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ABSTRACT

Social norms learning in agent societies through reward or penalty observations have become
the subject of interest in many studies. However, very few studies have examined the optimal
environmental settings that would allow agents to learn through such cbhservations effectively. This
study presents a combination of envireonmental simulation parameters to discover the optimal
settings for observing reward or penalty events, which are called the exceptional events, within a
social agent group. The environmental settings consist of several variables which are the cycle time,
observation limit of detector agent, domain size, population density of domain agents and
occurrence of reward or penalty (exceptional) events in the domain. The value of each variable is
arbitrarily set to low, medium or high. To implement the simulation, a virtual envireonment. has
been created with the variables settings to examine different situations. Within the steps of the
tests, some cases are excluded because they do not significantly contribute to optimal envirenment
for social learning. The results of the tests show that each variable has different effect on the
envirenment and that a variable that has a strong positive effect does not individually offer the
optimal solution. However, combining variables that have strong positive effects could offer optimal
solutions. Briefly, the study aims to examine and identify the effect of some environmental
variables on observation process of exceptional events and suggests the optimal settings to learn
through cbhservation.

Key words: Intelligent software agent, normative system, simulation model, exceptional events
observation

INTRODUCTION

The concepts of norms and normative systems are used to determine the behaviours of agents
within a scciety and are commonly accepted as efficient means to normalize their behaviours
(Alberti et al., 2011). Recently, many studies in agent-based systems have been conducted to
explore social norms learning or identification within normative systems (Choi and Kim, 2009;
Centeno et al., 2010; Centeno and Billhardt, 2012; Savarimuthu ef al.,, 2010a-¢; Campos et al.,
2010; Andrighetto et al., 2007).
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In social learning, an agent learns new behaviour through observation of rewards or penalties
and by monitoring the actions of other agents (Hollander and Wu, 2011; Conte and Dignum, 2001;
Conte and Paolucei, 2001; Bandura, 1997). Most of current studies exploit the events that are
exceptional (Centenc et al.,, 2010; Centenc and Billhardt, 2012; Natarajan et al., 2010;
Savarimuthu ef al., 2010a-c; Campos et al., 2010; Andrighetto ef al., 2007), specifically those events
that entail rewards or penalties to learn or identify the obligation or prohibition norms.
Consequently, an agent identifies the obligation or prohibition norms by cbserving exceptional
events from a given series of events. Savarimuthu et al. (2010a-c) develop two algorithms, one to
identify obligation norms, which they called Obligation Norm Identification (ONI) and another to
identify the prohibition norms, which they called Candidate Norm Inference {(CINI). These two
algorithms are designed based on the observation of exceptional events. Natarajan et af. (2010)
developed a technique based on reward functions to ocbserve an agent acting in the environment.
The observations entail the agent’s behaviour over time.

While social norms learning through cbservations of exceptional events have been the subject
of intense study (Choi and Kim, 2009; Centeno ef al., 2010; Centeno and Billhardt, 2012;
Savarimuthu et al., 2010a-c; Campos et al., 2010; Andrighetto et al., 2007), few studies have
examined the optimal environmental simulation settings that would allow agents to learn through
such observations effectively (Sen and Airiau, 2007; Centeno ef al., 2010; Centeno and Billhardt,
2012; Savarimuthu ef al., 2010a-c). Consequently, this study examines some conditions under
which environmental variables influence agents’ environmentally-related behaviours.

This study presents a combination of simulated environmental variables’ settings to discover
the optimal settings for cbserving reward or penalty events, which are called the exceptional
events, within a social agent group. The simulation 1s implemented by creating a wvirtual
environment with the variables settings to examine different scenarios. A scenario consists of two
types of agents: detector agents, 1.e., visitor agents and domain agents, 1.e., local agents. The
settings of the scenario are made on several variables, i.e., the condition of detection, which is the
cycle time; the ability of detector agents, which is their limit of observation and the domain
variables, which are domain size, population density of domain agents and occcurrence of reward
and penalty events in the domain. The value of each variable is categorised as low, medium and
high. Within the steps of the tests, there are some variables that are excluded because they do not
significantly contribute to the optimal environment for social learning.

