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Abstract: The problem of unsupervised and supervised learmng of RBF networks
is discussed with Multi-Objective Particle Swarm Optimization (MOPSO). This
study presents an evolutionary multi-objective selection method of RBF networks
structure. The candidates of RBF networks structures are encoded into particles in
PSO. These particles evolve toward Pareto-optimal front defined by several
objective functions with model accuracy and complexity. This study suggests an
approach of RBF network trammg through simultaneous optimization of
architectures and connections with PSO-based multi-objective algorithm. Present
goal is to determine whether MOPSO can train RBF networks and the performance
15 validated on accuracy and complexity. The experiments are conducted on two
benchmark datasets obtained from the machine learning repository. The results
show that; the best results are obtained for our proposed method that has obtained
100 and 80.21% classification accuracy from the experiments made on the data taken
from breast cancer and diabetes diseases database, respectively. The results also
show that our approach provides an effective means to solve multi-objective RBF
networks and outperforms multi-objective genetic algorithm.

Key words: Radial basis function network, hybrid learning, multi-objective
optimizatior, multi-objective particle swarm optimization, elitist non-
dominated sorting genetic algorithm

INTRODUCTION

Radial Basis Function (RBF) networks form a class of Artificial Neural Networks (ANNs)
which has certain advantages over other types of ANNs. Due to their better approximation
capabilities, simpler network structures and faster learming algorithms, RBF networks have
certain advantages over other types of ANNs and have been widely applied n many science
and engineering fields. It has three layers feed forward fully connected network which
uses Radial Basis Functions (RBFs) as the only nonlinearity in the hidden layer neurons.
The output layer has no nonlinearity, the commections of the output layer are only weighted
and the comnections from the input to the ludden layer are not weighted (Leonard and
Kramer, 1991).

Since, the number of mput and output layer neurons 13 determined from the dimension
of data, the model designer can only set the number of lndden layer neuron. Hence the model
structure determination is to determine the number of hidden layer neuron. Although,
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parameter estimation methods such as the backpropagation method are well known, the
method of model structure determination has not been established. This 1s caused by the
model complexity (Nelles, 2001). If a model is complex, the generalization ability is low
because of its high variance error (Yu et al., 2006). Conversely, if a model is simple, then it
can’t represent better correlation between mput and output because of high bias error. The
learning method with regularization and the model structure selection method using
information criteria have been studied by Hatanaka et al (2001) to take a trade-off about the
model complexity mto account.

In this study, the construction of the Pareto RBF networl set obtained from the
perspective of the multi-objective optimization is considered. The set of Pareto optimal RBF
networks based on evaluation of approximation ability and structure complexity using
evolutionary computations had show good results on multi-objective optimization. The
optimal RBF network is constructed from the Pareto set since the obtained Pareto-optimal
RBF networks are diverse on its structure and the diversity. The Pareto optimal RBF network
1s applied to the pattern classification problems.

The objective of this study to design a novel framework based on multi-objective PSO
and RBF network for improving generalization and classification accuracy while avoiding
over-fitting in data and it compared to multi-objective GA.

RBF NETWORK

Artificial Neural Network (ANN) using Radial Basis Function (RBF) as activation
function mstead of sigmoid functions 13 RBF network. The RBF network 1s constructed of
three layers which are the input layer, the hidden layer and the output layer, as shown in
Fig. 1. The input layer neuron has a role to transmit data to the hidden layer. The hidden layer
neuron calculates value of the basis function by the received data from the mput layer and
then transmits the value to the output layer. The output layer neuron calculates the linear
sum of values of the hidden neuron. In this study, the Gaussian function is used as radial
basis functions. Let @, (x) be the j-th basis function, @, (x) is represented as follows:

(x-cf 0

where, x = (X, X;. . . Xy is the input vector, ¢; = (¢;; , ¢5....¢4)" and 0°, are the j-th center vector
and the width parameter, respectively. The output of RBF network y which is the linear sum
of basis function, 1s follows:

Fig. 1. Structure of RBF Network
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y= ZWJ(D(X) (2)
j=1

where, v 13 the output of the RBF Network, m 1s the number of the hidden layer neuron and
w;is the weight from jth neuron to the output layer.

