Journal of
Artiticial Intelligence

ISSN 1994-5450

science
alert

ANSI%@ZZ

s publisher
hﬁp //ansmet com

Tournal of Artificial Intelligence 3 (2): 67-72, 2010
ISSN 1994-5450
© 2010 Asian Network for Scientific Information

GADS and Reusability

Y. Al-Bastaki and W. Awad
Information Technology College, University of Bahrain, Bahrain

Abstract: Genetic programming is a domain-independent method that genetically
breeds population of computer programs to solve problems. Genetic programming
is considered to be a machine learning technicue used to optimize a population of
computer programs according to a fitness landscape determined by a program's
ability to perform a given computational task. There are a number of representation
methods to illustrate these programs, such as LISP expressions and integer lists.
This study investigated the effectiveness of genetic programming in solving the
symbolic regression problem where, the population programs are expressed as
integer sequences rather than lisp expressions. This study also introduced the
concept of reusable program to genetic algorithm for developing software.

Kev words: Genetic programming, reusability, GADS

INTRODUCTION

One of the central challenges of computer science is to get a computer to solve a
problem without explicitly programming it. Genetic Programming (GP) (Koza, 1992) is a
domain-independent problem-solving approach in which computer programs are evolved to
solve, or approximately solve, problems. It is based on the Darwinian principle of
reproduction and survival of the fittest and analogs of naturally occurring genetic operations
such as crossover and mutation. The Darwinian principle of reproduction and survival of the
fittest and the genetic operation of crossover are used to create a new offspring population
of individual computer programs from the current population of programs. The GP has been
used in wide area of applications, one of them is to solve the symbolic regression problem.
Symbolic regression can be viewed as the process of shaping an equation from a given set
of points. For example, the equation y =x’is regressed from the pairs (1, 1), (2, 4), (3, 9),
(4, 16), etc. A genotype is examined by contrasting the results. Tt generates with the results
generated by the goal equation. The differences are summed and the lower this final sum, the
better the fitness of the individual. Equations and other forms of Genetic Programs are
represented in tree structures. In a program tree, the mterior nodes contamn operators (+,-,*)
or functions, anything that can take parameters. The leaves contain the terminals: identifiers,
strings, numbers or anything that has a value. Figure 1 shows the trees representing two
different equations.

The number of children that any given node has is dependant upon the number of
parameters that the associated function or operator takes. In the case of addition,
multiplication and division operators there are two children for each node. The absolute
value operator takes one value as input. The constant and variable nodes have no children
since, there is no way for them to evaluate children.

Genetic programming is an application of Genetic Algorithm (GA). The GA is a search
algorithm based on the mechanics of natural selection and natural genetic. The GA was

Corresponding Author: Y. Al-Bastaki, Information Technology College,
University of Bahrain, Bahrain
67

J Artif. Intel | 3 (2): 67-72, 2010

i Cotresponding
Equation GP tree

©
x*2+3.4 ° @
& @

abs

abs(-12.473) (/)
@9 (3D

Fig. 1: Genetic programming representation

suggested by Holland (1975) in the seventies. Over the last 20 years, it has been used to
solve a wide range of search, optimization and machine learmng problems (Goldberg, 1989).

Koza (1992, 1995) and Koza et al. (1999) uses LISP expression to represent the
papulation programs. However, there 1s another representation method (Paterson and
Livesey, 1996, 1997) introduced new method for program representation. He suggested a
different approach using Baclkus Now Form (BNF) definition which is a notation for
expressing the grammar of a language in the form of production rules. The BNF grammars
consist of Non-terminals, Terminals, Start symbol and Production rules so {N, T, S, P}. There
has been a Genetic Algorithm for Developing Software by Peterson (GADS). He used a fixed
length chromosome which encodes production rules, where the genotype (genetic search
space element i.e., chromosome) is distinct from the phenotype (solutions space element i.e.,
program). The GADS genotype is a list of integers which, when input by a suitable generator,
causes that generator to output the program that is the corresponding phenotype. The
mapping from genotype to phenotype is called ontogenic mapping. The genotype is
operated on by the genetic operators (crossover, mutation and so on) in the usual range of
ways available to GA.

In our previous work (Al-Bastki and Awad, 2003) GADS has been used to solve the
symbolic regression problem, in which a simple set of syntax rules has been used with only
one function can be defined.

In this study, GADS is applied to solve the symbolic regression problem, with the
introduction of a new concept which is as function reusability, such that a number of
functions can be automatically defined in each genetic papulation program, with any number
of parameters. Furthermore, a new operator 1s used which 1s altering function architecture,
by changing the number of function parameters.