A simulation system is a low fidelity operation of a model of the system (Maria, 1997). It
generates a number of tracks and gathers statistics from these tracks to measure the desired
performance (Sanders, 2005). Simulation offers a strong methodology in complex
behaviours (Harrison et al., 2007), because of its ability to model random behaviour or variation
{(Reeb and Leavengood, 2003). Harrison et al. (2007) defined a computer simulation as “a
computational model of system behaviour coupled with an experimental design”.

Computer simulation is considered as a third methodolegy in scientific progress following the
thearetical and empirical analysis methodologies (Axelrod, 1997, Waldrop, 1993). It starts with
modelling of behaviours of the target system to experiment various scenarios (Harrison et al.,
2007). Computer simulation comprises a computational model and experimental designs. A
computational model consists of variables which are the components of the system and the processes
of changing these variables (Harrison ef al., 2007). Five elements are involved in experimental
designs which are, initial settings, time constraints, cutput determination, repetition and variations
{Harrison et al., 2007). The outeomes are represented by some behaviour functions of the system
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and are calculated from the variables of the system after each run or for each time period
depending on the simulation’s target. Subsequently, the results may be subjected to additional
analyses. Based on the parameters and initial settings, simulation produces large quantities of data
for every variation involving the system’s variables values. It can also produce results for each time
period with summary statistics across iterations (Harrison et al., 2007).

There are several types of simulation models, one of these is agent-based models. Agent-based
models focus on modeling the behaviours of adaptive actors, which structure the system and
influence each other by interactions (Macy and Willer, 2002; Van Dyke Parunak ef al., 1998).
The behavior of the system 1s an emergent property of the interactions between agents
{(Harrisen et al., 2007).

While ample studies have exploited the reward or penalty observations approach to make an
agent learns a new behaviour (Hollander and Wu, 2011; Conte and Dignum, 2001; Conte and
Paolueal, 2001; Bandura, 1997), few studies have discussed the effectiveness of environmental
settings on the success of learning or identification of social norms. Sen and Airiau (2007) proposed
a model in social norms emergence using learning from interaction experiences base on a reward
function. In their model, they study the effects of population size, number of actions and number
of interactions period. They developed a simulation model for an agent to learn the rules of the
road. In particular, they focus on the problem of driving side of the read and who earns when there
are two agents in neighbouring roads reach at the same time an interaction (Sen and Airiau, 2007).

Savarimuthu et al. (2010a) proposed a norm identification technique that infers the norms of
an agent community without the norms being explicitly imposed on the agents. Their mechanism
exploits the sanctioning action in the environment to identify the obligation norms. They develop
algorithm to identify the tip norm in an agent-based simulation of a virtual restaurant in which
agents are located in the restaurant where other agents entering the restaurant may not be aware
of the protocol associated with ordering and paying for food items and the associated norms. In their
simulation they test several factors which are grid size and cbservation threshold. They discovered
that when the observation threshold of the agents increases, the agents identified the norms faster
and when the grid size increases, the number of candidate norms generated decreases.

SIMULATION MODEL

This section presents the simulation model by creating a virtual scenario for the elevator
domain. By using Win-Prolog programming language (http://www.lpa.co.uk), three interfaces are
created in three windows (Fig. 1). The windows have the functions to create a new domain, select,
and run a domain, and set the variables of the domain. The first window (Fig. 1) is used to create
a new domain when the environmental variables are set as shown by the upper part of the second
window (Fig. 1) and the lower part of the second window displays the results of computation. The
third window (Fig. 1) is used to select. and test the domain.

Variables classification: The variables are classified into three categories and each variable 1s
set an arbitrary value of Low, Medium or High for testing. This study argued that such values are

adequate to show the effects of variables’ combinations.

*  The first category of variables belongs to the Task Condition category, which 1s the Cycle Time.

