Journal of
Artiticial Intelligence

ISSN 1994-5450

science
alert

ANSI%@ZZ

s publisher
hﬁp //ansmet com

Journal of Artificial Intelligence 6 (3): 220-228, 2013
ISBN 1994-5450 / DOI: 10.3923/a1.2013.220.228
© 2013 Asian Network for Scientific Information

Provisioning Mapreduce for Improving Security of Cloud Data

'G. Sujitha, *M. Varadharajan, 'B. Raj Kumar and *S. Mercy Shalinie

'Anna University, College of Engineering, Chennai, TamilNadu, India
fAnna University, Thiagarajar College of Engineering, Madurai, TamilNadu, India

Corresponding Author: G. Sujitha, Anna University, College of Engineering, Chennai, TamilNadu, India

ABSTRACT

The rising abuse of information stored on large data centres in cloud emphasizes the need to
safeguard the data. Despite adopting strict authentication policies for cloud users, data while
transferred over secure channel when reaches data centre, 1s vulnerable to numercus attacks. The
most widely adaptable methodology of safeguarding cloud data is through encryption algorithms.
Encrypting data at rest prevents unauthorized access of confidential information. Encryption of
large data deployed in cloud is actually a time consuming process which needs to be controlled by
an efficient application of the process in parallel mode. This study proposes a method to perform
encryption in parallel, using standard XTS-AES (Xor based Tweaked Cipher Text
Stealing-Advanced Eneryption Standard) approach in MapReduce paradigm. The proposed
methodelogy gives efficient results than using it in ECB (Electronic Code Book) mode. The time
lapsed for performing the process 1s relatively less for user generated content. Parallel algorithm
results show that AES encryption process on cloud data tends to be faster with mapper alone than
running the encryption process under mapper and reducer. The results generated for encryption
followed by gzip compression on different dataset like text, image audio and video proves that the
proposed approach is well suited for protecting user generated data deployed in the cloud
environment.

Key words: Cloud, data security, parallel algorithm, mapreduce, AES, compression

INTRODUCTION

The advent of Web 2.0 has made organizations move towards cloud with computing models
using Information Technology (IT) as a Service. This emerging field in information technology
focuses on applications running over the Internet such as SaaS (Software as a Service) or
hardware systems available in datacenters. In both the cases management of data and services
rendered by datacenters are not fully trustworthy. Enterprises moving towards emerging cloud or
cloud computing model while expanding their infrastructure face risks due to security of their
data (Chen et al, 2010). Major issues identified in cloud are data integrity, recovery,
privacy and legal issues like regulatory compliance, auditing need to be resclved
{(Kaufman, 2009).

In recent years data storage has enjoyed a peried of unprecedented growth. According to Hype
Cyecle of BigData, the survey showed the major challenges 1dentified in recent years. Nearly 47%
of enterprises face data growth as a major challenge (Lapkin, 2012). Several security issues
have been identified in the current cloud era. It is necessary to secure data at rest. Hence,
storage encryption is proposed to inveke confidentiality of large data encryption. This being

220

oJ. Artif. Intel., 6 (3): 220-228, 2013

a time consuming process 18 controlled by an efficient application of the process in parallel mode
{(Abadi, 2009). In this regard Hadoop’s MapReduce an open source implementation seems to be an
attractive cost effective solution for processing large scale data (Nicolae et al., 2010),

This study proposes a method to secure large data deployed in cloud through encryption using
MapReduce and standard XTS-AKS mode (Martin, 2010). The contribution of the study is
summarized as (1) Appropriate algorithm for encrypting large datasets, (2) Analyzing the best
possible mode that support the encryption process to run parallely and (3) Introducing Map Reduce
paradigm for performing the encryption process.

