Journal of
Artiticial Intelligence

ISSN 1994-5450

science
alert

ANSI%@ZZ

s publisher
hﬁp //ansmet com

Journal of Artificial Intelligence 6 (2): 154-160, 2013
ISBN 1994-5450 / DOI: 10.3923/a1.2018.154.160
© 2013 Asian Network for Scientific Information

High Performance and Fault Tolerance Double Precision Floating
Point Arithmetic Units

N. Vinothkumar, M.S. Ravi and Kittur Harish Maillikarju
India VIT University, India

Corresponding Author: N. Vinothkumar, India VIT University, India

ABSTRACT

The floating point arithmetic units are complexin their algorithms and many scientific problems
require floating point units with high accuracy. Hence for increased performance and fault
tolerance operations the double precision floating point arithmetic units adder, subtractor,
multiplier and divider is designed which is enough for most System on Chip (SoC) applications and
it also improves the accuracy during long chain of computations. The synthesized code results are
verified and the complete layout 1s generated using backend flow.

Key words: Floating point adder, subtractor, multiplier, divider, backend flow

INTRODUCTION

Saentific and engineering computations require high performance floating-point umts (FPU).
The invention of many SoC applications results in need for, high accuracy FPUs with increased
performance. Over the last decade, a number of FPU designs have been presented (MSC, 2008),
Among floating point numbers, the single precision floating point format 1s suitable for many
applications, but this range 1s somewhat small so that in many financial, scientific and other
applications faces some errors during computations (Ciricescu et al., 2003). Moreover, in serious
chains of computations, the small range precision of the single precision format will results in
complex error (Astrom and Wittenmark, 1995). In order to overcome this problem the double
precision Floating peint format with twice the range than single precision and it has an 11-bit
excess 1023 exponent bit and a 52 mantissa bit and a sign bit. This helps to get a dynamie range
of about 16 digits of precision, sufficient for most applications. Hence to improve accuracy during
serious chains of computations with dynamie range double precision floating point numbers we
have designed a double precision arithmetic units adder, subtractor, multiplier and divider that
functions as ALU for various applications.

ADDER

Floating-point addition operation 1s the most frequent operation that 1s suitable for most of
the scientific operation in mathematical processors, embedded processors and some data
processing units. These processors require high stability and accuracy in their results
{Hennessy and Patterson, 1996). To achieve this double precision floating point adder is
designed. In the initial stage the exponent hits and the mantissa bits of both operands are
separated and the exponent bits of both the operands are compared with each other to find
the larger exponent operand and the mantissa of operand with smaller exponent value is
right shifted by number of difference in the exponent value to make exponent value of both
the operands equal before performing addition. If the exponents are equal then the mantissa bits

154

oJ. Artif. Intel., 6 (2): 154-160, 2013

ol cik H] LA L U UL
B count(s:0] [oo
E: enable _l
Al exception l
G- fpu_op[2:0] = [0
.
=

v inesact |

b irvealicl

G- opafs3 0] =P | 00000000_cD1706A2

- oph[G3:0] =k | 01cEEEiF_c2rer3ca

B cut [53:0] { nooooooo_oooooong 4 01CSEEIF_C2FSF373
E overflow

Al ready |

B rmode[1:0] = [0

------ Bl rst I

ol undlerflow |

Fig. 1: Simulation results of adder

of both the operands are added directly. In order to improve the accuracy and overflow condition
an extra one bit 1s included in the mantissa part and it 1s used for rounding purpose.

The infinity, underflow, overflow and invalid condition are checked during rounding.
The rounding is carried out in four modes Round te nearest (mode = 00), Round to zero
{mode = 01}, Round to positive infinity (mode = 10),Round to negative infinity (mode=11) based on
the mode specified during the input. Figure 1 shows the simulation results of adder. The signal opa
{63:0) and opb (83:0) shows the 84 bit input operands A and B respectively in hexadecimal value.
The out (63:0) signal shows the output of addition of operand A and B. The 64 bit double precision
floating point format is shown in hexadecimal value. The signals invalid, inexact, overflow,
underflow shows the exceptions conditions of adder.

