the modifying path by Novel RBPF

environment of our room is shown in Fig. 4A, this is a typical image of our test environment where
the pathways are very narrow with little texture throughout the camera’s field of view. Fig. 4B is the
disparity image generated by the stereo correspondence algorithm with lighter shades indicating objects
closer to camera.
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In order to measure the accuracy of our novel RBPF, we have measured ground truth pose data
for different locations. The starting location is node A and the last location is node I, the others are
labeled nodes B, C, D, E, F, G, H. We have labeled these locations on the learned map shown in the
Fig. 5. The comparison of the three paths that comprise odometer path (green dashed line) and
modified path by the novel RBPF (blue solid line) and the real measures path (red solid line) showed
in the Fig. 5. From the Fig. 5, we can see that the odometer data is less deviation from the real measure
data in the short term, however, with the robot moving, the deviation become larger. But for the
modified data by novel RBPF, the deviation changes a little with the robot moving.

CONCLUSION

This article described a novel algorithm for SLAM problem using sterco vision. Like many
previously published SLAM algorithms, our method calculates posterior probability distributions over
3D SIFT featured maps and robot locations. It does so recursively based on a key property of the
SLAM problem: The conditional independence of feature estimates given the robot path. This
conditional independence gives rise to a factored representation of the posterior using a combination
of particle filters for estimating the robot path and the GMUPF for estimating the map. Furthermore,
the mumber of resampling steps is determined adaptively, which seriously reduces the particle
depletion problem. In order to reduce the false correspondence in the data association the Mahalanobis
distance is introduced in the KD-tree based feature matching instead of the Euclidean distance. We have
showmn that we can construct accurate metric maps of 3D point landmarks from dense correlation-based
stereo without loop closure. Experiment results on real robot in our indoor environment show that the
advantages of our methods over previous approaches.
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