It 1s the time given for one cycle of events
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Fig. 1: Simulation interfaces

¢ The second category of variables belongs to Agent Ability category, which 1s the Observation
Limit of detector agent. It is the extent to which a detector agent is able to cbserve the actions
of demain agents

¢ The third category belongs to the Observed Domain category. The pertinent variables are

*+  Domain Size, which is defined by a grid size of M by N

+  Population Density of Domain Agents, which is the spread of domain agents cccupying the grid

*+  QOccurrence Rate of Reward or Penalty events, which is the frequency of reward or penalty
events as observed by a detector agent

The variables units and settings: In this simulation, each variable is assigned a measurement
unit as follows:

+  Cycle time: 1s defined as the time given to a number of event cycle for the domain. For example,
in the elevator domain, the event cycle could be wait, enter, excuse, depart. Each domain agent
assimilates and enacts these events. A detector agent observes and learns those events are
given a number of cycles, which could be one eycle or more

*  Domain size: the domain 1s simulated as a two-dimensional grid and the grid size represents the
domain size. The grid M*IN represents the size of domain X, Figure 2 shows an example of a
10*%10 grid with demain and detector agents strewn within the gird

+  Observation limit of detector agent: Each observing detector agents has a limit of observation
to monitor the domain agents’ hehaviours. This study assumes that the agents in the grid are
able to observe the surrounding agents within the limitation threshold. The unit of measuring
the limit 1s a cell of the grid in the North, South, Kast and West direction. For example, a
detector agent is able to cbserve other agents located one cell besides it. A mathematical model
is developed to determine the visible cells for detector agents
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Determining visible cells: If there is detector or chserver agent, A; in a grid size, M*IN; the

the threshold limit, T and the cbservable (visible) cell, O,; of the

location of A in the grid, G

(m,n]?
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grid in Fig. 3, the following three cases are apparent.

s The first case is when the agent A, is at a corner of the grid, e.g., the cell (3, 3). In this case,

the agent can see in two directions only, as shown

¢ The second case 1s when the agent in at the middle, e.g., the cell (2, 2). For this case, the agent

can see in four directions

¢ The last case 1s when the agent 15 at one of the sides e.g., the cell (2, 1). In such case, the agent,

can see in three directions

If M=m,, m, my,...,m
N=n,, n, ng,... ... ,
T=t,ty...., t,

O =cy, egp000y

©

©

Fig. 2. A sample 10*10 Grid

© Domain agents
© Detector agents

1,

Fig. 3: Visible cells in 3*3 Grd
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Case 1, whenm; =1, n;=1:

e, = (m; +t,), wheree, =M... ........ 1
¢, =(n,+t),wherec, =N.........2

Case 2, whenm; =M, n,=N

!

¢, =(mi - tk) , wherec, =1...... ... 1
e, =(nj -tk) , wheree, =1............2

Case 3, whenm; # 1, m; # M, n, # 1, , n, # N,
e, = (m, +t,), where c,<M... ...

e, ={m, -t,), where c,21..........

¢, =(n; +t,), where ¢,<N...... ...

= o bo

¢, =(n;-t,), where c,=1......... ..

Other cases are subset of these above cases, for example when m; =M, n; # 1, , n, # N,

e, = {m; -t,), where ¢,<1...... ... 1
¢, = (n, +t,), wherec,=N........ 2
¢, =(n;-t,), where ¢, <1..........3

Accordingly, when an agent 1s at location G

,in the grid M*N, then:

(m,n

« If G(m=1jn=1):’o (m+T, n)? O(m, )
- IfG =0 O

If G((mﬂ.m#m (n 1, neMy) O(m+T,n)s 0 (m-T,n)? O(m, n+T) O(mjn-T)

(=M n=I) (m-T,n)? (mn,n-T)

For example, for a grid size of 3*3, and T=1 as shown in Figure 3, following some locations tests:

« Agent Alocatedin G, = Oy, O 4

* Agent Alocated in Gy = Og 4, Oug, O g, Ogy,
*  Agent Alocated in Ggg = Oy, Og 4, Og,

