Journal of
Artiticial Intelligence

ISSN 1994-5450

science
alert

ANSI%@ZZ

s publisher
hﬁp //ansmet com

Journal of Artificial Intelligence 5 (4): 200-206, 2012
ISEN 1994-5450 / DOI: 10.3923/a1.2012.200.206
© 2012 Asian Network for Scientific Information

Priority Based Load Balancing in Cloud for Data Intensive
Applications

'E. Iniya Nehru, *S. Sujatha, *P. Seethalakshmi and *N. Sridharan

"National Informatics Centre, Chennai, Tamil Nadu, India

Department of Computer Applications, “Department of Computer Science, Anna University of Technology,
Tiruchirapalli, Tamil Nadu, India

“Department of Information Science and Technology, Anna University, Chennai, Tamil Nadu, India

Corresponding Author: E. Iniva Nehru, National Informatics Centre, Chennai, Tamil Nadu, India

ABSTRACT

The number of Internet users is growing at an exponential rate every day. Large number of
users tries to retrieve the data in many applications like examination results, which leads to very
high load on a server. This also results in reduction of throughput and there is strong need for
developing a system with an efficient load halancing algorithm to retrieve the intensive data within
a reasonable response time. By the use of cloud technology, this can be achieved. Cloud Computing
encompasses virtualization, distributed environment and provides on-demand services. The
objective of this study was to balance the requests by identifying the TP address and use a
predefined policy to retrieve the data from a distributed database environment using virtualization
techniques.

Key words: Cloud computing, virtualization, distributed database, load balancing, [P addressing

INTRODUCTION

Cloud Computing has become an enabling technology after Distributed Computing, Parallel
Processing and Grid Computing. It exhibits characteristics like scalability, reliability, multi-tenancy,
empowerment of end-users. It supports various deployment models and uses Service Oriented
Architecture (SOA), reduces information technology overhead for the end-user, gives greater
flexibility, location independence, provides on-demand services and elasticity ete.
(http:/len.wikipedia.orgfwiki/Cloud_computing).

Now-a-days many platforms are available to deploy an application in the cloud. EKucalyptus an
open-source platform is used to provide Infrastructure as a Service (IaaS3). Private cloud computing
envirenment can be created by using this platform. VMware, Xen and KVM hypervisor are some
of the virtualization technologies which are also supported by Fucalypius (Baun and Kunze, 2009)
to implement the cloud abstractions. The proposed system has been designed to support load
balancing in cloud environment.

In order to achieve load balancing, information is stored in clusters located in the same physical
location or even spread over a network of inter-connected computers by means of distributed
database technology. MySQL Cluster is a prominent distributed database management system
which is designed to provide high availability of data across data nodes and high performance. It
supports Replication, Horizontal data partitioning and Hybrid Storage. In the proposed system,
both cloud computing and distributed database technologies are used to provide a better load
balancing environment for data intensive applications.

200

oJ. Artif. Intel., 5 (4): 200-2086, 2012

MySQL Cluster Database provides services with full capability to cover the peak demands. In
Cloud environment based on demand, requests are assigned to the different VM's (Nurmi et al.,
2009). Requests are sent across a farm of MySQL cluster servers in which the data are replicated
to aveid single point failure and also does lead balancing (Kaitsa et al., 2009), there-by a better
response time 1s achieved. Advanced eager scheduling (Neary and Cappello, 2003) achieves fault
tolerance and load balancing by dynamically breaking down the tasks and by performing parallel
computing.

The performance of distributed server is improved by FIEM (Serpanos and Antoniadis,
2000) in which the requests are distributed by First Come First Serve and with Round Robin
basis. FIRM achieves saturation throughput and a guaranteed service with minimum response
time.

