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Abstract: Multi-Step ahead prediction of a chaotic time series 1s a ditfficult task that has
attracted increasing interest in recent years, The interest in this study is the development of
nonlinear neural network models for the purpose of building short term and long term ahead
prediction of monthly sunspots chaotic time series. The solar activity has a measure effect
on earth, climate, space weather, satellites and space missions and is a highly nonlinear time
series. Such problems exhibit a nch chaotic behavior. In this study the authors compared the
performance of three neural network configurations namely a Multilayer Perceptron (MLP),
Self Organized Feature Map (SOFM) and Focused Time Lagged Recurrent Neural Network
(FTLRNN) for 1, 6, 12,1 8 and 24 months ahead prediction with regards to various
performance measures Mean Square Error (MSE), Normalized Mean Square Error (NMSE)
and regression (r). The standard back propagation algorithm with momentum term has been
used for all the models. The various parameters like number of processing elements, step
size, momentum value in hidden layer, in output layer the various transfer functions like
tanh. sigmoid, linear-tan-h and linear sigmoid. different error norms L, L., L,. L, L. to L.,
different combination of training and testing samples and epochs variation are exhaustively
experimented for obtaining the proposed robust model for the short term and long term
ahead prediction. The results suggests that the FTLRNN Model can help in improving the
prediction accuracy.

Key words: Sunspots chaotic time series, multi- step prediction, focused time lagged neural
network, self organizing feature map

INTRODUCTION

Predicting the future which has been the goal of many research activities in the last century 1s an
important problem for human, arising from the fear of unknown phenomenon and calamities all around
the infinitely large world with its many variables showing highly nonlinear and chaotic behavior.
Chaotic time series have many applications in various fields of science, e.g., astrophysics, fluid
mechanics, medicine, stock market, weather and understand the fundamental feature and processes in
system, which are used in every sector of the human life. Recognizing chaotic dynamics is potentially
important for understanding and managing real world problems. Neural network have been to the
prediction problem {(Weigend and Greshenfeld, 1994). Examples range from forecasting the stock
market and weather to speech coding (Townshend, 1994), noise cancellation (Leung and Lo, 1993),
forecasting bankruptcy, customer service management and industrial forecasting etc. Predicting a
chaotic time series using a neural network is of particular interest (Casdagli, 1989). Not only it is an
efficient method to reconstruct a dynamical system from an observed time series, but it also has many
applications in engineering problems such as speech coding (Leung and Lo, 1993), radar detection,
modeling of electromagnetic wave propagation and scattering (Cooper ef al., 1992).
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Inspired from the structure of the human brain and the way it 1s supposed to be operate, neural
networks are parallel computational systems capable of solving number of complex problems in such
a diverse areas of as pattern recognition, computer vision, robotics, control and medical diagnosis, to
name just few (Hykin, 2003), Neural networks are an effective tool to perform any nonlinear input
output mappings. It was the (Cybenko, 1989), who first proved that, under appropriate conditions,
they are able to uniformly approximate any continuous function to any desired degree of accuracy. It
15 these fundamental results that allow us to employ neural network as a time series prediction. Since
neural networks models do not need any priory assumption about the underlying distribution of the
series to be predicted, they are commonly classified as data-driven approach, to contrast them with
the model-driven statistical methods, One of the primary reasons for employing neural network was
to create a machine that was able to learn from experience. They have the capability to learn the
complex nonlinear mappings from a set of observations and predict the future (Dudul, 2007), A
hierarchical neural model is reported using Self organizing feature map for short-term load forecasting,
where 1t 1s compared with MLP (Carpinteiro er al., 2004). Suitability of MLP and Radial basis
function NNs is explored in forecasting engine systems reliability (Xu er al., 2003). The static MLLP
network has gained an immense popularity from numerous practical application published over the
past decade, there seems to be substantial evidence that multilayer perceptron indeed possesses an
impressive ability. There have been some theoretical results that try to explain the reasons for the
success (Bahron, 1993) and (Judi, 1995). Most applications are based on feed forward neural
networks, such as the Back Propagation (BP) network (Bakker er al., 2000), Radial basis function
(RBF) network (Zeng and Yuorong, 1999) and so on. It has also been shown that modeling capacity of
teed forward neural networks can be improved if the iteration of the network is incorporated into the
learning process. The static MLP network has gained an immense popularity from numerous practical
application published over the past decade, there seems to be substantial evidence that multilayer
Perceptron indeed possesses an impressive ability (Dudul, 2005). There have been some theoretical
results that try to explain the reasons for the success ( Barron, 1993),

