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ABSTRACT

The use of accuracy metric for stochastic classification training could lead the solution selecting
towards the sub-optimal solution due to its less distinctive value and also unable to perform
optimally when confronted with imbalanced class problem. In this study, a new evaluation metric
that combines accuracy metric with the extended precision and recall metrics to negate these
detrimental effects was proposed. This new evaluation metric is known as Optimized Accuracy with
Extended Recall-precision {(OAKRP). By using two examples, the results has shown that the
OAERF metrie has produced more distinetive and discriminating values as compared to accuracy
metric. This paper also empirically demonstrates that Monte Carlo Sampling (MCS) algorithm that
is trained by OAERP metric was able to obtain better predictive results than the one trained by the
accuracy metric alone, using nine medical data sets. In addition, the CAERP metric also performed
effectively when dealing with imbalanced class problems. Moreover, the t-test analysis also shows
a clear advantage of the MCS model trained by the OAKRP metric against its previous metric over
five out. of nine medical data sets. From the abovementioned results, it 1s clearly indicates that the
OAERF metric is more likely to choose a better solution during classification training and lead
towards a better trained classification model.

Key words: Evaluation metric, hybrid evaluation metrie, accuracy, recall, precision, stochastic

classification model

INTRODUCTION

In the context of stochastic classification algorithms, a key objective of classification training is
to identify and select the best solution among all generated scolutions that well fits the input data
{training data) and accurately predict the class labels of unknown data (test data). However, using
accuracy metric as evaluator and discriminator to diseriminate and select the best solution has
limitations. Chawla et al. (2004), Garcia and Herrera (2008), Huang and Ling (2005),
Ranawana and Palade (2006) and Wilson (2001) demonstrated the simplicity of this accuracy
metric could lead to the sub-optimal sclutions especially when dealing with imbalanced class
problem. It is due to a minority class instances has very little impact on the accuracy as compared
to the majority class instances. Furthermaore, the accuracy metric also exhibits poor diseriminating
power to discriminate and select the best solution in erder to build an optimized classification model

due to its less distinctive value (Huang and Ling, 2007).
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From the previcus study, little efforts were dedicated to study and improve the discrimination
process of classification training using an alternative evaluation metric. Ferri et «l. (2002),
Huang and Ling (2007) and Eakotomamony] (2004) had proposed area under ROC (AUC) metric
as the objective function for discriminating the best solution. The AUC was proven theoretically and
empirically better not only to construct optimized learning models (Ferr et al, 2002;
Huang and Ling, 2007; Rakotomamonyj, 2004; Yan ef af., 2003) but also in evaluating classifiers
{Bradley, 1997, Huang and Ling, 2005; Provost and Domingos, 2003). Although, the AUC
performance is good, the computational cost of this metric is high in order to evaluate a volume of
generated solutions. For instance to compute the AUC for multi-class problem the time complexity
is O(| CIn log n) for Provost and Domingos ATUUC model (Provost and Domingos, 2000) and O(|C|?
n log n) for Hand and Till AUC model (Hand and Till, 2001). In fact, for two-class problem a special
algorithm 1s employed to calculate the AUC value (Fawcett, 2006),

From the literature, there was a study that has been conducted to improve the accuracy metric
using hybridizing technique (Ranawana and Palade, 2006). The new hybridized metric was called
Optimized Precision (OP) which a combination of accuracy metric with sensitivity and specificity
metrics. In this study, the OP metric was able to discriminate and select a better solution and
increase the classification performance of ensemble learners and Multi-Classifier Systems for
solving Human DINA Sequences data set. To the best of our knowledge, there was no such efforts
have been made to employ this evaluation metric to train other application domains or types of data
set. As a result, the effectiveness of this evaluation metric is still uncertain and questionable for
data classification.