Non-preemptive scheduling leads to poor performance like a processor intensive job getting
assigned to a slow machine and also due to excessive idle times. Speed of computations can be
improved (McLaughlin ef al., 1998) using preemptive scheduling. A new genetic algorithm based
task scheduling has been proposed and its performance has been proved on many applications on
the grid (Akhtar, 2007). A method for implementing distributed database applications on the Web
using Java (Duan, 1998) has been proposed. When Java based approaches are used on the web
then high degree of object mobility 1s also achieved. An interference aware scheduler has been
designed to handle high data intensive jobs (Chiang and Huang, 2011). Tterative application of
map reduce paradigm will produce good response time for most data intensive applications
{(Fox, 2011).

The data and information typically are stored in a centralized storage that makes easy for
administrator to manage and manipulate those data. However this method 1s limited by the
capacity of database server and the way it is processed. Distributed storage techniques has been
used for developing personalized e learning systems where intelligent agents are used to enhance
modularity, reusability and reliability (Al-Sakran, 2006). Information is stored in many nodes
(Pukdesree ef al., 2006) by the concept of distributed database. Two approaches one on simple data
intensive applications and the other on distributed file systems are applied and their performance
are compared (Miceli et al., 2010).

A single shared cluster can support multiple applications using database replication policies
{(Soundararajan et al., 2008). Peak load conditions and failure conditions are easily handled to
maintain application level performance using these replication policies.

Google App Engine (GAE) Datastore API and distributed database technologies (Bunch ef al.,
2010) like AppSecale can be used. It analyzes how each database differs in implementing the APT.
Also it describes the implementation and use the platform to empirically evaluate each of the
databases. In addition, it says that AppScale can be integrated with each database.

MySQL Cluster Network Database (Hutchings et al, 2010) improves the perfermance of
database utilization in terms of distributed data and distributed processing. The data is stored in
each storage node in the cluster by using hashing function. Virtualization technology in data
centers has been implemented to improve the efficiency of the data centers (UJddin ef @l., 2012).
Here there will be more than one database server in the system, but the data itself is stored in a
centralized storage which is shared. In this case, each database server will handle user’s requests

in parallel.

201

oJ. Artif. Intel., 5 (4): 200-2086, 2012

—>
—> Data node
Users IP analyzer Load . . Mark i Output
(Reg. No) y balancer — 1der.1t1ﬁer and—» focher (Mark)
redirector
—>
—p VM 1
Mark\
Priority

Policy
setter setter Distributed

database

Fig. 1. System architecture of priority based lead balancing in cloud for student mark retrieval

system

IP and REGNO|__| TP and REGNO Identify first Set load

. . . 3 8bitofIP) .
request identification address balancing

Store in DB Store IP range

Fig. 2: Block diagram of IP analyzer

SYSTEM DESIGN

Student mark retrieval system has been considered as a case study for a data intensive
application. The architecture of the system is described in terms of its components and their
functionalities. Figure 1 shows the overall architecture of the Student Mark Retrieval System in
which IP based Priority and Eound Robin Lead Balancing in cloud is implemented.

The overall system architecture shows two major processes namely, student marks database
creation in a distributed environment and retrieval of mark by load balancing. Student marks
database creation involves creating many MySQL instances with replication of data in all Virtual
Machines. Retrieval of marks involves priority based on the incoming IP address, the defined palicy
settings and then assigning the request to a suitable virtual server.

IP analyzer: In IP Analyzer, IP address of the incoming request is analyzed. The Fig. 2 shows the
block diagram of [P Analyzer. The [P address and register number are stored in a database with
its number count. From the incoming requests, IP address range will be identified by analyzing its
first 8-bit block. Based on that, Lioad Balancing and Policy Setter are done.

Load balancer and policy setter: In L.oad Balancer and Policy Setter, the identified first 8-bit
of IP address will be checked for the frequency of visits from the same 8-bit IP address block and

202

oJ. Artif. Intel., 5 (4): 200-2086, 2012

8-Bit Check) Insert 8-bit Set
identified > .. [Setpolicy —31 P, group No. [priority
availability
IP address 7 and count and push
Database

Fig. 3: Block diagram of load balancer and priority setter

Identify Check Identify
EOP REGNO actual data [—>| database |—>f Redirect data
fom groups node status node
N
MySQL
cluster
database

Fig. 4: Data node identifier and redirector

based on number of visits and the policy, the request 1s pushed into a suitable wirtual server,
Figure 3 shows the block diagram of Load Balancer and Policy Setter. Also after pushing the
request, a counter is used to count the number of visits from the same 8-bit address block in a
database. As and when the request is completed, the count wvalue for this 8 bit I[P block is
decremented. When the entire database servers get filled by the maximum requests possible to be
processed, the new requests waits till any one of the database server have a space to process the

requests.