The different chaotic time series attempted with support vector machines and Elman neural
network by Thissen et al. (2003) for short term ahead prediction of Mackey-Glass chaotic time series.
Hong and Wang (2007} used the fuzzy modeling method bases on Singular Value Decomposition
(SVD) for prediction of Mackey-glass and Lorenz chaotic time series. A new class of wavelet is
developed for learning dynamics for two step ahead prediction of Mackey-glass and the one step ahead
of annual sunspots chaotic time series. Min er al. (2004) it is described recurrent predictor neural
network (Billings and Wei, 2003) structure according to reconstructing phase space and gradient -based
and self adaptive algorithm on monthly and yearly sunspots time series. A new class of wavelet
network is develop with a standard deviation of 0.0029 for short term ahead prediction o I Mackey-
Glass chaotic time series and annual sunspots for 1 step ahead prediction (Billings and Wei, 2005).By
using recurrent predictor neural network for monthly sunspots chaotic time series for 6 months ahead
prediction with EPA equals to 0,992 and ERMSE equals 4.419, for 10 months ahead prediction with
EFPA of 0.980 and ERMSE of 7.050, for 15 months ahead prediction of EPA 0.9222 ERMSE equals
13,658 and 20 months ahead prediction EPA of 0.866 and ERMSE of 1679323 (Min er al., 2004),

From the scrupulous review of the related research work, it 15 noticed that no simple model is
available for long term prediction of monthly sunspots chaotic time series so far. It 15 necessary to
develop a simple model that is able to perform short term and long term prediction of monthly
sunspots chaotic time series with reasonable accuracy. In view of the remarkable ability of neural
network in learning from the instances, it can prove as a potential candidate with a view to design a
versatile predictor (forecaster) for the chaotic time series. Hence in this work a novel focused time
lagged recurrent neural network model with gamma memory filter is proposed as an intelligent tool for
predicting the monthly sun spots chaotic time series.
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Defiming number of suitable number of hidden nodes is a difficult problem of these network, these
networks have limitations to identify the chaotic dynamical systems, It cannot cope up with rapidly
changing nonlinear dynamics. Therefore it is necessary a NN configuration that can learn the temporal
variation or time structure underlying the data in true sense. In view of this, dynamic modeling will
certainly help to improve the learning and generalization ability.

The solar activity has a measure effect on earth, climate, space weather, satellites and space
missions and 1s a highly nonlinear time series. First the optimal static NN based model on MLP is
attempted o model the given system. Next on the same parameters the self organizing feature map and
best dynamic focused time lagged NN maodel with built in gamma memory is estimated for prediction
for all the steps. MNext the comparison between these models are carried out on the basis of the
performance measures such as Mean Square Error (MSE), Normalized Mean Square Error (NMSE)
and Correlation coefficient (r) on testing data set (The data set which is not used for training) as well
as training data set for the short term and long term ahead (K = 1,6,12,18,24) prediction. The various
parameters like number of hidden lavers, number of processing elements, step size, momentum value
in hidden layer, in output layer the various transfer functions like tanh, sigmoid, linear-tan-h and linear
sigmoid, different error norms L, L,, L., L, L; to L, different combination of training and testing
samples and epochs variation during training are exhaustively experimented for obtaining the proposed
robust model for the short term and long term ahead prediction.