Many efforts have been made to use genetic algorithms to selve symbolic regression
problems. One of the problems that plagues most of the efforts is finding a way to efficiently
mutate and cross-breed symbolic expressions so that the resulting expressions have a valid
mathematical syntax. One approach to this problem, 1s to perform a mutation, check the result
and then try a different random mutation until a syntactically valid expression is generated.
Obviously, this can be a time consuming process for complex expressions. A second
approach 1s to limit what type of mutations can be performed for example, only exchanging
complete sub-expressions. The problem with this approach is that if limited mutations are
used, the evolution process is hindered and it may take a large number of generations to find
a solution, or it may be completely unable to find the optimal solution. In this study
constrained GADS is presented, which is inspired from the concept of strongly-typed GP
(Haynes et al., 1995).

68

J Artif. Intel | 3 (2): 67-72, 2010

Symbolic Regression

In ordmary mathematical regression, the procedure is given the form of the function to
be fitted to the data. This could be a linear function for linear regression or a general
mathematical function for nonlinear regression. The regression procedure computes the
optimal values of parameters for the function to make the function fit a data set as well as
possible, but the regression procedure does not alter the form of the function. For example,
a linear regression problem with two variables has the form:

y =atb*x

where, x is the independent variable, y is the dependent variable and a and b are parameters
whose values are to be computed by the regression algorithm.

This type of procedure is classified as parametric regression, because the goal is to
estimate parameters for a function whose form is known (or assumed). With nonparametric
regression the form of the function i1s not known in advance and it 1s the goal of the
procedure to find a function that will fit the data. So we are looking for f (+) that will best fit:

y=1&,%,...%)

where, v is the dependent variable and there are n independent x variables.

There are many possible forms of nonparametric functions-neural networks and decision
trees are types of nonparametric functions. Symbolic regression is a subset of nonparametric
regression that restricts the functions to be mathematical or logical expressions.

GADS with Reusable Functions

Automatically Defined Functions (ADF) has been mtroduced by Koza (1995), where GP
will automatically and dynamically evolve a combined structure containing ADF and a calling
program capable of calling the ADF. In this study, ADF 1s a technique used with GADS.

When, an ADF is encountered in a genotype, a random number 1s generated which
represents the number of function parameters, then the body of the function 1s constructed.
Therefore, the phenotypes consists of: the root (ADF1, where 1 18 the 1dentification number
of the function which is incremented whenever a new ADF is introduced), the list of
parameters (the number of these parameters is generated randomly) and function definition.
As example, consider the following function and terminal sets, ' and T:

T=(¥X,n)
F=(t, -, %, %)

The syntax rules (BNF) used is presented in Table 1.

In order to generate a well formed expression, constrammed GADS 1s used. Thus, the
syntax of the programs should be preserved during the initial papulation generation and by
the genetic operation used to modify the population. Therefore, the generation of a gene n
the chromosomes is simply based on some constraints (according the sysnax rules defined
in Table 1), such that: if a, a,, a_ is the genotype, the selection of gene a,, is not
randomly, instead, it is dependent on the gene a,. Therefore, each gene has a number of
allowed genes to appear after it.

69

J Artif. Intel | 3 (2): 67-72, 2010

Table 1: The syntax rules
Syntax rules Rule No.

<Sexp> : =< Input> 0
<Sexp> : =< Application> 1
<Inpute> : =X 2
<Input>:=n 3
<Application> : =n Call P 4
<Application> : = <Sexp> + <Sexp> 5
<Application= : = <8exp> - <Sexp> 6
<Application> ; = <Sexp> * <Sexp> 7
<Application> : = <Sexp> % <Sexp> 8
<Application> : =n ADF <Sexp> g

n represent an integer number, X is a variable, P is the list of parameters and n Call P represents calling the function,
ADFn with the parameter list P, in which P should be a list of constants (integers). Also, n of rule (9) represents the
number of parameters (number of variables in the function definition)

The process of generating an ADF in a genotype of the initial population can be
performed as follows:

* Generate a random number n which the number of function parameters
¢ Define the body of the function recursively, where the primitives that composed the
function is either a function, or an integer number in the range 1...n

We need to mention here that wherever an ADF1 1s defined in a chromosome, it 1s
replaced by the function i call P, i.e., rule number 4 and the function definition is stored in a
separate array. Furthermore, it is not allowed to include the gene (4) in the chromosome
unless an ADF 1s found in this chromosome.

Genetic Operations

The crossover operator must be implemented so that two chromosomes (genotypes),
that are syntactically correct, produce two offsprings that are also syntactically correct. In
this study, we need the following steps to perform the modified brood crossover operator:
Pick two parents from the population.