« Agent Alocated in Gy, = Oy ), Oy, Op o

*  Population density of domain agents: This is the number of domain agents in the grid. If there
are many agents, then the density is considered to be high
*+  QOccurrence Rate of Reward or Penalty (Kxceptional) events: This variable determines the

frequency of exceptional events happening in the doemain

Table 1 explains and clarifies each variable with regard to its symbol and its values for Low,

Medium and High.
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Tahble 1: Variables umits and settings

Variables Low Medium High
Observation limit (Or) 1 Cell 2 Cell 3 Cell
Domain grid size (Gg) 5*5 10*10 20%20
Cycle time (Cy) 1 Cycle 2 Cycle 3 Cycle
Occurrence of exceptional events (Eo) 25% 50% 75%
Population density of domain agents (Ac) 5 Agents 10 Agents 20 Agents
SIMULATION SETTINGS

The simulation model 1s built based on the above environmental variables and their values. The
following defines the supplementary entities to complete the simulator:

Normative protocol generator: This generates events for domain agents to enact the normative
protocol in some specific scenaric. The generator constrains the enactment for each agent via a
random funection to distribute the events among the agents.

Location generator: When a scenario is enacted, the location generator moves each domain
agent randomly from cell to cell. For example, if the normative protocol is wait, enter, excuse,
depart, the location generator moves an agent in the waif cell, say at G, ;, to the next cell, say, G,
to enact the enter event and so on.

Agents types: There are two types of agents in any scenario, which are:

+  Detector Agents (Apyp): These agents roam in the domain to detect exceptional events to learn
from the domain agents

* Domain Agents (A): These agents have knowledge about the domain’s norms, which could
be obligation, prohibition, or recommendation nerms. The domain agents enact the normative
protocol, which is generated and assigned by the normative protocol generator

The domain norms (elevator scenario): This section presents the enacted norms of the elevator
domain and assigns each norm type as follows:

*  Enacted Norms (Np) : Wait, enter, greet, litter, excuse, depart,

+«  Obligation norms () : KExcuse
¢« Prchibition Norms (P) : Litter
¢«  Recommendation (R) : Greet

Based on the norms’ types (Obligation, Prohibition, Recommendation), according to
Ahmad et al. (2011), an agent 1s rewarded or penalized as follows:

+ Ifthe agent enacts the obligation norms - no penalty

+ If the agent does not enact the obligation norms - penalty

« If the agent enacts the prohibition norms - penalty

« If the agent does not enact the prohibition norms - no penalty

+ Ifthe agent enacts the recommendation norms - reward

« Ifthe agent does not enact the recommendation norms - no reward
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DOMAIN TESTING
Initial testing: This section discusses the tests for each variable and its effect on different values
of Low, Medium and High, upon ohservation of exceptional events. For each test, the mean

percentage of the test results i1s calculated after a number of runs, using this formula:
Mean = ((Number of Ay, in all runs/mumber of all Ay )/Number of runs)x100

Test No. 1: This test measures the effect of Observation Limit (O;) on the observation process.

Settings:

Apy 10 Agents Detectors agents

A, 5 Agents Low

Cy 1 eycle Low

Gy 20%20 High

Qr N Cell Test Low, Medium, High

E, 50% Medium

Run Neo. Run 1 Run 2 Run 3 Run 4 Run 5 Mean
N =1 Cell - Low

Apr 1 2 0 1 2 12.0%

The mean value is calculated as follows:

+  Number of A;;in all runs =6
+  Number of all Ay, =10
*+  DNumber of runs =5

¢  Mean = (6/10)/5)*100 = Mean =12%

Run No. Run 1 Run 2 Run 3 Run 4 Run 5 Mean
N =2 Cells - Medium

Apr 3 2 3 4 3 30.0%
N =3 Cells - High

Apr 4 2 3 4 5 36.0%

Figure 4, shows the effect of cbservation limit on observation of exceptional events.