MATERIALS AND METHODS

The Sunspot number is a good measure of solar activity which has a period of 11 years, called
solar cycle. The solar activity has measure affects on earth, climate, space weather, satellite and space
mission. Sunspots are often related to intense magnetic activity such as coronal loops and reconnection.
Most solar flares and coronal mass ejection originate in magnetically active regions around sunspot
croupings (Huebner er al., 1989). Sunspot numbers rise and fall with an irregular cycle with a length
of approximately 11 years. In addition to this, there are vanations over longer periods. The recent trend
1s upward from 1900 to the 1960s, then somewhat downward. The Sun was last similarly active over
8,000 years ago. The number of sunspots has been found to correlate with the intensity of solar
radiation over the period since 1979 when satellite measurements of radiation are available. Since
sunspots are dark it might be expected that more sunspots lead to less solar radiation and a decreased
solar constant. However, the surrounding areas are brighter and the overall effect is that more sunspots
mean a brighter sun. But due to intrinsic complexity of time behavior and a lack of theoretical model,
the prediction of solar cycle is difficult. Many prediction techniques have been examined on the vearly
sunspots number is an indicator of solar activity. However, in more recent studies the international
monthly smoothed sunspots number time series, which has a better time resolution and accuracy has
been used. The monthly smoothed sunspots number time series has been downloaded from the SIDC
World data center for the sunspot index (http://side.oma.be/index. php3). The study was conducted at
solar physics research department of the roval observatory of Belgium.

The data considered the monthly variations from January 1749 to December 2006, The total
samples are 3096 considered. The series is normalized in the range of -1 to +1 (Fig. 1).

Neural Network Models
Static NN Based Model

Static NNs typically uses MLP as a backbone. They are layered feed forward networks typically
trained with static back propagation. MLP solid based model has a solid foundation (Quin er al., 1992;
Naraendra and Parthasarathy, 1990). The main reason for this is its ability to model simple as
well as complex  functional relationships, This has been proven through number of practical
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Fig. 1: Monthly sun spots Chaotic time series

applications (Demuth and Beale, 2004). Cybenko (1989) is shown that all continuous functions can
be approximated to any desired accuracy, in terms of the uniform norm, with a network of one hidden
layer of sigmoid or (hyperbolic tangent) hidden units and a layer of linear or tan h output unit to
include 1n the hidden layer. This study does not explain how many units to include in the hidden layer.
Franklin et al. (1998) reported a significant result is derived approximation capabilities of two layer
perception networks when the function to be approximated shows certain smoothness. The biggest
advantage of using MLP NN for approximation of mapping from input to the output of the system
resides in its simplicity and the fact that it 15 well suited for online implementation. The objective of
training is then to determine a mapping from a set of training data to the set of possible weights so that
the network will produce predictions y (1), which in some sense are close to the true outputs y (t). The
prediction error approach is based on the introduction of measure of closeness in terms of Mean Square
Error (MSE) criteria:

i
V(8,2 = (2N} [y(t) =y *(t] )]
i=l {I}

M
=(IIEM]EE’[|,H]

The weights are then founds as: "= arg min, V., .ZY), by some kind of iterative minimization

scheme:
H.."‘II — H.l..l _l_H.l.lll'l.I

where 6" specifies the current iterate (number “i""), f " is the search direction and p'' is the step size.

When NN has been trained, the next step is to evaluate it. This 15 done by standard method in
statistics called independent validation {Fredric and Kostanic, 2002). It is never a good idea to assess
the generahzanon properties of a NN based on training data alone. This method divides the available
data sets into two sets namely training data set and testing data set. The traiming data set are next divide
into two partitions: the first partition is used to update the weights in the network and the second
partition is used to assess (or cross validate) the training performance, The testing data set are then
used (o assess how the network has generalized. The learning and generalization ability of the estimated
NN based model is assessed on the basis of certain performance measures such as MSE, NMSE and
the regression(r) ability of the NN by visual inspection of the regression characteristics for different
outputs of system under study.
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FTLRNN Model

Time Lagged Recurrent Networks (TLRNs) are MLPs extended with short term memory
structures, Here, a static NN (e.g., MLP) is augmented with dynamic properties (Dudul, 2007). This,
in turn, makes the network reactive to the temporal structure of information bearing signals. For a NN
to be dynamic, it must be given memory. This memory may be classified into short-term and long-term
memory. Long term memory is built into a NN through supervised learning, whereby the information
content of the training data set is stored (in part or in full) in the synaptic weights of the network
( Principe er al.. 2000). However, if the task at hand has a temporal dimension, some form of short-term
memory 1s needed to make the network dynamic. One simple way of building short-term memory into
the structure of a NN is through the use of time delays, which can be applied at the input layer of the
network (focused). A short-term memory structure transforms a sequence of Samples into a point in
the reconstruction space. This memory structure is incorporated inside the learning machine. This
means that instead of using a window over the input data, PEs created are dedicated to storing either
the history of the input signal or the PE activations.

