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ABSTRACT

Artificial neural network identification in general is based on pattern similarity and absolute
values of input variables, but these can differ enormously while their relations may be the same.
Generalization (learning) of these dependencies could be a way of modelling systems more similar
to human brain learning than a pattern classification. Differential polynomial neural network is
a new type of neural network developed by author, which constructs a differential equation,
describing system of dependent variables. It creates derivative fractional terms defining a mutual
change of some input variable combinations. Its response should be the same to all input patterns,
which variables behave the trained dependence (regardless of their values). The most important
funetion of brain seems to be a generalization of received information, 1.e., forming ideas of common
validity from received data. How does a biclogical neural cell process information and how it
functionality essentially differs from artificial neuron ? It seems to create some polynomial multi-
parametric functions, which could be better modeled by polynomial neuron. It should describe the
partial dependence of some combinations of variables, using a special type of simple polynomial
functions. However neural cell applies periodic activation function to create derivative terms of
which differential equation describing data relations consists.

Key words: Polynomial neural network, identification of dependencies, differential equation,
rational function, periodic activation function

INTRODUCTION

Artificial Neural Networks (ANN) in general identify patterns according to their relationship,
responding to related patterns with a similar output. They are trained to classify certain patterns
into groups and then are used to identify the new ones, which were never presented before. If ANN
is trained for instance to identify a shape, it can correctly classify only incomplete or similar
patterns as compared to the trained ones were (Marcek and Marcek, 2008). But in case a shape 1s
moved or its size is changed in the input matrix of variables the neural network identification will
fail. The principal lack of the ANN identification in general is the disability of input pattern
generalization. ANN is in principle a simplified form of polynomial neural network (PINN), which
combinations of variables are mmssing. Polynomal functions apply those to preserve partial
dependencies of variables. That's why the ANN's identification can’t utilize data relations (including
time-series prediction), which are described lots of complex systems (Zjavka, 2007).

Let’s try to look at the vector of input variables as a no pattern but bound dependent point set
of N-dimensional space. Likewise the ANN pattern classification works, we can reason an
identification of any unknown relations of the input data variables. The neural network response
would be the same to all patterns {dependent sets), which variables behave the trained dependence.
It doesn't matter what values they become. A multi-parametric non-linear function can describe this
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relation to each other. So if we want to create such a function with neural network, its neurons
must apply some n-parametric polynomial functions to catch the partial dependence of its n-inputs.
Biological neural cell seems apply a similar principle. [ts dendrites collect signals coming from other
neurons. But unlike the ANNs the signals interact already in the single branches (dendrites)
likewise the wvariables of a multi-parametric polynommal. So, this could be modelled with
multiplications of some inputs in polynomials of PINN. Then these weighted combinations are
summed 1n the cell body and transformed using time-delayed dynamic periodie activation funection
{activated neural cell generates in response to its input signals series of time-delayed output pulses)
{Benuskova, 2002). The period of this function depends on some input variables and seems to
represent the derivative part of a partial derivation of an entire polynomial {(as a term of differential
equation).

Polynomial neural network for dependence of variables identification (or Differential polynomial
neural network - D-PNN, because it constructs a differential equation) describes a functional
dependence of input variables (not entire patterns as ANN does). This could be regarded as a
pattern abstraction, similar the brain utilizes, which identification is not based on values of
variables but only relations of these. D-FNN forms its functional output as a generalization of input
patterns.

GMDH POLYNOMIAL NEURAL NETWORK

General connection between input and cutput variables is expressed by the Volterra functional
series, a discrete analogue of which is Kolmogorov-Gabor pelynomial (Ivakhnenko, 1971):
Y=2a,+2.a% +2 > aXX +) > > a, XXX, +.. (1)

1=1 =1 =1 i=1 j=1 k=1

Where:

m : No. of variables

X(xy, %q,. 00y %) . Vector of input variables
Ala,, a4, .., a,),. .. : Vectors of parameters

This polynomial can approximate any stationary random sequence of observations and can be
computed by either adaptive methods or system of Gaussian normal equations (Ivakhnenko, 1971).

The starting point of the new neural network type D-FNN development was the GMDH
polynomial neural network, created by a Ukrainian scientist Aleksey Ivakhnenko in 1968, When
the back-propagation technique was not known vet a technique called Group Method of Data
Handling (GMDH) was developed for neural network structure design and parameters of
polynomials adjustment. He attempted to resemble the Kolmogorov- Gabor polynomial (1) by using
low order polynomials Eq. 2 for every pair of the input values (Galkin, 2000):

Y= Ay A + At asxx + e +ax’ (2
The GMDH neurcon (Fig. 1) has two inputs and its output is a quadratic combination of
2 inputs, total 6 weights. Thus GMDH network builds up a polynemial (actually a multinormal)

combination of the input components. Typical GMDH network (Fig. 2) maps a vector input x to a
scalar output y', which is an estimate of the true function f(x) = y. Kach neuron of the polynomial
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Fig. 1: GMDH polynomial neuren
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Fig. 2: GMDH polynomial neural network

network fits its output to the desired value vy for each input vector x from the training set. The
manner in which this approxmation 1s accomplished 1s through the use of linear regression
{Galkin, 2000).