40 1 36.00%

30 4

gZﬂ-
-4

10 4

0 : T : T 1
Low Medium High

Fig. 4: Observation limit test Low: 12%, Medium: 30%, High: 36%
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Test No. 2: This test measures the effect of Cycle Time (Cy) on the observation process.

Settings:

Arg 10 Agents Detectors Agents

A, 5 Agents Low

Cy N eycle Test Low, Medium, High

G 20 %20 High

O, 1 Cell Low

E, 50% Medium

Run No. Run 1 Run 2 Run 3 Run 4 Run 5 Mean
N =1 Cycle - Low

Ap 2 1 1 2 1 14.0%
N =2 Cycles - Medium

Ap 4 4 2 3 4 34.0%
N =3 Cycles - High

Apr 3 4 3 8 5 42.0%

Figure 5, shows the effect of cycle time on cbservation of exceptional events.

Test No. 3: This test measures the effect of Domain (Grid) Size ((G;) on the observation process.

Settings:
Apy 10 Agents Detectors Agents
A, 5 Agents Low
Cy 1 cycle Low
G M*N Test Low, Medium, High
Qr 1 Cell Low
E, 50% Medium
Run Neo. Run 1 Run 2 Run 3 Run 4 Run 5 Mean
M *N=5%5 - Low
Apr 6 G 4 7 5 56.0%
M *N=10%*10 - Medium
Apr 3 2 3 5 4 34.0%
M*N=20%20 - High
Apr 1 2 1 1 1 12.0%

50 -

40 -

g 30 1
20
A i
10 4
0 T ! T 1

Fig. 5: Cycle time test Low: 14%, Medium: 34%, High: 42%
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60
56

40 -

Percentage

20 4

Fig. 6. Grid size test Low: 56%, Medium: 34%, High: 12%

Figure 6 shows the effect of grid size on observation of exceptional events.

Test No. 4: This test measures the effect of Kxceptional Events Occurrence (Eg) on cbservation

process,

Settings:

Arg 10 Agents Detectors Agents

A, b Agents Low

Cy 1 eycle Low

Gy 20%20 High

Qr 1 Cell Low

E, N% Test Low, Medium, High

Run No. Run1 Run 2 Run 3 Run 4 Run 5 Mean
N =25% - Low

Apr 1 2 1 1 0 10.0%
N =50% - Medinm

Apr 2 1 2 1 1 14.0%
N =75% - High

Apr 2 3 2 3 2 24.0%

Figure 7 shows the effect of exceptional events occurrence on

exceptional events.

observation of

Test No. 5: This test measures the effect of Population Density of Domain Agents (A,) on the

observation process.

Settings:

Arg 10 Agents Detectors Agents

A, N Agents Test Low, Medium, High
Cy 1 eycle Low

G 20%20 High

Qr 1 Cell Low

E, 0% Test Low, Medium, High
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Low Medium High

Fig. 7: Exceptional events occurrence test Low: 10%, Medium: 14%, High: 24%

30 -+

Fig. 8: Population density test Low: 14%, Medium: 32%, High: 0%

Run No. Run 1 Run 2 Run 3 Run 4 Run 5 Mean
N =5 Agents - Low

Ay 1 1 2 1 2 14.0%
N =10 Agents - Medium

App 4 3 4 3 2 32.0%
N =20 Agents - High

Apr 5 4 4 5 7 50.0%

Figure 8 shows the effect of population density on observation of exceptional events.

Summary of results of initial testing: As shown in Fig. 9, the results of the initial testing are

as follows:

«  Grid size, Gy, 1s inversely proportional with observation of exceptional events. If Gy increases,

the observation of exceptional events decreases and vice versa

« Population density of domain agents, A ;cycle time, Cy;; observation limit, O, ; exceptional events

oceurrence, Ky, are directly proportional with observation of exeeptional events. If one of these

factors increases, the observation increases and vice versa

« Population density of domain agents, A, and Grid size, G, have strong positive effect (50, 56%,

respectively) on observation of exceptional events

*  Cyele time, C and observation limit, O have the same intermediate positive effect (42, 42%),

respectively) on observation of exceptional events

+ HKxeeptional events occurrence, K, has the minimum positive effect (24%) on observation of

exceptional events
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Fig. 9: Rate of observation of exceptional events among variables G, Low: 56%, A, High: 50%, C;
High: 42%, O; High: 42%, K, High: 24%