The input PEs of an MLP are replaced with a tap delay line, which is followed by the MLFP NN.
This topology is called the focused Time Delay NN (TDNN), The focused topology only includes the
memory kernels connected to the input laver. This way, only the past of the input is remembered. The
delay line of the focused TDNN stores the past samples of the input. The combination of the tap
delay line and the weights that connect the taps to the PEs of the first hidden layer are simply linear
combiners followed by a static non-linearity. Typically, a gamma short-term memory mechanism is
combined with nonlinear PEs in restricted topologies called focused. Basically, the first layer of the
focused TDNN is a filtering layer, with as many adaptive filters as PEs in the first hidden layer, The
outputs of the linear combiners are passed through a non linearity (of the hidden-layer PE) and are then
further processed by the subsequent layers of the MLP for system identification, where the goal is to
find the weights that produce a network output that best matches the present output of the system
by combining the information of the present and a predetined number of past samples. (given by the
size of the tap delay line) (Bert de and Principe, 1992). Size of the memory layer depends on the
number of past samples that are needed to describe the input characteristics in time. This number
depends on the characteristics of the input and the task. This focused TDNN can still be trained with
static back-propagation, provided that a desired signal 1s available at each time step. This is because
the tap delay line at the input layer doesn’t have any free parameters. 5o, the only adaptive parameters
are in the static feed forward path,

The memory PE receives in general many inputs, x,(n) and produces multiple outputs
y = [yun), ..., yp(n)]T, which are delayed versions of y,(n) the combined input,

.
¥, () =gly, () y,(m=} x(n) (2)
=l

where, 2(.) is a delay function.

These short-term memory structures can be studied by linear adaptive filter theory if g(.) is a
linear operator. It 1s important to emphasize that the memory PE is a short-term memory mechanism,
1o make clear the distinction from the network weights, which represent the long-term memory of the
network,

There are basically two types of memory mechanisms: memory by delay and memory by
feedback. It is necessary to find the most general linear delay operator {special case of the Auto
Regressive Moving Average model) where the memory traces y,(n) would be recursively computed
trom the previous memaory trace yk-1({n). This memory PE is the generalized feed forward memory
PE. It can be shown that the defining relationship for the generalized feed forward memory PE is
mentioned (Bret de and Principie, 1992).

Ly
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goiny=gin)*g, (njk=21 (3)

where, # is the convolution operation, g(n) is a causal time function and k is the tap index. Since this
15 a recursive equation, gi(n) should be assigned a value independently. This relationship means that
the next memory trace is constructed from the previous memory trace by convolution with the same
function g(n), the memory kernel vet unspecified. Different choices of gin) will provide different
choices for the projection space axes. When we apply the input x(n) to the generalized feed forward
memory PE, the tap signals y,(n) become:

yiln) = gin)*y, (n) k= 1 (4)

the convolution of vk = 1{n) with the memory kernel. For k = (), we have:

yoln) = gyn)¥x(n) (5)

where, g,/n) may be specified separately. The projection x(n) of the input signal is obtained by linearly
welghting the tap signals according to:

n
x{n]=zwh}'h{n] (6)

=)

The most obvious choice for the basis is to use the past samples of the input signal x(n) directly,
that 1s the kth tap signal becomes y,(n) = x(n — k). This choice corresponds to:

g(n)=8(n - 1) (7)

In this case g(n) is also a delta function &(n) (delta function operator used in the tap delay line).
The memory depth is strictly controlled by D, that is the memory traces store the past D samples of
the input. The time delay NN uses exactly this choice of basis.