In the typical learmng of RBF network, the network structure will be determined based
on prior knowledge or the experiences of experts and then the parameters are estimated by
methods such as the clustering and the least square method. On the other hand, there are
approaches m which the network structure and its parameters are estimated by the
evolutionary computation (Bai and Zhang, 2002; Wenbo ef al., 2002). Such a RBF network
is called an evolutionary RBF network.

MULTI-OBJECTIVE OPTIMIZATION OF RBF NETWORK

Generally, a mathematical model has dilemma about model complexity (Nelles, 2001). If
amodel 1s complex, then it can fit to data well because 1t has low bias error, but the variance
error become high, so the model generalization ability becomes worse. Moreover, a complex
model 13 not desirable since 1t 1s not easy to treat. Conversely, if a model 1s simple then
variance error 1s small. Such a model can prevent over-learming and the treatment of it will be
easy. The learning method with regularization and the model structure selection method
using information criteria have been studied by Hatanaka et al. (2001). The trade off about
model complexity 13 expressed by adding a penalty term about model complexity to the error
term and using it as evaluation criterion of the model construction and selection. However,
there 1s an alternative approach that solve the above problem by considering the model
construction as the multi-objective optimization problem about the model representation
ability and the model complexity (Abbass, 2001; Yen and Lu, 2003; Jin et al., 2004). The
evolutionary RBF network needs to evolve its structure with consideration of model
complexity. By utilizing characteristics of evolutionary algorithms that they are methods of
multi-point search, the method obtaining trade-off models has been studied by Yen and Lu
(2003) and Kondo et al. (2004).

Neural Networks (NNs) are bio-inspired tools that have been widely used in tasks such
as control processes, optimization, pattern recognition, classification, etc. The use of a neural
network to solve problem involves selecting the appropriate network model and network
structure and then traiming. These stages often require lugh computational time and human
interaction until the required network is obtained. In case of Radial Basis Function (RBF)
networks, the classic training algorithms are limited and so, these tasks may become even
more difficult.

Although, there are few studies regarding the implementation of multi-objective RBF
network training, but research on training of RBF network with evolutionary multi-objective
1s still new. Here, some existing work of tramning RBF network based on multi-objective
evolutionary algorithms (MOEASs) is presented.

Kokshenev and Braga (2008) applied multi-objective (MOBI) optimization algorithm to
the problem of mductive supervised learming depended on smoothness based apparent
complexity measure for RBF networks. However, the computational complexity of the
proposed algorithm 18 high m comparison with other state-of-the-art machine learning
methods. A multi-objective genetic algorithm based design procedure for the RBF network
has been proposed by Yen (2006). A hierarchical rank density genetic algorithm (HRDGA)
has been developed to evolve both the newral network’s topology and its parameters
simultaneously.
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Kondo et al. (2006) proposed method in which RBF network ensemble has been
constructed from Pareto-optimal set obtained by multi-objective evolutionary computation.
Pareto-optimal set of RBF networks has been obtained by multi-objective GA based on three
criteria, 1.e., model complexity, representation ability and model smoothness and RBF network
ensemble has been constructed. Lefort et al. (2006) applied new evolutionary algorithm, the
RBF-Gene algorithm to optimize RBF networks. Unlike other works, their algorithm can evolve
both from the structure and the numerical parameters of the network: it 1s able to evolve the
number of neurons and their weights.

Gonzalez et al. (2001) presented optimizing RBF network from training examples as a
multi-objective problem and an evolutionary algorithm has been proposed to solve it. Their
algorithm incorporates mutation operators to guide the search to good solutions. A method
of obtaining Pareto optimal RBF network set based on multi-objective evolutionary
algorithms has been proposed by Kondo et al. (2007) to solve nonlinear dynamic system
identification problem. RBF networks are widely used as model structure for nonlinear
systems. The determination of its structure that is the number of radial basic functions and
the tradeoff between model complexity and accuracy exists. On the other hand, Ferrewra ef al.
(2005) proposed a multi-objective genetic algorithm to the identification of RBF network
couple models of humidity and temperature in a greenhouse. Two combinations of
performance and complexity criteria were used to guide the selection of model structures,
resulting n distinct sets of solutions.

Unlike previous studies mentioned earlier, this study shares the problem of
unsupervised learning and supervised leaming of RBF network with multi-objective PSO
which evolve toward Pareto-optimal front defined by several objective functions with model
accuracy and complexity to improve generalization while avoiding over-fitting on data.