Similar to OP metric (Ranawana and Palade, 2006), the main purpoese of this study was to
improve the problem of accuracy metric in discriminating the best solution in order to build an
optimized stochastic classification models for data classification. This paper introduced a new
hybridized performance metric derived from the combination of accuracy metric with the extended
precision and extended recall metrics. The new performance metric is known as an optimized
accuracy with extended recall-precision (OQAKRF) metric. In addition, the proposed metric is also
expected to impose lighter computational complexity to facilitate the easy computation and
adaptation in diseriminating a volume of generated solution during the classification training.

MATERIALS AND METHODS

Background of research project: The research to be presented in this study is a part of doctoral
research project conducted in Intelligent Computing Lab, Universiti Putra Malaysia (UPM). This
project is entitled Optimizing Stochastic Classification Models via Novel Evaluation Metries for
Two-Class and Multi-Class Classification Problems and it was imitiated on July 2008 and will
be end on 2012,

Proposed evaluation metric: As aforesaid, the aim of this study was to propose a new evaluation
metriec which combined the accuracy metric with the extended version of precision and recall
metrics. Fromthe literature, precision and recall are two evaluation metrics that are commonly used
as the alternative metrics to measure the performance of two-class classification problem for two
different aspects (Buckland and Gey, 1994). Basically, precision is used to measure the fraction of
positive data that are correctly predicted in a positive class (confidence) while recall measures the
fraction of positive data being correctly classified over the total of positive data (coverage). From our
point of view, the conventional precision and recall metrics are unsuitable for the combination
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process with accuracy metric. This 1s because both metrics only measure one class of data. According
to Ranawana and Palade (2006), the ideal coneept to construct a new evaluation metric is the
proposed metric should be able to maximize every class data. Therefore, the extended precision and
extended recall were proposed. Lingras and Butz (2007) extended the notion of this conventional
precision and recall metrics by defining separate values of precision and recall for each class of data.
Through these metries, the performance of every class data could be measured individually and in
the same time provides more information for evaluation purposes.

One might question, in what means the accuracy metric could be hybridized with the extended
precision and extended recall metrics? To answer this question, two important formulas from
Ranawana and Palade (2006), namely the Relationship Index (RI) and Optimized Frecision (OF)
were adopted. The details of these reference formulas can be found in Ranawana and Palade
(2008). For combination process using both formulas, it involves two-step efforts. At the first step,
an appropriate correlation between extended precision and extended recall need to be identified in
order to apply the RI formula. Then, the next step 1s to identify the best means to adopt the OF
formula in order to merge the accuracy metric with the RI formula.

According to Tan ef al. (2008), the 1deal coneept for building an optimized classification model
using the precision and recall metrics are by maximizing the both values of Precision (p) and recall
{r) (p!, r1). Based on this correlation, the RI formula could be employed by dividing the difference
of total precision value and total recall value with the summation of total precision value and total
recall value. In short, RI can be defined as Eq. 1.

RI:‘(P1+P2)_(T1+I2)| (1)
(py+py)+ (5 +1))

A low RI value entails a low |(p, + py)-(r, + r,)| and a high (p, + p,) + (r;+r,) values which
indicate the values of each recall (r,, r,) and precision (p,, p,) in both classes are comparatively
equivalent. The RI only returns value of zero whenever each precision and recall value in both
classes is equal.

As mentioned earlier, the use of accuracy metric alone could lead the searching and
diseriminating (sub-solutions) process to be under-performing due to its less distinctive value. Due
to this drawback, this leads us to combine the beneficial properties of RI with the accuracy metric

as defined in Eq. 2. For simplicity, the new evaluation metric is called optimized accuracy with
extended recall-precision (OAERF):

OAERP = Acc-R1 (2)

Unlike the accuracy value, we believed that the OAERP value is more distinctive and
discriminative with the help of RI value. We also believed that the OAERP metric is able to perform
effectively when dealing with any distribution class of data (balanced and imbalanced class
distribution) since the performance of each class is incorporating to produce the OAERF value. In
addition, by adopting the RI and OF formulas, the computation complexity of computing the
OAERP value is still simple and moederate. In fact, all values required are simply derived from the
confusion matrix and need not a special algorithm to compute the OAERF value.