MATERIALS AND METHODS

Encryption algorithm: Towards the end of the 20th century many backdecors and flaws were
found in the existing symmetric algorithm like DES (Data Eneryption Standard) which is
vulnerable to brute force attacks because of its relatively small 56 bits key size. To meet better
security standard, the US Government agency National Institute of Standards and Technology
(NIST) selected Rijndael’'s Algorithm as Advanced Encryption Standard (AES) and it has now
become the industry standard. AES is typically designed to accept three different key sizes like
128,192 or 266 bits. The algorithm 1s capable of encrypting bulk data on top-end 32 bit and 64 bit
CFUs. It has been proved as an efficient algorithm for encrypting all sorts of data deployed in cloud
from text to audio and video (Schneier and Whiting, 2000). The performance of AES algorithms
vary on various CPUs based on the key size (which is our fortheoming work) and its performance
in the current scenario is evaluated in this study. Parallelizing the block contents involves various
modes of operation that handles fixed block and variable block encryption through single and
different keys.

Encryption mode: The efficiency of cryptographic algorithm that run in parallel mode can be
improved by the introduction of several modes that are intended to use with symmetric block cipher
like AES. The Electronic Code Book (ECB) (Dworkin, 2005) and XTX (Keller and Hall, 2011) modes
are widely supported parallel encryption mechanisms. ECB supports the kind of encryption in
which the plaintext consists of a sequence of bit blocks like b1, b2,....bn that is converted into
corresponding cipher text blocks such as ¢, ¢,,.....cn through the same key that acts on all the
blocks. ECB mode suffers from the fact that if the message has repetitive elements in different
blocks all of them produce the same cipher text which is possible to substitute and find the actual
plaintext. The other widely used IEER 1619-2007 standard is XEX-TCB-CTS (XTS) mode in which
key material for XTS-AES consists of an encryption key as well as a tweak key that is used to
incorporate the logieal position of the data block into the encryption. XTS outputs tend to produce
independent cutputs which lead to the parallelization of such methodology. XTS 1s a concrete
instantiation of the class of twealk able block ciphers. The XTS mode allows parallelization and
pipelining in cipher implementations. It enables the encryption of the last incomplete block of data
while other modes are not having this facility. Figure 1 depict AES-XTS mode with two different
keys which differ based on the block it resides.

Hadoop’s MapReduce paradigm: Google proposed MapReduce to simplify data processing on
large clusters (propriteary). Hadoop is the most popular open source implementation of the
MapReduce framework developed by Yahoo! and the Apache software foundation (Nicolae et al.,
2010). Map Reduce is deployved as a powerful data processing service over open source
systems and has become increasingly popular for its parallel programming framework. Hadoop's

221

oJ. Artif. Intel., 6 (3): 220-228, 2013
LK | [« | 1

Fig. 1: Depicts AES-XTS mode with two different keys which differ based on the block it resides

MapReduce seems to be an attractive cost effective solution for large scale data processing services
like securing data in cloud through block encryption (Pavle ef al., 2009). MapReduce can fit in any
kind of environment like closed or open systems. The framework is designed for writing applications
that rapidly process vast data during runtime on compute clusters. The code automatically
partitions input data, performs scheduling, monitoring and have the fault tolerance mechanism
through which it re executes the failed tasks in a commodity of large cluster machines (Dean and
Ghemawat, 2008; Pavlo et al., 2009),

Formal definition of MapReduce programming: MapReduce is a simple model a with two keys
such as map and reduce derived from functional programming languages (Nicolae ef al., 2010). For
any kind of application to run using map reduce model, the input should be a set of key value pair.
The mapper produces an intermediate key pair value that is sent. to the reducer to carry out, the rest
of the application process. The explanation includes defining mappers and reducers. A description
of how the system executes these two functions 1s also presented. The fundamental unit of data in
map reduce computations is the <key; value> pair, where keys and values are always just binary
strings.

Definition 1: A mapper is a randomized function that takes as input one ordered <key; value>pair
of binary strings. As output, the mapper produces a finite multiset of new <key; value> pairs. It is
impaortant that the mapper operates on one <key; value> pair at a time.

Definition 2: A reducer 1s a randomized function that takes as input a binary string which 1is the
key, and a sequence of values v,, v, which are also binary strings. As cutput, the reducer produces
a multiset pair of binary strings <k; v, >, <k; v, >, <k; v, 2>, The key in the output tuples is identical
to the key in the input tuple.