MULTI-OBJECTIVE OPTIMIZATION PROBLEM

Many real-world problems mvolve simultaneous optimization of several objective
functions. Generally, these functions are often conflicting objectives. Multi-objective
optimization with such conflicting objective functions gives rise to a set of optimal solutions,
mstead of one optimal solution. The reason for the optimality of many solutions 1s that no
one can be considered to be better than any other with respect to all objective functions.
These optimal solutions are known as Pareto-optimal solutions.

A general multi-objective optimization problem consists of a number of objectives to be
optimized simultaneously and is associated with a number of equality and inequality
constraints. It can be formulated as follows:

£ i=L..M

Subjf:ctto:{gj(){)_0 J=L-N (3
h (x)<0 k=1..K

where, £ 1s the ith objective function, x 13 a decision vector that represents a solution and M
is the number of objectives.

For a multi-objective optimization problem, any two solutions x, and x, can have one of
two possibilities- one dominates the other or none dominates the other. In a mimmization
problem, without loss of generality, a solution x, dominates x, iff the following two conditions
are satisfied:
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vie{l, 2, .M} €5 (%), (4)
Jie {1,2,...,M}:fj(xl) —<fj(xz)

The solutions which are not dominated by any other solutions are called the
Pareto-optimal solution or non-dominated solution. Generally many Pareto-optimal solutions
exist. The set of Pareto-optimal solutions 1s called Pareto optimal front. A non-dominated set
is required to be near to the true Pareto front and distributed uniformly.

PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is a population based stochastic optimization
technique developed by Kennedy and Eberhart (1993), inspired by social behavior of bird
flocking or fish schooling, in which each individual 1s treated as an infinitesimal particle in
the n-dimensional space, with the position vector and velocity vector of particle i being
represented as X (t) = (X, (), X,(0),...., X, (1) and V,(t) = (V, (1), V,(1),... .. V{1)). The particles
move according to the following equations:

Vig (41 = W Vig (04 ofFy (Ba(t)-2,q (1)) + CoTp (pgd(t)-x,d(t)j (5)

Hig (1) = Xig (8) + Vig (t+1) (6)
I=12,...M;d=12....n

where, ¢, and ¢, are the acceleration coefficients, Vector P, = (P;;, Piy,..., Pi) 18 the best
previous position (the position giving the best fitness value) of particle i known as the
personal best position (pbest); Vector P, = (P, P_,,..., P_) is the best position among the
personal best positions of the particles in the population and is known as the global best
position (ghest). The parameters 1, and r, are two random numbers distributed uniformly in
(0, 1). Generally, the value of V; is restricted in the interval [-V .., V,...]. Inertia weight w was
first introduced by Shi and Eberhart mn order to accelerate the convergence speed of the
algorithm (Shi and Eberhart, 1998).

MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION ALGORITHM

A particle swarm algorithm for the solution of multi-objective problems was presented
by (Coello and Lechuga, 2002). In MOPSO, in contrast PSO, there are many fitness functions.
Differently from PSSO, in MOPSO there is no global best, but a repository with the non-
dominated solutions found.

The MOPSO (Raquel and Naval, 2005) extends the algorithm of the single-objective PSO
to handle multi-objective optimization problems. Tt incorporates the mechanism of crowding
distance computation into the algorithm of PSO specifically on global best selection and in
the deletion method of an external archive of non-dominated solutions (Fig. 2). The crowding
distance mechamsm together with a mutation operator maintains the diversity of non-
dommated solutions in the external archive. This algorithm also has a constraint handling
mechamsm for solving constrained optunization problems. The MOPSO algorithm 1s
presented below:
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Fig. 2: Crowding distance computation
MOPSO Algorithm

BEGIN

Input: Optimization problem
Output: Non-dominated solutions i archive (A)

1. Fori=1toM (M is the population size)
Initialize P; randomly (P is the population of particles)
Tnitialize V; = 0 (V is the speed of each particle)
Evaluate P,
Initialize the personal best of each particle
PBESTS, =P,
e. GBEST = Best particle found in P,
2. EndFor
Tnitialize the iteration counter t = 0
4. Store the non-dominated vectors found in P into A
(A 1s the external archive that stores non-dominated solutions found in P)

/o oR

W

5. Repeat
a. Compute the crowding distance values of each non-dommated solution m the
archive A

. Sort the non-dominated solutions in A in descending crowding distance values
¢. Fori=ltoM
1. Randomly select the global best gumde for P, from a specified top portion
(e.g., top 10%) of the sorted arcluve A and store its position to GBEST.
ii.  Compute the new velocity:

V,

1= WV, + R,C(PBEST, —P,)+ R ,C, (A(GBEST) - P}
(W is the inertia weight equal, R, and R, are random numbers in the range
[0.1]), C, and C, are acceleration coefficients, PBESTS, is the best position
that the particle i have reached and A(GBEST) is the global best guide for
each non-dominated solution)

ui.  Caleulate the new position of P;:



.