Data node identifier and redirector: Data Node [dentifier and Redirector checks the counter
values for each IP address block in each VM, the VM which has the lowest value in the counter is
selected and the requests will be redirected to this VM. Figure 4 shows the block diagram of data
node identifier and redirector. MySQL connections are established with the MySQL: server and
student marks are retrieved from the distributed database. Thus by having data in many
VM'’s/modes the marks will be retrieved from any of the data nodes.

IMPLEMENTATION
Distributed database creation: MySQL Cluster provides shared-nothing clustering capabilities
for the MySQL database management system. MySQL Cluster is implemented through an
additional storage engine available within MySQL called Network Database (NDB) or
NDBCLUSTER. MySQL Cluster uses three different types of nodes (processes). Figure & shows the
block diagram of the Distributed Database creation in two hosts.

Data storage and retrieval in data nodes is done using a MySQL server (mysgld). Data nodes
can be queried directly using the NDB API. Student marks are stored in a distributed database by
replicating the data in all data nodes.

203

oJ. Artif. Intel., 5 (4): 200-2086, 2012

MySQL server MySQL server
‘ =

Data node Data node

[TrrorTes s PToZT6303 1

MGMT server MGMT server

A AN

Fig. 5: Block diagram of distributed database creation in (a) 1st and (b} 2nd host

Table 1: Virtual machine types

Priority Type Virtual machines (VM’s) categories
P1-VM1 type Large 4 CPU, 8§ GB RAM
P2-VM2 type Medium 2CPU, 4 GB RAM
P3-VM3 type Small 2CPU, 2GB RAM

Load balancer and policy setter: Initially three VM's are configured with the priority as shown
in Table 1.
Steps Involved in VM allocation:

Step 1: Identify the incoming request with IP address and Register number

Step 2: Analysis of [P address to recognize the starting 8-bit IP address block

Step 3: Save the starting 8-bit IP address block in database

Step 4: Initially the identified First 8-bit IP address block counter value is checked in each
VM. If there is more than one VM which has the lowest count for this IP address block, the
VM with the highest priority (VM1-P1 highest priority, VM3-F3 lowest priority already
defined) is selected. Then the request will be pushed to that VM and also the counter is
increased

Step 5: Once the request has heen processed, then the count should be decremented in the
database for the corresponding 8 bit. IP address block in the corresponding VM

Based on the above priority based and round robin algorithm the requests for marks are
scheduled and the marks retrieved from the data base. The performance of this algorithm is
compared against a single server and also 3 VM's in a simple round robin method and it 1s proved

that TP based priority and round robin method is efficient among the three methods.

RESULTS AND DISCUSSION

The implemented priority based round robin load balancing algorithm using cloud computing
is now compared in Fig. 6 against a single server (without VM) and also requests processed in a
round robin method with any priority. It 1s seen the average response time under normal conditions

varies between 3.75 to 11.25 msec for a request. Assuming that three Internet Service Froviders

204

oJ. Artif. Intel., 5 (4): 200-2086, 2012

129 —— Response time
11.25 = Priority based load balancing

Average response time (msec)

v 107D

Fig. 6: Comparison of average response time-single server vs. 3 VM's (cloud)

are available, the average response time fluctuates between 3.75, 5.625 and 11.25 msec. It is seen
that using the IP based priority based round robin method the average response time for a request,
is 1.87b mseec.

CONCLUSION

From the results the priority based round robin load balancing algorithm has shown a minimum
of fifty percent improvement when the number of queries increases and is seen more suitable for
data intensive applications. Therefore it has been concluded that a pricrity based Round robin load
balancing algorithm is more suitable for data intensive applications.