SUBTRACTOR

Subtraction is similar to addition in that vou need to calculate the difference in the exponents
between the two operands and the mantissa bits of the operand with smaller exponent value 1s
right shifted before subtracting the mantissa part. The definition of the subtraction operation is to
take the number in operand B and subtract it from operand A (Standards Committee of the IEEE
Computer Society, 1985). However, to make the operation easier and for high performance the
smaller number will be subtracted from the larger number and if A is the smaller number, it will
be subtracted from B and then the sign bit of the result is inverted. The numbers with non-zero
exponent value is normalized numbers. An extra bit’'l’ is added to the mantissa part for normalized
numbers and this extra bit is used during the rounding of results. The infinity, underflow, overflow
and invalid condition are checked during rounding and the different rounding modes that carried
out for subtraction same as the addition.

In order to improve the accuracy the mantissa part of the result is stored in register and a signal
counts the number of O's in the register before the leftmost ‘1’. And the exponent is reduced to no.
of zeros and the leftmost kit 1" becomes the leading bit of the mantissa part of the result hence due
to increasing the mantissa part the accuracy of the result 1s increased. The Fig. 2 shows the
simulation results of subtractor. The signal opa (63:0) and opb (63:0) shows the 84 bit input
operands A and B, respectively in hexadecimal value. The out (63:0) signal shows the output of
subtraction of operand A and B. The 64 bit double precision floating point format is shown in
hexadecimal value. The signals invalid, inexact, overflow, underflow shows the exceptions
conditions of subtractor.

155

oJ. Artif. Intel., 6 (2): 154-160, 2013

------ & ok UL

G- count[5:0] (oo
------ i enable LT]
------ AWl exception |
G- fou_op(2:0]x (1
------ il inexact |
------ Al irvealicl

G-l opalE30] |<k [00000000_cni70GA

@M oph[530] (x| 01056E1F_c2FEFaSES

& out|E3:0] || 00080008_00000000 I L
------ Bl overflow

------ il reacy |

G- T rodel1:0] [x 10

...... B st []

------ & underflow ||

Fig. 2: Simulation results of subtractor

MULTIPLIER

The multiplication operation is performed depending on efficient advantage of the multiplier
resources in the target FPGA device so that it increases the performance of device. The exponent
bits and the mantissa bits of both operands are separated and the exponent bits of both the
operands are compared with each other to find the larger exponent operand and to check whether
the number is normalized or de normalized number. The mantissa bits of operand A and operand
B and the leading ‘1" (for normalized numbers) are stored separately in the 53-bit register.
Multiplying all 53 bits of A by 53 bits of B would result in a 106 bit product. The multiplier 1is
designed based on the Xilinx Virtex b a dewvice contains DSP48K slices with 25 by 18 twos
complement Multipliers, which can perform a 24-bit by 17-bit unsigned multiply (Louca et al.,
1996). Hence for high performance the B3-bit by 53- bit floating point multiply 1s broken into
smaller components is described as:

« Product a = A (23:00xB (16:0)

« Product b = A (23:0)xB (33:17)
¢« Product ¢ = A (23:0)xB (50:34)
¢« Product d = A (23:0)xB (h2:51)
¢« Product e = A (40:24)xB (16:0)
« Product f = A (40:24)xB (33:17)
« Product_g = A (40:24)xB (52:54)
« Product h = A (52:41)xB (16:0)
¢ Product 1 =A (B2:41)xB (33:17)
* Product_j = A (62:41)xB (52:24)

The products {a-j) are added together, with the appropriate offsets based on which part of the
A and B arrays they are multiplying. The summation of the products is accomplished by adding one