END

v.
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P

= Pl * V1+1

If P, goes beyond the boundaries, then it is reintegrated by having the
decision variable take the value of its corresponding lower or upper boundary
and its velocity 1s multiplied by -1 so that it searches in the opposite direction

v.  If(t <(MAXT * PMUT),
Then perform mutation on P,
(MAXT is the maximum number of iterations and PMUT is the probability of
mutation)

vi  Evaluate P,

End For

Insert all new non-dominated solution in P into A if they are not dominated by any
of the stored solutions. All dominated solutions in the archive by the new solution
are removed from the archive. If the archive 1s full, the solution to be replaced is
determined by the following steps:

1.

1L

1l

Compute the crowding distance values of each non-dominated solution in the
arcluve A

Sort the non-dominated solutions in A mn descending crowding distance
values

Randomly select a particle from a specified bottom portion (e.g., lower 10%)
which comprise the most crowded particles in the archive then replace it with
the new solution

Update the personal best solution of each particle in P. If the current PBESTS
dominates the position in memory, the particles position is updated using
PBESTS, =P,

Increment iteration counter t

6. Until maximum number of iterations is reached

ELITIST NON-DOMINATED SORTING GENETIC ALGORITHM (NSGA-II)

The capabilities of multi-objective genetic algorithms (MOGAS) to explore and discover
Pareto optimal fronts on multi-objective optimization problems have been well recogmzed.
It has been shown that MOGAs outperform traditional determimstic methods due to their
capacity to explore and combine various solutions to find the Pareto front in a single run. We

will implement a multi-objective optimization technique called the non-dommated sorting
genetic algorithm IT (NSGA-IT) (Deb et al., 2002) to RBF network traiming. The NSGA-IT
algorithm may be stated as follows:

1. Create a random parent population of size N

2. Sort the population based on the non-domination

3. Assign each solution a fitness (or rank) equal to its non-domination level (minimization
of fitness is assumed)

4. Use the usual binary toumnament selection, recombination and mutation operators to
create a new offspring population of size N

5. Combine the offspring and parent population to form extended population of size 2N

6. Sort the extended population based on non-domination
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7. Fill new population of size N with the individuals from the sorting fronts starting from
the best

8. Invoke the crowding comparison operator to ensure diversity if a front can only partially
fill the next generation

9. Repeat the steps (2)-(8) until the stopping criterion is met. The stopping criterion may
be a specified number of generations

It 1s clear from the above description that NSGA-IT uses (1) a fast non-dominated sorting
approach, (11) an elitist strategy and (111) no mching parameter (Deb et al., 2002).

HYBRID LEARNING OF RBF NETWORK BASED ON MOPSO

The proposed algorithm called RBFN-MOPSO is a multi-objective optimization approach
to RBF network traiming with MOPSO as the multi-objective optimizer. The algornthm will
simultaneously determine the set of connections and its corresponding architecture by
treating this problem as a multi-objective minimization problem. In this study, a particle
represents a one-hidden layer RBF network and the swarm consists of a population of one-
hidden layer networlss. We set the number of hidden neurons depended on the problem to
be solved.

Parameters and Structure Representation
The RBF network 1s represented as a vector with dimension D contains the connections.
The dimension of a particle is:

D=(IxH)+(Hx Q) +H+ 0 Q)

where T, H and O are refer to the number of input, hidden and output neurons respectively.
The centers of RBF are initialized from k-means clustering algorithm and the connection
weights of RBF network are initialized with random values. The number of input and output
neurons 1s problem-specific and there 1s no exact way of knowing the best number of hidden
neurons. We set the number of hidden neurons (RBFs) depended on the number of clusters
(classes) of the problem to be solved.