The gamma memory PE attenuates the signals at each tap because it is a cascade of leaky
integrators with the same time constant gamma modal. The gamma memory PE is a special case of the
generalized feed forward memory PE where,

gin)=wl-w"n=l (8)

and g,(n) = d(n). The gamma memory is basically a cascade of low pass filters with the same time
constant 1-p. The over all impulse response of the gamma memory is:

sp{nf[n_:}ip{l‘m""'.n?-*p )
Fl_

where, () 1s a4 binomial coefficient defined by:

n| nn-I.in—p+l)
p p!

For integer values of n and p, the overall impulse response g (n) for varying p represents a
discrete version of the integrand of the gamma function, hence the name of the memory.

§
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The gamma memory PE has a multiple pole that can be adaptively moved along the real Z-domain
axis, that is the gamma memory can implement only low pass (O<p<1) or high pass (1<p< 2) transfer
functions., The high pass transfer function creates an extra ability to model fast-moving signals by
alternating the signs of the samples in the gamma PE (the impulse response for l<p< 2 has alternating
signs). The depth in samples parameters (D) is vsed to compute the number of taps (T) contained
within the memory structure(s) of the network.

Self Organizing Feature Maps (SOFM)

These networks are based on the competitive learning; the output neurons of the network
compete among themselves to be activated or fired, with the result that only one output neuron, or one
neuron per group, 1s on at any one time. An output neuron that wins the compention is called a
winning neuron. The essential parameters of the algorithm are :

* A continuous input space of activation patterns that are generated in accordance with a certain
probability distribution

» A topology of the network in the form of a lattice of neurons, which defines a discrete ut space
(Haykin, 2003)

The values of weight vectors are updated for the winning node and its neighbors. The weight
vectors are calculated as follows:

WHt+D) =W t+nnNe.r[X, —W'(t)] (10}

where, Input vector X has K patterns and the number of elements of weight vector is equal to the
number of the processing elements in the output layer, t-number of iteration, c-number of cycle, 1y (t)-
learning rate, Nic, r)-neighborhood function, r-neighborhood radius.

Performance Evaluation Measures
Three different types of statistical performance evaluation criteria were emploved to evaluate the
performance of various models developed in this study. These are as follows:

Mean Square Error (MSE)
The mean square error is given by:

p M

)3 MCIES (11)
MSE — j=l 1=l
NEP
Where:
p = No.of output Pes (processing elements)
N = No. of exemplars in the data set
y; = Network output for exemplar i at Pe;

d; = Desired output for exemplar i at PEj

NMSE (Normalized Mean Square Error)
The normalized mean square error is defined by the following formula:
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N ® -
NMSE = _I-‘I :.,,N MSl;-
if NLd -1, (12)
| N
|

Where:
P = No. of output PEs
N = No. of exemplars in data set
MSE = Mean square error
d; = Desired output for exemplar i at pej

Correlation Coefficient/Regression CoefTicient (r)

The Mean Square Error (MSE) can be used to determine how well the network output fits the
desired output, but it does not necessarily reflect whether the two sets of data move in the same
direction. For instance by simply scaling the network output, we can change the MSE without
changing the directionality of the data. The correlation coefficient solves this problem. By definition,
the correlation coefficient between a network output x and a desired output d 1s.

E{xi—i}mi —d)

r= N (13)

\/Equ-&y JZ{xi—xj

N N

Where:

R=£.’4'.i

jul

d=
M

The correlation coefficient is confined to the range [-1. 1].

RESULTS AND DISCUSSION

The choice of the number of hidden layers and the number of hidden units in each hidden layers
15 critical (Turchenko, 2004). It has been established that a MLPNN that has only one hidden layer,
with sufficient number of neurons, acts as a universal approximators of nonlinear mappings
(Hornik er al.,1989; Huang et al., 2000). The tradeoff between accuracy and complexity of the model
should be resolved accurately (Lee and Lam, 19935). In practice, it is very difficult to determine a
sutficient number of neurons necessary to achieve the desired degree of approximation accuracy.
Frequently the number of units in the hidden layer is determined by trial and error. To determine the
weight values, one must have a set of examples of how the output should relate to the inputs. The task
of determining the weights from these examples is called training or learning and is basically a
conventional estimation problem. That is, the weights are estimated from the examples in such away
that the network, according to metric, models the true relationship as accurately as possible. Since
learning is a stochastic process, the learning curve may be drastically different from mun to run. In order
1o compare the performance of a particular search methodology or effect of different parameters have
on a system, it is needed to obtain the average learning curve over the number of runs so that the
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randomness can be averaged out. An exhaustive and careful experimentations has been carried to
determine the configuration of the static MLP Model and the optimal proposed FTLENN model for
all the step (K = 1,6,12,18,24) prediction (Fig. 2).