In the hope to capture the complexity of a process, this neural network attempts to decompose
it into many simpler relationships each described by a processing function of a single neuron (2).
It defines an optimal structure of complex system model with i1dentifying non-linear relations
between input and output variables. Polynomial Neural Network (PINN) is a flexible architecture,
whose structure 1s developed through learning. The number of layers of the FNN 1s not fixed in

advance but becomes dynamically meaning that this self-organising network grows over the
trained period (Oh ef al., 2003).

GENERALIZATION OF PATTERNS
Let’s consider an ANN trained to identify a shape. It can correctly identify enly incomplete or
similar patterns as compared to the trained one, activating the same areas of neurons. But in a case
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Fig. 3: Characteristic points of a changeable pattern

the shape 1s moved or its size is changed in the input matrix, it will seem to the ANN to be an
entirely new pattern. A way to be solved this problem is to define several characteristic points of the
pattern (decomposition of a shape forming the input vector) and try D-PNN to learn their
dependences. These relations define non-linear multi-parametric functions, creating by
multiplications {(combinations) of input variables of polynomials, applied to general pattern
identification (Zjavka, 2010),

You can see, that the condition of the significant point pattern dependence of a rectangle
(Fig. 8) is defined by equal x-coordinates of the points A, =B, and C, =D, and corresponding
y-coordinates A, =C  and B, =D, Another more complicated diagonal dependence applies the
x,y-coordinates of the points A,D and C,B to oblique square determination. There will have to equal
their x and y-position difference A -A = D,-D_ and sum C+C =B, +B,. D-PNN recognises the square
shape in this 2-way mannered dependence. This corresponds with recent human brain researches,
which proved recognizing shapes are decomposed into several elementary elements, activating some
biological neural cells as characteristic marks of a pattern. Human brain does not utilize absolute
input values but relative reciprocal ones, creating by periodic dynamic functions of biological
neurons (Benuskeva, 2002).

DIFFERENTIAL POLYNOMIAL NEURAL NETWORK

The basic idea of the author’s D-PNN 1s to approximate a differential Eq. 3, which can define
relations of variables (Hronee, 1958), with a special type of root fractional polynomials - for instance
Eq. 4-5.

n au n n aZ
Y=a+> b —+ cu—u-i-...:const. (3)
1=1 5‘x1 i=1 =1 aXian
Where:
u="f(x, <, ..., X)) : Funetion of input variables

a, B(b,, by,,. .., by}, Cle;y, ¢y, ..) « Parameters
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Elementary methods of the common Dhfferential Equation (DE) solution express the solution
in special elementary functions - polynomials (such as Bessel's functions or power series). Numerical
integration of differential equations is based on an approximation of these using:

+ Rational integral functions
*+  Trigonometric series

[ have selected the 1st more simple way using method of integral analogues, by replacing
mathematical operators in equations with ratio of pertinent values (Kunes ef @l.,1989).

_ At taX, oo+ X, 8, XX,

| 4
(b, +b,x, +)%n
b
(a,+ax, +a,X, +..+a XX, +..+a, XXX, +..)" (5)
Y =
(b, +b,x, +b,x, + b3xlxz)}é

Where:
n : Combination degree of n-input variables of numerator

m : Combination degree of denominator (m<n)

The fractional pelynomials Eq. 4, which describe a partial dependence of n-input varables of
each neuron, are applied as terms of DE Eq. 2 construction. They partly create an unknown multi-
parametric non-linear function, which codes relations of variables. The numerator of equation
Eq. 4 is a polynomial of complete n-input combinations of a single neuron and realizes a new
function z of formula Eq. 6. The denominator of Kq. 4 is a derivative part, which gives a partial
mutual change of certain neuron input variables and its polynomial combination degree mis less
then n. It is arisen from the partial derivation of the complete n-variable polynomial by competent,
variableis). In general it is possible this approximation express in formula Eq. 6 (Hronec, 1958).

g g 7
o T 5 z et W z n+1—2+...:const. (6)