RBFN-MOPSO

RBFN-MOPSO starts by collecting, normalize and reading the dataset. This is followed
by setting the desired number of hidden neurons and the maximum number of generation for
MOPSO. The next step 1s determining the dimension of the particles and mmitializing the
population with fully-connected feed-forward RBF network. In each generation, every
particle is evaluated based on the two objective functions and after the maximum generation
is reached, the algorithm outputs a set of non-dominated Pareto RBF networks. Figure 3
shows the description of proposed study.

Objective Functions

Two objective functions are used to evaluate the RBF network particle’s performance.
The two objective functions are:

1 i)
f, :Ez(tkj — 0y (8)
1=l
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Data collection and
Data preprocessing
Read dataset names Evalute()
(objective functions)
Set number of
hidden neurons and T ‘
maximum iterations Multi-objective PSO
I —
Determine RBF o
parameters and Imtlmh.:cﬁthe
particle dimension popation

Fig. 3: The description of the proposed study RBFN-MOPSO

¢ Accuracy based on Mean-Squared Error (MSE) on the training set where o and t,; are
the model output and the desired output, respectively and N 1s the number of data pairs
in the traming data

¢+ Complexity based on the sum of the squared weights which is based on the concept of
regularization and represents the smoothness of the model

1 it
2
fZ = E J§=1 W_] (9)

where w;, 1=1... M 1s a weight m the network mode and M 1s the number of weights in total.
EXPERIMENTAL STUDIES

To evaluate the performance of RBFN-MOPSO, several experiments were conducted on
two data sets are listed in Table 1. All data sets have been loaded from the machine learning
benchmark repository (Asuncion and Newman, 2007). These problems have been the
subjects of many studies in ANNs and machine learning.

Table 1: Description of data sets

Data Set Attributes  Classes  Samples  Remarks

Breast cancer 9 2 699 Determine the patients for whom the tumor is benign or malignant.
This data set has 16 missing values

Diabetes 8 2 768 Determine whether a patient shows sign of diabetes according to

World Health Organization Criteria

Experimental Setup

In this study, all data sets are partitioned mto three sets: a training set, a validation set
and a testing set. The validation set is used to select the best one from the Pareto optimal
solutions, while the testing set is used to test the generalization performance of Pareto RBF
network. It 13 known that the experimental results may vary significantly for different
partitions of the same data set.
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Table 2: Parameters settings for RBFN-MOPSO

Parameters RBFN-MOPSO
Optimization type Minimization
Population size 100

Archive size 100

Objective functions 2

Constraints 0

Lower limit of variable -0.5

Upper limit of variable 0.5

Probability of mutation (ph) 0.5

In the experiment, we analyze the evolutionary process of RBFN-MOPSO and evaluate
the performance of it on breast cancer and diabetes data sets and compare with RBFN-NSGA-
II. To do so, we partitioned the data sets sequentially as follows:

+  For the breast cancer data set, 50% of data (i.e., 349 examples) were used for the training
set, 25% of data (i.e., 175 examples) for the validation set and the rest (i.e., 175 examples)
for the testing set

¢ For the diabetes data set, 50% of data (i.e., 384 examples) were used for the training set,
25% of data (1.e., 192 examples) for the validation set and the rest (1.e., 192 examples) for
the testing set

For each data set, the experiments were implemented to minimize the influence of random
effects. Each experiment uses a different randomly generated mmtial population. In addition,
the number of input and output nodes 1s problem-dependent but the number of hidden nodes
is the number of classes {clusters) of data. The number of iterations is the same for all
algorithms. There are some parameters in MOPSO which need to be specified by the user.
Therefore, these parameters were set to the same for all data sets: the number of generations
(1,000), the mertia weights w,,, and w,;, (0.7 and 0.4), the mitial acceleration coefficients ¢,
and ¢, (1.5). The other various parameters settings of RBFN-MOPSO are presented in
Table 2.

RESULTS AND DISCUSSION

Here, the results of study on RBF network based on MOPSO are presented. The
experiments are conducted using two data sets. The results for each dataset are analyzed
based on the convergence to Pareto optimal set and classification results. One advantage of
evolutionary multi-objective optimization approach to RBF network generation 1s that
accuracy of RBF networlks with complexity can be obtained in one single run.