* Select a gene randomly from the first parent

* Select a gene randomly from the second parent

+ Test that genes for the syntactic constraint satisfaction

¢ If it conforms to syntax rules then exchange the genes, otherwise, select another gene
from the second parent until the correct gene is found

* Steps 2-5 s repeated NB times to generate 2*NB offspring

¢ Evaluate each of the children for fitness. Select the best two, they are considered as the
children of the parents. The remaining of the offspring are discarded

The mutation operator involves the selection of a gene randomly from a genotype and
then generate a gene randomly to replace the selected gene. Check the left and right
neighbors of that gene, if it satisfies the syntactic rules, then replace it, otherwise, select
another gene.

In this methed, the genotypes have a variable length. Thus, lengths of genotypes in the
population are selected randomly and the max-length must be specified beforehand by the
user and depends on the problem.

Furthermore, another operator may be applied, which 1s altering the AFD definition be
changing the number of parameters. This can be performed as follows: when, an ADF 1s

70

J Artif. Intel | 3 (2): 67-72, 2010

selected for this operation, a random number is generated to be the new p of the ADF. Then,
change the body of the ADF by replacing the integer numbers that represent the parameters
by new numbers generated randomly.

Experimental Work
The proposed modified GADS has been implemented to solve the symbolic regression
problem using C++ programming language. Each chromosome has been implemented as a
structure of the fields: one-dimensional array of integers (chromosome), two-dimensional
array to store ADF definition (if any), chromosome length and chromosome fitness value.
The genetic parameters used are: population size = 100, crossover probability = 1,

mutation probability = 0.05 and the changing parameters munber operation probability = 0.01.
For example, the expression to be evolved is:

X'+ X+ X+ X

Using the syntax rules of Table 1, after 22 generations the following genotype has been
obtained as

17150217020215180202170202
The corresponding phenotype is:
(TR H((xVax)+H*X))
In another run, after two generations, the following genotype has been obtained:
171502170202191503170202
The corresponding phenotype is:
() (1) call 1))

where ADF1 (1Hx*x)). Figure 2 shows the parse tree of this expression.

<Sexp>

>Appli{akion<
>s=x§>/l\>sm>

>Application> >App*ication>

/l\ {35

<Inp t> <I|1 > >A lication™> <ipu1>

TS

Fig. 2: Parse of the second expression

71

J Artif. Intel | 3 (2): 67-72, 2010
CONCLUSIONS

In this study, GADS has been used where, the structure under adaption 1s a population
of strings, while in GP, the structure 1s a population of programs (LISP expressions). Thus,
GADS uses the GA engine and works on simpler structure. Thus, we expect an improvement
in the efficiency in terms of time and storage space, in addition to simplify the implementation
of genetic operations such as crossover and mutation.

Furthermore, the concept of reusability has been mtroduced to GADS which, can
improve the efficiency especially for complex problems. The function reusability has been
introduced by using ADF with the call function, in addition to altering architecture operator.

Of course, to ensure the syntactically correct program, strongly-typed GP has been
used. Such that, some constraints have been enforced in the generation of the mitial
population and applying the genetic operations.

The symbolic regression problem is considered here and we have observed that the
number of generations needed to find the correct solution is minimized comparable with
Koza (1992) work.

REFERENCES

Al-Bastki, Y. and W. Awad, 2003. New development in genetic algortihm for developing
software. Stud. Informatics Control, 12: 277-284.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning.
1st Edn., Addison-Wesley, New York, USA., ISBN: 0201157675.

Haynes, T., R. Wainwright, 3. Sen and D. Schoeenefeld, 1995. Strongly typed GP 1n evolving
cooperation strategies. Proceedings of the 6th International Conference on Genetic
Algorithms, Tuly 15-19, Morgan Kaufimann, USA., pp: 271-278.

Holland, T.H., 1975. Adaptive in natural and artificial systems. Amn Arbor, University of
Michigan.

Koza, I.R., 1992, Genetic Programming: On the Programming of Computers by Means of
Nature Selection. MIT Press, Cambridge, MA., ISBN: 0-262-11170-5.

Koz, IR, 1995. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, USA.

Koza, IR., F.H Bennett 1T, D. Andre and M.A. Keane, 1999. Genetic Programming TT1:
Darwinian Tnvention and Problem Solving. 1st Edn., Morgan Kaufmann, TJSA., TSBN-10:
1558605436, pp: 1154,

Paterson, N.R. and M. Livesey, 1996. Distinguishing Genotype and Phenotype in Genetic
Programming. In: Late Breaking Papers at the Genetic Programming, Koza, I.R. (Ed.).
Stanford Bookstore, USA., ISBN: 0-18-201031-7. pp: 141-150.

Paterson, N. and M. Livesey, 1997. Evolving Caching Algorithms in C by GP. In: Genetic
Programming 1997, Koza, I.R., K. Deb, M. Dornige, D.B. Fogel, M. Garzon, H. Iba and
R.L. Riolo (Eds.). Morgan Kaufmann, USA., pp: 262-267.

72

	JAI.pdf
	Page 1