Resizing and smoothing OAERP wvalue: In calculating the OAERP wvalue using Eq. 2, we
observed that the OAERP value tends to result in negative and deviate too far from the actual
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accuracy value especially when the Kl value is larger than or almost equivalent to the accuracy
value. For that reason, we propose to resize RI value into a relatively small value before computing
the OAKRP wvalue. To perform smoothing on the OAERP value, the decimal scaling method
{Al-Shalabi, 2011) is used to resize the RI value as shown in Eq. 2:

LRl 3)
new 10X

where, x>0. In this study, we set the x = 1 for the entire experiment. By resizing the RI value, the
resulting OAERF value will be comparatively closer to the accuracy value but still distinetive and
discriminative. This claim will be validated in the experimental section.

Experimental methods: For comparison and discussion, this study has been hmited by comparing
the OAERP metric against the accuracy metric only. Moreover, the two-class classification problem
was used for comparing both metrics. For the performance evaluation, two kinds of experiments
were conducted to demonstrate the advantage of OAERP metric against the accuracy metric.

Experiment 1: For the first experiment, the OAKRP metric was compared with the accuracy metric
using two examples (case studies). Both metries were analyzed manually in terms of distinctness
of value produced and the performance ability when dealing with any data distribution (balanced
and imbalanced). To ensure fair comparison, the intuition decision (common sense) was employed
as baseline for comparison discussion (MacKay, 2003). This method is important in order to
demonstrate that the evaluation made by the system i1s aligned with the human intuition in
evaluating the best solution. In addition, we also restricted our discussion to the solutions that are
indistinguishable based on the accuracy value. All data used in this comparison were manually
generated and represented using confusion matrix as shown in Table 1.

Experiment 2: To demonstrate the applicability and advantage of OAEKRP metric over accuracy
metric in discriminating the best solution, a naive instance selection algorithm which is Monte Carlo
Sampling (MCS) algorithm (Skalak, 1994) was employed for the experimentation. MCS algorithm
was chosen hecause this classification algorithm simply applies accuracy metric to diseriminate the
best solution during the classification training. However, as we observed, the best solution that
discriminated and selected by accuracy metric does not always achieve better predictive result when
tested with test data. In contrast, other generated solutions that obtained slightly lower
training accuracy value than the best one able to produce better predictive result. On top of that,
even if two solutions cbtained equivalent training accuracy value, they may obtain different
predictive results. For this reason, an appropriate evaluation metric which is more
diseriminating than accuracy metric should be applied to discriminate and select the best solution.
Therefore, in this study, we propose this naive stochastic classification algorithm to be adopted for
the second experiment.

Tahble 1: Confusion matrix

Actual positive class Actual negative class
Predicted positive class True positive (TP) False negative (FN)
Predicted negative class False positive (FP) True negative (TN)
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Table 2: Brief description of each chosen data set

Dataset Nol NoA MV Minority class (%) Majority class (%)
Breast cancer-Original (BCO) 699 9 Yes 34.48 65.52
Breast cancer-Diagnostic (BCD) 569 30 No 37.26 62.74
Breast cancer-Prognostic (BCP) 198 32 Yes 23.74 T6.26
Heart 270 13 No 44,44 55.56
Hepatitis (Hepa) 155 19 Yes 20.65 79.35
Liver 345 6 No 42.20 57.80
Parkinson (Pksn) 197 22 No 25.38 T4.62
Pima-Indian diabetes (Pima) 768 8 No 34.90 65.10
SPECTF-Heart (SPECTF) 267 44 No 35.58 64.42