Table 3 and 4 showed that the best results of RBF network based on MOPSO algorithm
on traming, validation and testing in terms of convergence to error and classification
accuracy for the breast cancer and diabetes data sets respectively. The result of this
algorithm is Pareto optimal solutions to improve the generalization on unseen data. We report
the results in terms of error and correct classification for the two data sets. Figure 4a and b
demonstrated that MOPSO has the capability to evolve compact RBF networks which
generalize well on unseen data while avoiding over-fitting on data.

In order to evaluate the performance of RBFN-MOPSO under generalization and
classification, the comparison was carried out by using RBFN-NSGA-II in terms of
convergence to error and classification accuracy for all data sets. Table 3 also showed that
the results of RBFN-NSGA-IT on training, validation and testing in terms of convergence to

10
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Fig 4: Pareto front obtained using RBFN-MOPE0 for data (&) Breast cancer and (b Digbetes

error for dll data sets respectively. Figure 5a and b illustrated that Pareto front obtaned using
REFN-M3GAIl for tweast cancer and diabetes data sets respectively. From Table 3 and
Fig 5, the REFH-H33A-II remidts are weal for all data sets because the test error has the
tretud to oscillate evern when the complexity increases. This event can be considered as that
the resulting networks are over-fitted. From the comparisor, Fig 4-6 showed that REBEFH-
RIOPE0 i better than REFN-NEGA-IT in comvergence to Pareto frort soloti ong and dmpe oved
generalization while avolding over-fitting for all data sets.

When, we minimize both error and complexity of the network in mudti- objective
apptoack, we are able to achdeve a romber of Pareto optimal solutions with complexity
ranging from simple nebarork s to highly complex ones From all data sets, we can conclude
that ber trading off acowracy against complexity, the Pareto based moulti- obj ective optitnizati on
algorithim is able to find the simplest structires that solve the problem best. Besides, the
sitnple Pareto optimal networks are able to generalize well on unseen data,

Moreower, from Fig 4-6, we can see that when the neber otk complexity increases, the
testing error decreases. This phenomencn can be observed from the results by all of the
selected testing aupr oaches.

Howrewer, fhis phenom enon is oy partially maintaned for the relati onship betwreen the
test performance and the network complexity. Test error sl decreases as the netwrork
complexity increases. After that, the test error bas the tendency to fluctuate even when walue
of weights increases This ooowrence can be considered as that the resulting networks are

11
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Fig é: Acowacy versus complexity of P areto front of testing data for (1) Breast cancer and
(b Didhetes

over-fitted in RBFHN-N3GA-II. M ate that EBF network based on N3G A-TT solutions are far
from the Pareto optith al solutions atd therefore it codd still be mindmized considering both
obyj ectives.

From Fig 62 and b, itisvery difficult to find a single optimal netwotl: that can offer the
best petformance for all datasets. Therefore, instead of searching for a single optimal REF
netwrork, an algorithm that canresdt in a near complete set of optimal nebworks can be more
reasotiable and applicable option This iz the essential reason that RIOPEO0 agorithums can
be justified fior thi s type of newral network design problems.

The classification accuracy resdts of REF network based on MOPS0 and H3GA-IT for
breast catcer and dabetes data sets are shown in Table 4. The accuracy inthe table refers
to the percentage of correct classification on trairing, walidation and testing data sets,
respectively.

Figure Ta and b showed that the correct classification of Pareto front solutions for
testing dats which are producedwith RBFN-MOPE0 and REFH- N3G A-TT for all data sets.
Tahle 4 showed that RBF netwotks based on MOP30 hawe higher classification accuracy
tharn FBFN- N3GA-IT for digbetes data set. REFH-LIOPE0 has best classification accouracy
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Tahble 5: Fesulte of comtipatational tiine (i cec onde) of REFH-MOPED snd ERFH-F SGA- T for all data sete

Data set FEFH-MOF S0 FEFH-HSGA-IT
BEireast caticer 7203 200388
Diahetes 107 203 183 569

Table 6: Corparicom betae en onr proposed approachoarih the warioe work in tenne of testig clacefication acomacy sl
te st ity error atud the best re caks are hishlishited i bold