1 2 n IXZ

Where:
z : Function of n-input variables
w, : Weights of terms

Each layer of the D-PNIN consists of blocks of neureons (Fig. 4). Block contains derivative
neurons, one for each fractional polynomial (4) of a derivative combination of variables. Inputs of
constant combination degree (n = 2,3,...) forming certain combination of variables, enter sach block,
where they are substituted into polynomials of neurons. The final function Eq. 6 1s formed in each
block of the last hidden layer the D-PNN, which pelynomials look like the formula Eq. B. The root,
functions of denominators Eq. 5 are lower then n, according to their combination degree and take
the polynomials of neurons into competent power degree. Blocks of other hidden layers consist of
partial derivations {(forming by neurcns), which describe the input variable partial dependence
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Fig. 4. Differential polynomial neural network

Eq. 4. Their neurons don’t affect the block output but are applied only for total cutput calculation
by the DE composition (using root functions in blocks of the last hidden layer). Each block also
contains a single polynomial (without derivative part), which forms its output entered the next
hidden layer of the network Each neuron has 2 vectors of adjustable parameters a, b and each
block consists 1 vector of adjustable parameters of single polynomial. There it is necessary to adjust

not only polynomial parameters, but the D-PNN's structure too. This means some neurons in role
of terms of the DE have to be left out.

IDENTIFICATION OF DEPENDENCIES OF VARIABLES

Consider a very simple dependence of 2-input variables, which difference is constant
{for example = 5). D-PINN will learn this relation easily according to training data set by means of
Grenetic Algorithm (GA),

(a +a,X, +a,X, +8,X,X )%
o TR TAX, TAKX, (N

b, +bx,

Y =W,

D-PNN will contain only 1 block of 1 polynomial neuron Eq. 7 as a term of DE (Fig. 5). As the input
variables are changing constantly, there 1s not necessary to add the 2nd term (fractional polynomial
of derivate variable x;) in the DE (block), which causes occasional output mistakes by identification.
Another example can solve 2 inputs, where the multiplicity of the inputs is constant (Fig. 5).

The input variables are not changing constantly, so there will be necessary both terms of the
DE - fractional polynomial of derivative variable x, too Kq. 8:
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Fig. 5: Identification of a constant quotient of 2 variables (x, = 2x2)

1 2 3 4 5 6

Fig. &: Relations of chess pieces

%
(a,+a,% +a,%,+aXX,) (8)

b, +bx,

Y. =W,

Simple D-PINN composed of these 4 blocks (one block for each pair of input variables) can learn
the characteristic point dependence of a rectangle (Fig. 3). If x and y-coordinates of lined points
equal, their difference = 0 and D-PNN can identify this. The 2-variable blocks also can solve
another example, which shows the dependence of chess pieces (Fig. 6). Input of the neural network
is formed by their x and y-positions. If the white rock checks the black bishop (their x or v positions
equal) the 2-variable dependence comes true.

Dependence of the oblique square is defined through the diagonal coordinates of its
characteristic points (Fig. 3). If difference and sum of the x and y-positions of diagonal points equal,
the oblique square dependence condition comes true. This can solve D-PNN consisting of 2 blocks
of 4 input variables (Fig. 7). Likewise the chess example shows a diagenal dependence of pieces,
if the black bishop checks the white rook (Fig. 6). This can learn again one 4-variable block.

There are totally 14 combinations (neurons) of 4 input variables, for all derivative terms (1,2,3-
combinations) of DE in the block. Some of them have to be taken off, as cause the D-PNN will work
amiss. Hach DE term also has an adjustable weight w,. Neurons can form for example the fractions
Eq. 9-10:
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Neuron lNeuron 7 Neuron 3
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Fig. 7: Identification of dependencies of 4 variables
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D-PNN as well is charged by possible 2-sided dependence change of input variables. For
example 1+9 = 10 is the same sum as 9+1 = 10. Some mistakes can occur by identification, if GA
adjustment finishes in a local error minimum. However it can be clearly seen that the D-PNN
operates. If the sum of the 1st pair of variables is less then the 2" one, the output of the D-PNN
is less than desired and the other hand round. So there is shown a separating plane detaching
relative classes, which are the same characteristic likewise it 1s current by ANN's pattern

1dentification.

MULTI-LAYERED D-PNN

Multi-layered D-PNN with 2 or 3-combination blocks can also sclve previous examples. For
simplicity we construct first the D-PNN for the 3-variable sum dependence identification (Fig. 8).
The problem of the multi-layered D-PINN construction reside in that we try to create every partial
combination term of a complete DE utilizing some fixed lower combination degree (2, 3) of blocks,
while the amount of input variables is higher.