Nol: No. of instances, NoA: No. of attributes, MV: Missing value

Data sets: For the purpose of comparison and evaluation on the performance of OAKEP metric
against the accuracy metric, nine medical data sets from (Frank and Asuncion, 2010) were selected.
The data sets represent real-world problems and involve challenging issues such as imbalanced
class problem. The chosen data sets also vary in terms of relative proportions between two classes
and differ in terms of the number of attributes and instances. Brief descriptions about the selected
data sets are summarized in Table 2. In pre-processing, all of the selected instances were
normalized using min-max normalization method within the range of [0, 1] to prevent any
attribute variables from deminating the analysis (Al-Shalabi, 2011). All rmssing attribute values
in several data sets were simply replaced using the same methods by Skalak (1994),

Experimental setup: In this experiment, all data sets were divided into ten approximately equal
subsets and was run 10 times each using 10-fold cross validation methed similar to
{Al-Daoud, 2009). To ensure fairness, the MCS algorithm was directly trained using the accuracy
and OAKRP metric simultanecusly for selecting and discriminating the best solution. The highest,
value from both metrics through n generated solution will be used for final weight (trained
classification model) and tested with test data. We refer these MCS models as MCS, , and MCS,;z;,
respectively. To compute the similarity distance between each training data and the final weight
(best solution), the Euclidean distance measurement was employed. The MCS algorithm from
(Skalak, 1994). was re-implemented using MATLAB Seript version 2009b. All parameters used for
this experiment were simmlar to Skalak (1994) except in the number of generated solution, n. In this
experiment, we set n = 500, similar to Bezdek and Kuncheva (2001) which is to ensure that MCS
algorithm has enough generated solution to be evaluated during the classification training. This
is contrary to implementation of the original MCS algorithm, whereby the total n = 100 used for
training process 1s too small (Skalak, 1994). From this experiment, the expectation was to see that
the MCS,,zzp model is able to predict better than MCS,  model when tested with the test data. For
evaluation purposes, the average of testing accuracy (A.TE, ) and the average of testing OAERP
(A TE.,gee) from ten trial records for each data set were presented and reported for further analysis
and comparison,

EXPERIMENTAL RESULTS
Results of experiment 1: Let us consider the first example that focused on balanced class

problem.

191



oJ. Artif. Intel., 4 (3): 187-196, 2011

Example 1: Given a balanced data set containing 50 positive and 50 negative instances
{domain ¥) and two evaluation metrics which are accuracy (Acc) and OAERP are used to
diseriminate six similar solutions (8) from A to F where Acc={(A, B, C, D, K, F | A, B, C, D, K, F
eW}yand OAKRP={ A B, C, D, K, ) | A B,C, D, K, FeW¥} Assume that all solutions obtained
the same total correct predicted instances which are 90 instances as given in Table 3.

Since, this problem is balanced class distribution, intuitively, we can conclude that solution F
is better than the other solutions. This is proven by evaluating the value of TP and TN (correctly
classified instances) and FP and FIN (misclassified instances). In this case, the TP and TIN and FP
and FN values for I were comparatively balanced as compared to the remaining solutions.
Intuitively, all of the above solutions could be ranked as follows: (F>E>D>C>B>A). From this
example, the OAERP metric ranks its values similar to our intuition while the accuracy metric was
unable to rank its values (undistinguishable) due to poor value produced.

Let us consider another example based on imbalanced class problem.

Example 2: Given an imbalanced data set containing b positive and 95 negative instances
{domain ¥) and two evaluation metrics which are accuracy (Acc) and OAERP are used to
diseriminate six similar solutions (8) from A to F where Acc={(A, B, C, D, K, F | A, B, C, D, K, F
eW}yand OAKRP={ A B, C, D, K, ) | A B,C, D, K, FeW¥} Assume that all solutions obtained
the same total correct predicted instances which are 95 instances as given in Table 4.