Ereast capuer Dishetes
Mlethoddfreferanc e Lcomacy Emor Aoy Error
FEEFH-MOPSO 100.00 0.m63 021 0.1497
REEFH-HEG4-11 041 0.0103 442 0.1712
HMOEN L2 (Goh e al., 2008 96,30 . 78 50 .
HMOEN HH( Gobet al., 2008) 96,82 . 7536 .
MPAHH (Abhass, 2003 2a8.10 - 400 -
B AHH (ibhass, 200 1) . . . 0.251
TPE0Het (¥ e el 2007) eraor 0.01a7 TTA3 0.230
MOBHET { Crarcia-Fedrajas o ol 20027 - - 7785 -
100 S T S pj  ® )|
90 ' 2 800 -
= ’ i
# a0 T
. 8 76
6o w T e
A A 72 Y
anl o =+
5 g
& 40 a
& szl
3U-W| G| [T TP | 4 b B et -
REFHHEAT | L | imeFvsEgan | ¥
“5 oo 010 015 040 025 630 035 O gl ol 040 U2 03 03
Testrygemor Testitygemmor

Fig 7. Correct classification of Pareto front of testing data for (2) Breast cancer and (h)
Diabetes

and maintasins diversity of Pareto frorts solutions. However, RBFH-N3GA-IT provades
competitive dassification acouracy compared to RBFN-N3GA-IT for breast cancer data set
iFig. 7.

From Tahle 5, the results show that REFH-MOPE0 is =signifi cantly faster cotwrer genice
titte than RBFH-NEGA-TI for all datasets. Thisis attribnted to the crow ding distance uszed
by MOPE0 which canbe computed faster than elitiam used by N3G ATL

Hawving walidated the effectiveness of multi-oljective optimization, the performances of
REFH-MOPE0 and FEFHN-NEGA-TT are compared against other wotlis in the litersture using
these data sets. The sunmary of the results is shown in Table 8. We note that com parisons
between the results ohtained from different approaches have to be made cauti ously, as there
at e ten erous ways in which the experim ental and simlation setups are done, for example,
the trainingtesting ratio, the prefpostprocessing, ete. The resdts that are presented here are
fot fine-tuned in any m anner, 1.6, the same parameter and experimental settings are used for
all the data sets. Nonetheless, it can be cheerved that proposed approach iz better or at least
competitive for breast cancer and diabetes data sets. Breast cancer resilts are propoged by
RBFH-M3GA-IT showed that better than HMOEN L2 (Goh ef &, 2008), HMOEN _HHN
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(Goh et al., 2008), MPANN (Abbass, 2003) and TPSONet (Yu et al., 2007) except RBFN-
MOPSQ in terms of classification accuracy and generalization error while diabetes results is
outperformed by HMOEN L2 (Goh ef al., 2008) except RBFN-MOPSO. On the other hand,
RBFN-NSGA-II and MPANN (Abbass, 2003) perform poorly for diabetes in term of
classification accuracy. In term of generalization error, RBFN-NSGA-IT provided smaller error
than MPANN (Abbass, 2001) and TPSONet (Yu et al., 2007) except RBFN-MOPSO for
diabetes data set. We notice here that RBFN-MOPSO optimized network performance while
unproving its generalization ability. The results can be observed from Table 6 that the
proposed approach RBFN-MOPSO is the best results for all data sets.

CONCLUSION AND FUTURE WORK

In this study, a novel approach for multi-objective optimization based on swarm
mtelligence principles, called MOPSO, is proposed and applied to develop generalization and
classification accuracy for multi-objective RBF network. This study introduces multi-
objective PSO approach to RBF network design called Multi-objective PSO-RBF network
Optimizer to concurrently optimize the architectures and connections of network. The optimal
RBF networl is constructed from Pareto front set obtained by MOPSO. RBF network
structure and its parameters are encoded to particle and Pareto-optimal set of RBF networks
15 obtained by MOPSO based on two criteria, 1.e. model accuracy and complexity. The
benchmark of pattern classification indicates that our proposed method provides better
results than multi-objective GA in terms of yielding diverse of solutions along the true Pareto
optimal fronts. The mam advantages of the proposed MOPSO approach are that it is simple
algorithm, faster convergence and vet robust in yielding efficient Pareto frontiers. Hence it
can be concluded that, for RBF networks, the proposed technique is a viable tool for multi-
objective analysis. Further improvement of the proposed algorithm will be the automatic
parameters tumng and structure turing of RBF network. The proposed method will optimize
the network performance and its structure at the same time, in terms of lndden nodes (RBF)
and active connections and we will do the cross validation and ROC analysis for data sets
in future work.
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