The comparative study of various training algorithms for one hidden layer with 10 neurons has
been carried out for the Monthly sunspots time series for 6 months ahead prediction for the data 60%
as a training, 15% as a Cross Validanon(CV) and 25% as a testing samples. The maximum number of
epochs was set to 2000 in supervised learning model for FTLRNN model for the following
Wples = 10, No. of taps = 6, Tap Delay = 1. Trajectory Length = 50. Step learning (Step), Quick
Propagation ( QP), Momentum learming (MOM), Delta Bar Delta (DBD).and Conjugate Gradient (CG)
learning were used for comparison.

In rigorous experimental study, the number of hidden layer with hyperbolic (tanh) activation
functions is gradually increased from 2 to 100 and every time the network is trained three times with
random weight-initialization till the value of cross-validation error exceeds the training error. All the
training process saves automatically the weights at minimum cross-validation error, The average of
minimum MSE, 1s found to be minimum for the number of hidden lavers PEs at 15, Vanation of
average correlation coetficient and average MSE with number of hidden neurons, for the training, testing
and cross-vahidation data sets 15 as shown n Fig. 3 and 4.

The variation of average of minimum MSEs (for 3 training runs) versus number of hidden nodes
15 plotted as shown in Fig. 5 for the series. Maximum value of average correlation coefficient r and
minimum value of average MSE for testing data set was obtained for number of hidden PEs equal to
15. Thus increase inthe value above 15 did not show any improvement in the performance of the
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Fig, 2: Comparison of different learning curves for training of FTLRNN for the real time monthly
sunspots chaotic ime series
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Fig. 5: Variation of average of minimum MSEs with number of hidden neurons for training and cross
validation data sets for Monthly Sunspot time series

Tabhle 1: Parameters for the newral network models

Parameters Hidden laver Clutput laver
Processing elements 15 [

Transfer function Tanh Tanh
Learning rule Momentum Momentum
Step size 1.0 0.1
Momenium (.5 (LB

forecaster. Fifteen PEs in the hidden layer was the optimum choice to develop the FTLRNN with
respect to minimum computing resources that further helps in the reduction of time of the neural
network, It was found 1o be considerably high for the other values of hidden PEs, When we attempted
o increase the number of hidden layer and the number of processing element in the hidden layer, the
performance of the model is not to seen to improve significantly, On the contrary it takes too long time
for training because of complexity of the model and the performance of network did not significantly
improved.

Then the possible variations for the model such as different transfer functions like tan h, linear
tanh, sigmoid, linear sigmoid in output layer, different supervised learning rules like momentum, step,
conjugant gradient and quick propagation are investigated in simulation. The step size and momentum
are gradually varied from 0.1 to 1 for static back propagation rule. After meticulous examination of the
performance measures like MSE, NMSE, Correlation Coefficient and the regression ability, the
optimum parameters are found and mentioned in the Table 1 for 60% used as training samples, 25%
as testing samples and 15% cross validation samples.

10
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Table 2: Performance of newral network models for testing data set

MLFP neural network FTLEMM S0FM
K {step) MSE MMSE r MSE MMSE r MSE MMSE r
1 0.00247 004533 (0.97569 000235 0.04319 097976 0.00460 008426 096438
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Fig. 6: Plot between Desired Output Vs Actual Network outputs for 1| month ahead prediction for
FTLRENN Model
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Fig. 7: Plot between Desired Qutput Vs Actual Network Output for 6 month ahead prediction for
FTLRNN Model

It is observed that the performance of the selected model 15 optimal for 15 neurons in the hidden
layer with regard to the MSE, NMSE and the correlation coefficient r for the testing data sets. When
we attempted to increase the number of hidden layer and the number of processing element in the
hidden layer, the performance of the model is not to seen to improve significantly. On the contrary it
takes too long for training because of complexity of the model. As there is single input and single
output for the given system, the number of input and output processing elements is chosen as one.
Now the NN Model (1:15:1) is trained three times with different weight initialization with 1000
iterations of the static back propagation algorithm with momentum term for all the three models for
the optimum parameter resulted in experimentation for all the 1.6,12.15 and 24 months ahead
predictions as shown in Table 2.