From all solutions in Table 4, intuitively, the solution A was the poorest solution since it does
not has any single positive instance that was correctly classified. In contrast, solution F was the
most informative solution since all minority class (positive) instances were correctly classified as
compared to other solutions. Recall that when dealing with imbalanced class distribution usually
the majority class instances have more influence than the minority class instances. Therefore, if
more minerity class instances were correctly predicted then the better solution will be obtained.
Intuitively, we can rank all solutions according to the degree of informativeness as represented
bythe TP and TN wvalues as (F>E>D>C>B>A). Similar to Example 1, all solutions are

Tahble 3: Accuracy against OAKRP metric for balanced class problem

S TP FP TN FN TC Ace OAERP
A 50 10 40 0 90 0.800000 0.890909
B 49 9 41 1 90 0.900000 0.892593
c 48 8 42 2 90 0.800000 0.894340
D 47 7 43 3 90 0.900000 0.896154
E 46 &) 44 4 90 0.800000 0.898039
F 45 5 45 5 90 0.900000 0.900000

Tahle 4: Accuracy against OAKRP for imbal anced class problem

S TP FP TN FN TC Ace OAERP
A 0 o] 95 5 95 0.950000 0.950000
B 1 1 94 4 95 0.950000 0.907143
C 2 2 93 3 95 0.950000 0.938889
D 3 3 92 2 95 0.950000 0.940909
E 4 4 91 1 95 0.950000 0.926923
F 5] 5 90 0 95 0.950000 0.916667
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undistinguishable by the accuracy metric as compared to values produced by OAKEP metric.
Although, the values produced by OAERP were distinetive and distinguishable, intuitively, it 1s not,
aligned with the intuition decision. In this case, the poorest solution A was ranked the highest while
the most informative solution F was ranked fifth place. Based on OAKRP values, we can rank all
sclutions as (A>D>C>kK>F>B).

Based on two examples discussed, we can assure that the value produced by OAERP metric was
distinctive and distinguishable as compared to accuracy value for two different class problems.
Unlike the balanced class problem, the value of OAKRP metric was not aligned (ill-ranked) with
our intuition (well-ranked) for the imbalanced class problem. One might question, does this
ill-ranked solution will affect the performance of any stochastic classification algorithm when
directly trained by OAERP metric to discriminate and select the best solution for imbalanced class

problem? The answer for this question will be testified in the next experiment.

Results of experiment 2: Table b shows the average testing results of two MCS models for each
data set. Note that the mean of average testing accuracy (A TE, ) and average testing OAERP
(A TEouprp) values obtained by MCS_,zpp model were better than the MCS, model. The mean of
ATE,  and A.TE. o value obtained by MCS, gz model are 0.8464 and 0.8438, respectively while
the MCS, . model obtained 0.8158 and 0.8117, respectively. Overall, the MCS_,zrr model shows an
outstanding performance against the MCS,  model whereby the MCS,,zzr model has improved the
classification accuracy for eight medical data sets. In addition, although the OAERP metric could
not show a better decision as compared to human intuition for imbalanced class problem
(ill-ranked), this limitation did not impede the MCS_,zrp model to achieve better predictive results
than the MCS,  model in classifying nine imbalanced data sets.

To show the significant improvement of the results of MCS,,zrr model against MCS,  model,
we perform a paired t-test with 95% confidence level on each medical data set using the ten trial
records from each data set. For comparison, we count in how many data sets that one study model
is statistically significantly win, tie or loss than another model. As indicated in Table 6, the
MCS,grr model obtained five statistically significant wins against MCS, , model for both A.TE, .
and A.TEg,gep values based on eight improved results. On top of that, we also perform a paired

t-test analysis on overall A TE,  and A.TE.,z; values obtained by both MCS models over nine

Tahble 5: Predictive results from the two MCS models trained by accuracy and OAKRP metric for nine medical hinary data sets

Use MCS,,, Use MCSqagre
Data sets A TE,. A TEqserp A TE 4. A TEosere
BCO 0.9686 0.9682 0.9629 0.9625
BCD 0.9648 0.9640 0.9737 09731
BCP 0.7311 0.7196 0.7776 0.7716
Heart 0.8444 0.8430 0.8778 0.8765
Hepa 0.8063 0.8027 0.8650 0.8640
Liver 0.6235 0.6195 0.6703 0.6690
Pksn 0.8413 0.8324 0.8766 0.8701
Pima 0.7526 0.7501 0.7631 0.7614
SPECTF 0.8095 0.8059 0.8507 0.8463
Mean 0.8158 0.8117 0.8464 0.8438
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Tahble 6: T-test analysis of MCSc.zpe against MCS,,, model using ten trial records from each data set