* The results show that a variable of strong positive effect 1s not enough to bring the detector
agents to an acceptable level of performance. They should be provided with more than one
variable of strong positive effect. The next section analyses the effect of such environments

Figure 9 shows the performance of chservation of exceptional events for each variable.

Advanced testing: This test is based on the initial results and includes combinations of variables.
However, the variable, K., is excluded because it gives minor effect on the observation process. To
determine the optimal environment’s variables for a detector agent to effectively observe the
exceptional events, the following tests set two or more variables of strong positive effect.

Test No. 6: This test measures the effect of Domain (Grid) Size, Gy and Observation Limit, O;, on
the cbhservation process.

Settings:

Arg 10 Agents Detectors Agents

A, 5 Agents Low

Cy 1 eycele Low

G N*N Test Low, Medium, High

Qr X Cell Test Low, Medium, High

E, 50% Medium

Run No. Run 1 Run 2 Run 3 Run 4 Run 5 Mean
M*N=10*10 - Medium (M), X=2 Cells - Medium (M),

Apr & 4 & 4 4 48.0%
M*N=10*10 — Medium (M), X=3 Cells - High (H)

Apr 5 5 7 7 6 60.0%
M*N=5*5 - Low (L), X=2 Cells - Medium

Apr 8 7 7 & 5 66.0%
M*N=5*5 — Low (L), X =3 Cells - High (H)

Apr 8 7 7 9 8 78.0%
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Fig. 10: Grid size and observation limit test G; and O; Medium: 48%, G, Medium and O, High:
60%, G Low and O; Medium: 66%, G, Low and O;, High: 78%

Figure 10 shows the effect of grid size and observation limit on observation of
exceptional events.

Test No. 7: This test measures the effect of Domain (Grid) Size, G, and the Cycle Time, Cy, on the
observation process.

Settings

Apy 10 Agents Detectors Agents

A, 5 Agents Low

Cy X cycle Test Low, Medium, High

G N*N Test Low, Medium, High

Qr 1 Cell Low

E, 50% Medium

Run No. Run 1 Run 2 Run 3 Run 4 Run 5 Mean
M*N=10*10 — Medium (M), X =2 Cycles - Medium (M)

Apy 6 3 4 6 6 50.0%
M*N=10*10 — Medium (M), X =3 Cycles — High (IT)

Apy 7 6 6 8 6 66.0%
M*N=5%5 - Low (L), X =2 Cycles - Medium

App 7 8 6 8 9 76.0%
M*N=5*5 — Low (L), X =3 Cyeles — High (IT)

Apy 9 10 8 9 10 92.0%

Figure 11 shows the effect of grid size and cycle time on observation of exceptional events.

Test No. 8: This test measures the effect of Domain (Grid) Size, G, and Population Density of
Domain Agents, A, on the observation process.

Settings:

A 10 Agents Detectors Agents

A, X Agents Test Low, Medium, High
Cy 1 eycle Low

Gy N*N Test Low, Medium, High
O, 1 Cell Low

E, 50% Medium
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Fig. 11: Grid size and cycle time test Gy and Cy; Medium: 50%, Gg Medium and Cy; High: 66%, G,
Low and Cy; Medium: 76%, G, Low and Cy; High: 92%

Run No. Run1 Run 2 Run 3 Run 4 Run 5 Mean
M*N=10*10 — Medium (M), X =10 Agents— Medium (M),

Apr 5} 7 5 7 5 650.0%
M*N=10*10 - Medium (M), X =20 Agents — High (H)

Apr 8 6 8 7 5 68.0%
M*N=5*5 - Low (L), X =10 Agents — Medium

Apr 8 ) 9 7 5 74.0%
M*N=5%5 — Low (L), X = 20 Agents — High (H)

Apr 10 10 8 10 9 94.0%

Figure 12 shows the effect of grid size and population density on chservation of exceptional
events.