From the Table 2 it is observed that FTLRNN model is able to predict the monthly sunspot time
series elegantly well as compared o Multilayer perceptron (MLP) and Self Organizing Feature Map
(SOFM) on testing data set with regards to MSE, NMSE and correlation coefficient (r) not only for
l. 6, 12 months ahead prediction but also for 18 and 24 months ahead prediction. Also the graphs are
plotted for desired output and actual network output for 1 month ahead prediction shown in Fig. 6,
for 6 months ahead prediction shown in Fig. 7, 12 months ahead prediction shown in Fig. 8, 18 months

11
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Fig, 9: Plot between Desired Output Vs Actual Network Output for 18 month ahead prediction for
FTLRNN Model
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Fig. 10: Plot between Desired Output Vs Actual Network Output for 24 month ahead prediction for
FTLRNN Model

ahead prediction shown in Fig. 9 and 24 months ahead prediction shown in Fig. 10 for the FTLRNN
maodel, It is observed from the plots of Fig. 6, 7 and 8 for short term ahead prediction for 1, 6 and
|2 months, respectively, that the output of the proposed FTLRNN model closely follows the
desired output where as for long term ahead prediction from Fig. 9 for 18 months ahead
prediction and Fig. 10 for 24 months ahead prediction the output of the FTLRNN model are slightly
deviating.

Similarly for MLP and SOFM model the graphs are plotted for desired and actual output for
short term 1, 6 and 12 months ahead prediction as shown in Fig, 11-13, respectively and for long term
I8 and 24 months ahead prediction as shown in Fig. 14 and 15. It is inspected from the all the plots
that the output of these MLFP and SOFM models are not following the desired output well. These
neural network models fails to learn the dynamics of the monthly sunspots chaotic time series as

compared to the FTLRNN model.
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Fig. 15: Plot between desired output Vs Actual output for 24 month ahead prediction for MLP and
SOFM model

CONCLUSION

It is seen that focused time lagged recurrent network with gamma memory is able to predict the
sunspots time series quite well in comparison with the Multlayer preceptron (MLP) and self
organizing feature map (SOFM). Static NN configuration such as MLP NN based model and self
organizing feature map (S5OFM) network are failed to cope up with the underlying nonlinear
dvnamics of the sunspots time series. It is observed from the table 2 that MSE, NMSE of the
proposed focused time lagged recurrent neural network (FTLRNN) dynamic maodel for testing data
set as well as for training data set are significant better than those of static MLP NN and SOFM
model. In addition 1t 15 also observed that the correlation coethicient of this model for testing and
training exemplars are much higher than MLP and self organizing feature map neural network for all
the month (k=1.6,12.18,24) ahead prediction. From the plots in the Fig the proposed FTLRNN model
the network output closely follows the desired output for the 1, 6 and 12 months ahead prediction
whereas for 18 and 24 months ahead prediction the proposed FTLENN model output is slightly
deviating from the desired output as shown in Fig. 9 and 10, It is resulted from the experiments that
the FTLRNN maodel learns the dynamics of monthly sunspot time series quite well as compared to
Multilaver perceptron (MLP) and self organizing feature map{SOFM). On the contrary, it is
observed that static MLP NN and Self Orgamzing Feature Map (SOFM) performs poorly bad,
because on the one hand it yields much higher MSE and NMSE on testing data sets and on the other
hand the correlation coefficient for testing data set is far less than unity. This is also confirmed
from the desired output Vs actual output plots for all the months ahead prediction for MLP and
SOFM model as shown in Fig. 11-15 for the 1, 6, 12, 18 and 24 months ahead prediction respectively.
Hence the focused time lagged recurrent neural network with gamma memory filter has out- performed
the static MLP based neural network and SOFM better for 1, 6, 12, 18 and 24 months ahead
prediction,
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