Data sets Use A TE,. Use ATEquerp
BCO n n
BCD n n
BCP n n
Heart w w
Hepa w w
Liver w w
Pksn w w
Pima n n
SPECTF w w

Total (w/nd)
w: Statistically significant win, n: Statistically not significant, 1: Statistically significant loss

gr
&t
=
e
(=]
o
L
=)

medical data sets (Table 5). From this analysis, the MCS,zpp model shows significant difference
with MCS,  model for both A TE,  and A TE_,zzp values at confidence level of 95% and even 99%),
where p-value for both analyses are 0.001. Through this experiment, we can conclude that MCS
model trained by OAERP metric is better and statistically significant than MCS model trained by

accuracy metric.

DISCUSSION

Gaven the results from the two examples, we proved that by combining the extended precision
and extended recall metric into accuracy metric, the results produced have meaningfully changed
{distinctive value and distinguishable) as compared to its previous metric values. Although, the
values produced by the OAEEP metric were distinctive and distinguishable, in Example 2, the
values produced by the OAKRP metric were not aligned with intuitive decision for imbalanced class
problem. We found that the correlation used to determine the Relationship Index (RI) value was
unsuitable and not able to portray the performance of each class data. In computing the RI value,
we group all precision values together versus a group of recall values which do not portray the
relationship among the precision and recall values in each class. Therefore, for the next study, we
suggest the correlation given by Lingras and Butz (2007). Lingras and Butz (2007) proved that for
two-class problem the precision of one class is correlated to recall of other class and vice versa.
Through this correlation, we can construct a different way to compute the RI value which we
believed can produce a better value and aligned with human intuitive decision especially for
imbalanced class problem.

We also believed that the OAKERP metric are well facilitating in MCS searching process, leading
towards a better training classification model. The basic idea of MCS algorithm 1s always heading
towards a solution (future state) that is better than the current one (best current state)
(Skalak, 1994). In the context of data classification, the future states can be viewed as different
classification models. This means the selected best future state can be viewed as selecting the best,
future model. By employing the OAERP metric as the objective function for MCS algorithm, it
shows that the MCS searching process is more likely to choose the hetter future state due to the
advantage of its distinctive and distinguishable value. Unlike the accuracy metric, this
metric 1s easy to get stuck into flat plateau (Table 3, 4) due its less distinctive wvalue
{Huang and Ling, 2007). Based on this finding, its prompts us to believe that the OAKRP metric
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can do a better job than the accuracy metric in selecting and discriminating the best solution during
the classification training. At the end, this will lead towards a better trained MCS model as
compared to the accuracy metric.

On top of that, the experimental results also show that the MCS model trained by OAERFP
metric performs better than MCS model trained by accuracy metric even if both MCS models are
evaluated with testing accuracy value (A.TK, ). Although, contradictory with common intuition
in machine learning where a particular model should be optimized by an evaluation metric that it
will measure, this finding is consistent with findings from Huang and Ling (2007), Rosset (2004),
Skalak et al. (2007) and Wu ef af. (2007).

CONCLUSION

In this study, we have successfully formulated a new evaluation metric called the Optimized
Accuracy with Extended ERecall-precision (OAKERP) based on combination of accuracy, extended
recall and extended precision metrics. We have demonstrated that the OAERP metric was better
than accuracy metric in terms of distinetness of value produced, discriminating power to choose a
better solution and able to build a better trained MCS model. Based on these results, it suggests
that OAKRP metric should replace the accuracy metric for obtaining a better trained classification
model which can lead to better predictive results. For future study, we are planning to extend this
proposed metric to solve multi-class problems. Moreover, we are also interested to study and

re-design other accuracy-based stochastic classification algorithms to optimize OAERFP metric.
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