Test No. 9: This test measures the effect of Cycle Time, Cy and Population Density of Domain
Agents, A, on the observation process.

Settings

Apy 10 Agents Detectors Agents

A, X Agents Test Low, Medium, High

Cy Y eycle Test Low, Medium, High

G 20%20 Low

O, 1 Cell Low

E, 50% Medium

Run No. Run1 Run 2 Run 3 Run 4 Run 5 Mean
X =2 Cycles — Medium(M), Y = 10 Agents — Medium (M)

Apr 5 5 3 5 2 40.0%
X =3 Cycles — High (H), Y = 20 Agents — High (H)

Ap 10 10 9 7 10 92.0%

Figure 13 shows the effect of cycle time and population density on observation of exceptional
events.

Test No. 10: This test measures the effect of Domain (Grid) Size, G, Cycle Time, € and
FPopulation Density of Domain Agents, A, on the observation process.
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Fig. 12: Grid size and population density test G, and A, Medium: 60%, G, Medium and A, High:
68%, G Low and A, Medium: 74%, G, Low and A, High: 94%

100 A
(%

30

60
40 40

20

0 E L] T
CN, M, AC,M N, ACH

Fig. 13: Cycle time and population density test Cy and A, Medium: 40%, C; and A,

High: 92%
Settings:
Arg 10 Agents Detectors Agents
A, X Agents Test Low, Medium, High
Cy Y eycle Test Low, Medium, High
Gy M*N Test Low, Medium, High
O, 1 Cell Low
E, 50% Medium
Run No. Run1 Run 2 Run 3 Run 4 Run 5 Mean
M*N=10*10 — Medium (M), X =2 Cycles - Medium (M), Y = 10 Agents — Medium (M)
Apr 7 7 8 8 7 74.0%
M*N=5%5- Low (L), X =3 Cycles — High (H),, Y = 20 Agents — High (H)
Apr 9 10 10 9 10 96.0%

Figure 14 shows the effect of grid size, cycle time and population density on observation of

exceptional events.

Summary of results of advanced testing: The aim of this study is to discover the most effective
variables of the environment that enhance the cbservation process of detector agents. In general,
when the agents have knowledge about the optimal cases for observation, they can achieve their

goal faster and with higher accuracy.
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Fig. 14: Grid size, cycle time and population density test Gy and Cy and A, Medium: 74%, G Low

and Cy; High and A, High: 96%

Tahble 2: Summary of results of advanced testing

Settings Result, (%) Optimal
Gy, M, O, M 48.0 No
Gg, M, O, H 60.0 No
G, L, O, M 66.0 No
Gy L,O, H 78.0 No
Gg, M, Cy, M 50.0 No
Gy, M, Cy, H 66.0 No
Gg, L, Cy, M 76.0 No
Ge, L, Cy, H 92.0 Yes
Gg, M, Ap, M 60.0 No
Gg, M, A, H 68.0 No
Gy L, Ag, M 74.0 No
Gg, L, Aq, H 94.0 Yes
Cy, M, A, M 40.0 No
Cy, H, Ag, H 92.0 Yes
Gg, M, Ag, M, Gy, M 74.0 No
Gy, L, Ag, H, Cy,H 96.0 Yes

As shown in Table 2, the results of advanced testing are as follows:

« It is discovered that there are three significant variables, which are population density of

domain agents, A,; cycle time, Cy; and grid size, G,
+  The most optimal variables for agent to learn through observation are, Gy, L, A, H, C;, H
*  When the given eyele time (Cyp) of agent is low (L), the optimal variables to learn are Gy, L, A,

H

+  When the population density of domain Agents (A.) is low (L), then the optimal variables to

learn are, Gg, L, Ci, H

*  When the domain (grid) size (Gg) is high (H), then the optimal variables to learn are, A, H, G