REFERENCES

Akhtar, Z., 2007. Genetic load and time prediction technique for dynamic lead balancing in grid
computing. Inform. Technol. J., 6: 978-986,

Al-Sakran, H., 2006. An agent-based architecture for developing e-learning system. Inform.
Technel. J., 5: 121-127.

Baun, C. and M. Kunze, 2009, Building a private cloud with eucalyptus. Proceedings of 5th IEEE
International Conference on E-Science Workshops, December 9-11, 2009, Oxford, UK,
pp: 31-32.

Bunch, C., N. Chohan, C. Krintz, J. Chohan and Y. Nomura et al., 2010. An evaluation of
distributed datastores using the appscale cloud platform. Proceedings of 3rd International
Conference on Cloud Computing, July 5-10, 2010, Miami, Florida, USA., pp: 305-212.

Chiang, R.C. and H.H. Huang, 2011. TRACON: Interference-aware scheduling for Data-intensive
applications in wvirtualized environments. Proceedings of International Conference for High
Performance Computing, Networking, Storage and Analysis, November 12-18, 2011, IEEE
Computer Seciety, pp: 1-12.

Duan, N.IN,, 1996. Distributed database access in a corporate environment using Java. Proceedings
of Bth International World Wide Web Conference, May 6-10, 1996, FParis, France,
pp: 1149-1156.

205

oJ. Artif. Intel., 5 (4): 200-2086, 2012

Fox, G.C., 2011. Data intensive applications on clouds. Proceedings of the 2nd International
Workshop on Data Intensive Computing in the Clouds, November 14, 2011, Seattle
Washington, pp: 1-2.

Hutchings, A., A. Morgan and G. Vanderkelenm, 2010, MySQL cluster tutorial. Proceedings of the
O'Reilly MySQL Conference and Expo, April 12, 2010, Santa Clara, CA.

Kaitsa, M., I. Stavrakas, T. Kontogiannis, . Daradimos, M. Panacusis and D). Triantis, 2009, Load
balancing incoming IP requests across a farm of clustered MySQL servers. Proceedings of the
International Conference on Computer as a Tool, September 9-12, 2009, Warsaw, pp: 546-550,

MecLaughlin, D., 5. Sardesai and P. Dasgupta, 1998, Preemptive scheduling for distributed systems.
DARPA/AFRL-Rome, Intel Corporation and NSF.

Miceli, C., M. Miceli, B. Rodriguez-Millai and S. Jha, 2010, Understanding performance of
distributed data-intensive applications. Phil. Trans. K. Soe. A, 368: 4089-4102.

Neary, M.O. and P. Cappello, 2003. Advanced eager scheduling for Java-based adaptive parallel
computing. Concurrency Computat.: Pract. Exp., 1: 1-2.

Nurmi, D., K. Wolski, C. Grzegorezyk, C. Obertelli, S. Soman, L. Youseff and D. Zagorodnov, 2009,
The eucalyptus open-source cloud-computing system. Proceedings of 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, May 18-21, 2009, Shanghai,
China, pp: 124-131.

Pukdesree, 5., A, SBukstrienwong and V. Lachargj, 2006, Evaluating of distributed database on PC
cluster computers. Proceedings of 10th WSEAS International conference on Computers, July
13-15, 2006, Vouliagmeni, Athens, Greece, pp: 1322-1326,

Serpanos, D.N. and P.I. Antoniadis, 2000, FIRM: A class of distributed scheduling algorithms for
high-speed atm switches with multiple input queues. Proc. JEEE INFOCOM Annu. Joint Conf.
IEEE Comput. Communi. Soec., 2: 548-555,

Soundararajan, (., C. Amza and A. Goel, 2006, Database replication policies for dynamie content,
applications. Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems, April 18-21, 2006, ACM New York, pp: 83-102.

Uddin, M., A.A. Rahman, A. Shah and J. Memon, 2012, Virtualization implementation approach
for Data centres to maximize performance. Asian J. Sci. Res., 5: 45-57.

206

	JAI.pdf
	Page 1