Each executable block of the last hidden layer takes part in the total network output calculation
{creates its own DE) utilising its own neurons and back neurens of connected blocks the previous
layers (Fig. 8). Blocks of other hidden layers create its output using single adjustable polynomial
without derivative part (p = polynomial on Fig. 8), but their neurons are applied only for the total
DE composition (in blocks of the last hidden layer). First the blocks of the last hidden layer take its
own neurcns as £ basic terms (11) of the DE (8). Subsequently they create 4 terms of the 2nd
{previous) hidden layer, using neurons and polynomials of bound blocks. They join these 2 blocks
and create 4 fractional terms of the DE utilising 4 derivate variables (of 2 previous blocks) for

instance Eq. 12,

1
(ao+alxi’azxg +83Xi’X’2’)A (11)

2%(b, +bx; )

1 _
Yi= W,y
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Fig. 8: Identification of the 3-variable sum dependence with 2-variable combination blocks

1 2
) Xy J , . %
—+——ta, TaX +a,xX; taxx, (12)
vl =w X X3
3 3
B s
2 (co+c1x1)
1 2 %
XK . . o
- + - +a,+ax +a,x, + a,xx,
1 2
< +a,+ax, +ax, +axx, (12)
1
yr=w
7 T
2%(d, +dx,)

The backward connection of the previous layer(s) is realized through polynomials of the linked
2nd {or 1st) layer blocks. These are directly creating derivative part in numerator of formulas
Fq. 12-13. Likewise we can create terms of the 1st hidden layer Kq. 13. We attach all its 3 linked
blocks, forming 6 terms of the DE (1 duplicated connection is not used). The multiplication 2% in
denominators of formulas Kq. 11-13 1s used to decrease the D-PNN total output value. There is not,
used every term of all 12 terms of the complete DE, some of them have to be eliminated. This
indicates 0 or 1 for each term in the executable blocks of the last hidden layer (creating DE) and
are ease to use as genes of GA adjustment (Obitko, 1998). Parameters of peolynomials are
represented by real numbers. A chromosome is a sequence of their values, which can be easy
mutated. The searching space probably contains a great amount of local error solutions, which GA
can finish easily. The advantage of D-PNN adjustment is using only small training data set,

(likewise the GMDH PNN does), to learn any dependence.
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Fig. 9: 3-variable combination block D-PNN

The 3-variable combination block D-PINN of 4 input variables will have 3 hidden layers, each
consisting of 4 blocks (for each 2-combination), to reach back all the 1st layer input variables from
the last layer executable blocks (Fig. 9). Each block consists of 6 neurons (partial derivations) of all
its 1 and 2-combinations. Likewise the previous D-PNN type (Fig. 8) we can construct the partial
fractional terms of the DE (for each block of the last hidden layer) from back-connected neurons
of previous layers. There is possible to apply only some of the connection parts of fractions. We can
also construct the 4 dependent input variable D-PNN using 2-combination blocks. There will be 6
blocks of all input combination couples in the 1# hidden layer and consequently the number of them
is increasing each next layer. D-PNN totally will consist of 6 hidden layers of blocks. Some problems
can cause the composition of derivative terms from fractions because alot of input combinations
may rise and have to be tested. There might be suitable apply some methods of genetic
programming to more accurate DE construction especially if D-PNN contains plenty of input
variables.

CONCLUSION

D-PNN 1s a new neural network type designed by author, which can learn to identify any
unknown dependencies of data set variables (not entire patterns as the ANNs do). It doesn’t utilize
absolute values of variables but relative ones, likewise the brain does. This identification could be
regarded as apattern abstraction (or generalization), similar human brain utilizes according to data
relations. But it applies the approximation with time-delayed periodic activation functions of
biological neurons in high dynamic system of behaviour (Benuskova, 2002). D-PNN constructs a
differential equation, which describes a system of dependent variables, with rational integral
polynomial functions. Instead of these some periodic functions could be used (sin, cos) for this
operation (Fig. 10) (Kunes et al.,1989). Changeable periods o will replace the derivative parts
{denominator) of equations e.g., Kq. 7-8 in this case Kq. 14-15. Activation functions (e.g., sigmoid)
of artificial neuron seem to be periodic functions too, but their period @ = . So, this might be a
special case {(applying by ANN) of common periodic function (Zjavka, 2008), The problem of
the D-PININ construction resides in the method of the partial DE term composition of all possible
combinations and how the partial derivative (dependence) of some input variables is realized
{through fracticnal or periodic functions).
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y

y = cos(x)

i\va e

Fig. 10: Transformation of absolute values of variables using periodic function

V=W, cos(2n(b0 +byx){a, +ax, +a,x, +a;xx, )%) (14

v, =W, cos(Zn(b0 +bx, )(a, +ax, +a,x, +a3x1x2)}é) (15)

Relations of some data variables describe a lot of complex systems. D-PNN could model their
behaviour, for example the weather prediction could be based on many unknown generalized
relations of the data (such as pressure, temperature, ete.) instead of time-series prediction utilising
pattern identification.
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