H

+ Ifthe above variables are not available, agents should find at least one of the three significant
variables that have strong positive effect. Otherwise the learning or identification success could

be trivial

RESULTS AND DISCUSSION

As shown in Table 2, the results are attributed by four cases that are combined from three

variables of population density of domain agents, Ag; cycle time, Cy and grid size, Gg.
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Table 3: Significant settings of variables

Ag Oy Gg O Eo
Case L M H L M H L M H L M H L M H  Optmal
GS5 L) CN) H ¥ ¥ ¥ ¥ ¥ ¥
GS L A-C H * * * * * *
CN) H’ Ac) H * ¥ ¥ ¥ ¥ ¥
G L, A, 11, Cy, H * * * * * *

Table 1 specifies all the variables’ units and settings that are used in the tests. The tests are
conducted based on the five elements that are proposed by Harrison et al. (2007) which are, initial
settings that have are fixed in each test 1 to 10 described above; time constraint which represents
the cycle time 1n this test; output determination, which is represented by Fig. 4-14; repetitions in
each test which is represented by the number of runs and variations that are represented by fixing
all variables except one to test its effect.

Figure 9 shows the initial results of testing single variable among fixed variables to discover the
performance of each variable. The results shows the variables with strong positive effect, which are
the grid size, 56%; the population density of domain agents, 50%; cycle time, 42% and observation
limat, 42%. These results are supported by Savarimuthu ef al. (2010a), who discovered that when
the observation limit of agents increases, the agents identified the norms much faster and when
the grid size increases, the number of agents which could identify the norms decreases. Xu ef al.
{2012 discovered that unlimited cbservation is more efficient but the observation is limited in more
realistic scenarios. However, according to Sen and Airiau (2007), when the learning is based on the
agents interaction (not on cobservation), the learning decreases when the population density
increases. This is exactly the opposite of cur finding in agents based on chservation te learn.
Savarimuthu ef al. (2010a) proposed that observation in high population density increases the
history log, which increases the probability of identifying the norms.

The variables are tested separately and this study extends the tests’ settings by combining more
than one variables to discover the significant settings of variables that lead to optimal environment
for an agent to learn through observation of exceptional events. As shown in Table 2, there are four
combinations of variables’ settings that could offer optimal envirenment. These are:

Grid size, (G, Low); population density of domain agents, (A, High) and cycle time,
(Cy, High), which show 96% performance.

Grid size, (G, Low) and population density of domain agents, (A., High), which record a 94%
performance.

Two combinations of variables’ settings produce 92% performance; grid size, (G, Low) and eycle
time, (Cy;, High) and population density of domain agents, (A, High) and cycle time, (Cy;, High).

This study is significant in focussing on identifying the optimal environmental settings for an
agent to learn through observation of exceptional events, unlike other studies that superficially
discuss the environmental effects among other objectives (Sen and Airiau, 2007,
Savarimuthu et ¢l., 2010b; Xu et al., 2012),

CONCLUSION AND FUTURE PERSPECTIVE

The progress of research in norms learning and identification based on observing exceptional
events offer a new capability in social learning for software agents. However, as shown in this
study, the effectiveness of the learning process is dependent on the environmental variables and
their values.
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This study presents a simulation model to examine different envirenmental settings to discover
the optimal cases of observing exceptional events within a social agents’ group. To implement the
simulation, a virtual scenario is created with the variables set to different values to examine
different situations. In the scenario, two types of agents are created: detector agents and domain
agents. The value of each variable 1s arbitrarily set to low, medium and high. Within the steps of
the tests, some variables are excluded as they do not strongly influence the optimality of the
environment for social learning. The results of tests show that a single variable of strong positive
effect is inadequate to produce the optimal solutions. But when two or more variables of strong
positive effect are tested, four optimal solutions are produced.

For future study, the virtual environment will be extended with a number of agents’ societies
which have the knowledge of optimal sclutions, to further explore if those agents learn faster and
with higher accuracy.
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