156

oJ. Artif. Intel., 6 (2): 154-160, 2013

H-- M@ count[5:0] |00
------ il enable
------ Al exception |
G-, fpu_op[2:0]
------ Al jnexact |
------ Al invalid
B-9®. opa[E30] |2cFI2ZER_SEDOEFEE
G- opb[E30] [40504000_00000000

453

B-iRe out[E3:0] [00000000_00000000 ! 2c32pBEE_7EF49041
------ A overflow

...... i peacly |

Bl rmode1:0] [0

...... B st

...... il underflow

Fig. 3. Simulation results of a multiplier

product result to the previcus product result instead of adding all 10 produects (a-j) together in one
summation so that it takes the advantage of the adders available in the FPGA so that the
performance is increased. The summation gives the mantissa part of the result and the exponents
of both the operand A and B are added together and to get the exponent part of the result. Finally
the 106 mantissa bits are rounded to get 52 mantissa bit. The Fig. 3 shows the simulation
results of multiplier. The signal opa (63:0) and opb (63:0) shows the 64 bit input operands A and
B respectively in hexadecimal value. The out (63:0) signal shows the output of multiplication of
operand A and B. The 64 bit double precision floating point format is shown in hexadecimal value.
The signals invalid, inexact, overflow, underflow shows the exceptions conditions of multiplier.

DIVIDER

For high performance and Fault telerance the divide operation is performed in long hand style,
with one bit of the quotient calculated each clock cycle based on a comparison between the dividend
and the divisor. The exponent bits and the mantissa bits of both operands are separated and the
exponent bits of both the operands are compared with each other to find the larger exponent
operand and to check whether the number 1s normalized or de normalized number. Mantissa of
operand A is the dividend and mantissa of operand B 1s the divisor. If the dividend 1s greater than
the divisor, the quotient bit 1s ‘1’ and then the divisor i1s subtracted from the dividend, this
difference is shifted one bit to the left and it becomes the dividend for the next clock eycle. If the
dividend is less than the divisor, the dividend is shifted one bit to the left and then this shifted
value becomes the dividend for the next clock eycle (Vangal et al., 2008). The divide operation takes
54 clock cycles to complete, as it takes 1 clock cycle to calculate each of the 54 bits (B3 mantissa bits
and 1 extra bit for rounding) of the quotient. The exponent for the divide operation is calculated
from the exponent fields of operands A and B. The exponent of operand A 1s added to 1023 and
then the exponent of operand B is subtracted from this sum. Finally, the exponent bits and
the mantissa bits are rounded to obtain the 64 double precision floating peint format. The rounding
is carried out in different modes as explained in section II. Figure 4 shows the simulation results

157

oJ. Artif. Intel., 6 (2): 154-160, 2013

-l ok (LALLM

BT court[5:0] (oo
-l enable i
-l exception - [
BT fpu_op20] & [z
-l inexact [
-l irvvalicl [

E-M&s opals30] Exr.{ 0302BE04_494 ZF 255

B ophE30] [xr [9EAcSEEE_OF1SEEFT

- out[3:0] [00000000_00000000 | no001031_4a4c025
ol oeverflow

ol ready [

B4R rmoce[1 0] Iz

ol pat _|

ot Uiy flow

Fig. 4: Simulation results of a divider

Tahle 1: Cell area of logic components

Component No. of cells Cell area (um?)
Adder 1341 50145
Subtractor 2639 69901
Multiplier 11298 333092
Divider 3988 103391
Total 19266 556619

Table 2: Power consumption of logic components

Component Leakage power (nW) Dynamic power (uW)
Adder 31.780 193.233
Subtractor 287.805 8963.453
Multiplier 1616.187 49579.587
Divider 405.410 126562.053
Total 2341.182 71208.328

of divider. The signal opa (63:0) and opb (83:0) shows the 64 bit input operands A and B,
respectively in hexadecimal value. The out (63:0) signal shows the output of division of operand
A and B. The 64 bit double precision floating point format is shown in hexadecimal value. The
signals invalid, inexact, overflow, underflow shows the exceptions conditions of divider.

IMPLEMENTATION OF RESULTS

The double precision floating point arithmetic units are synthesized with 90 nm CMOS
standard-cell technology library. The arithmetic units results in time slack of 1.23 nsec and
Table 1 shows the cell area of each module and the total area of the design and Table £ shows the
power leakage power and the dynamic power consumed by different modules of arithmetic units.
The power and the area consumed by the single precision fleating point format (Graillat, 2009) is
less than the double precision floating point format but when it 1s compared with the accuracy and
performance it has the added advantage (Umar et al., 2004). The complete backend design of the
arithmetic units is carried out using the cadence encounter.,

158

oJ. Artif. Intel., 6 (2): 154-160, 2013

| Central control unit |
y >
p Input 1
p Input 2
i n 24
ww] mr‘i’ ¥ g‘ ‘i’
Add/ . Siov || Lo
swp | [M| [PV | os || A
S I T 2 T
v ¥
Dual Dual
port port
ram ram
— Yy v Y vy Output

Fig. B: Architecture of adaptive central processing unit for SoC applications

Figure 5 shows the proposed architecture with the central control unit, Fleating point arithmetic
units and Dual port EAMs. The SRAMS are used to store the values from the different
computations so that the parallel operations are also possible in case of long chain of computations

which increases the performance of the processor.

CONCLUSIONS AND FUTURE WORKS

Thus the high performance and increased accuracy than single precision floating point is
obtained from the double precision floating point numbers and it is implemented in the Virtex 5
FPGA. Our future work 1s to design an adaptive programmable central core with the arithmetic
aperations that can adapt to various applications by changing the set of instructions in the control
unit which finds various SoC applications such as in Active Structural Acoustic Control (ASAC),
Active Noise Control (Ane), Active Vibration Control (AVC), Structural Health Monitoring {(SHM)
and Structural Health Control (SHC) ete.

REFERENCES

Astrom, K.J. and B. Wittenmark, 1995. Adaptive Control. 2nd Edn., Addison-Wesley, New York,
USA.

Ciricescu, 5., K. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette and A. Saidi, 2003, The
reconfigurable streaming vector processor (RSVEP™). Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, December 3-5, 2003, Motorola Inec,,
Schaumburg, IL, USA., pp: 141-150.

Graillat, 8., 2009. Accurate floating-point product and exponentiation. IEEE Trans. Comput..,
58: 994-1000.

Hennessy, J.L. and D.A. Patterson, 1996, Computer Architecture a Quantitative Approach. 2nd
Edn., Morgan Kaufmann Publishing Co., San Francisco, CA.

Loueca, L., T.A. Cook and W.H. dJohnson, 1998, Implementation of IKEE single precision
floating point addition and multiplication on FPGAs. Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines, April 17-19, 1998, Napa Valley, CA .,
pp: 107-116.

159

oJ. Artif. Intel., 6 (2): 154-160, 2013

MSC, 2008, IEEE standard for floating-point arithmetic. Technical Reports, Microprocessor
Standards Committee of the IEEE Computer Society, New York, USA., August 2008,

Standards Committee of the IEKE Computer Scciety, 1985, EEE standard for binary floating-point
arithmetic. ANSI/IEEE Std. 754-1985 pp: 2355, http:/kfe fifi.cvut.cz/~klimomm/fieee754 pdf

Umar, A, M.M. Al-Akaidi, S.A. Khan, S. Khattak and M. Assadullah, 2004. Performance
evaluation of a hiperlan type 2 standard based on arithmetic formats. Inform. Technol. .,
3:1-5.

Vangal, S.E., Y.V. Hoskote, N.Y. Borkar and A. Alvandpour, 2006. A 6.2-GFlops floating-
point multiply-accumulator with conditional normalization. IEEE J. Sclid-State Circuits,
41: 2314-2323.

160

	JAI.pdf
	Page 1