Parallelizing encryption through map reduce process: As stated before, the main benefit
of this programming paradigm 1s the ease of parallelization. Since each mapper pr only cperates
on only one tuple at a time, the system can have many instances of ur operating on different tuples
in U_, in parallel. After the map step, the system partitions the set of tuples cutput throughout the
instances of pr which are created based on their key. That is, part i of the partition has all key;
value pairs that have key ki. Since reducer pr only operates on one part of this partition, the system

222

oJ. Artif. Intel., 6 (3): 220-228, 2013

based on the application create many instances of pr running on different parts in parallel. The
data will be stored as contiguous blocks and every block is represented by an unique block id
(I,1,15....1,). A MapReduce includes set, of mappers (M;,M,..... M,) and reducers (R, ,R,..... K,).The
input is given to mapper in the form of <block id, object>.This object is the content of the HDFS
{Hadoop Distributed File System)block or the data stored in the corresponding block 1d. During
encryption the mapper and the reducer function based on the <key; value> pair as discussed
above.

Execution of mapper: Block <[, object ds1>1s given to mapper M. The mapper will generate the

T-1!

corresponding encrypted output I'y; and send it to the reducer R, let.

W = {<,,object1> <], object2> <, object3>.....<[_, object n>} then general format. is represented as.
I,r = I1"—1-\Nr<b1c:clar.id,object> Mr (<b10Ckid)Enc-compobject>)

Execution of reducer: The collected outputs from various mappers are written to the disk in the
sequential order (I',,I’,.....I".). In the proposed work the algorithm is designed in such a way for
securing large data sets by performing block encryption followed by compression under each
mapper and combining the result and storing it on HDFS (Hadoop Distributed File System). The
Mapper reads block of equal size which can be optimized based on the available free nodes in the
cloud environment as shown below:

Block size — Input data size

No. of nodes configured for mapper

Figure 2 shows how HDFS contents got assigned to mapper where mapper performs
encryption followed by compression and the reducer is used to write the contents on to HDFS
{i.e., output).

v

NameNode

Map 1
n | AES+XTS \ :

(© / Reducer > Output
H Map 2
| AES+XTS
Rack 2
Map 3
>| AESTXTS
ﬁ)ﬂ
L AES+XTS

Fig. 2: Encryption using map reduce framework

223

oJ. Artif. Intel., 6 (3): 220-228, 2013

Though HDFS (Hadoop Distributed File System) supports record level and block level
compression on input data, in the proposed method after encryption under each mapper, a
compression through gzip is done in order to reduce the storage space.

RESULTS

Experimental setup: The AES algorithm running under MapReduce was tested on a
campus environment that was created as a HadoopTestbed. This testbed comprised of a 32 node
cluster, each of which has an Intel Xeon 1.6 Ghz processor with 500 GB of local storage
running on Hadoop 0.20. The initial tests were made with earlier versions of Hadoop.19. The
testbed for protecting data in cloud environment was experimented with series of
small datasets. The experimental results showed that encryption followed by compression
mechanism using such parallel techniques required less time in the order of seconds for large
datasets. Kxperimental results were explained with the time lapsed for running the same process
with reducer and without reducer. A comparison graph was generated for encrypting different
datasets and for different types of files like audio, video, text and image. The testbed is heing
utilized to perform encryption followed by compression while storing different datasets as in the
cloud environment.

Experiment 1: Comparison of modes that support parallelism with AES: Figure 3 shows
the time taken for symmetric AES encryption with ECB mode and XTS mode. The results prove
that the time difference between the two modes was very less which implies that AES with XTS was
adaptable for protecting data in cloud. While performing encryption using XTS mode, it produced
a different output for the same data from two different mappers whereas KBC produced the same
cipher the text from different mappers. Such a concept was found to be relatively insecure. The time
difference for was 15 GB text data was 3 min which indicates that XTS with AKS suits for securing
large datasets in cloud environment.

45 7 —@— AES+XTS mode
—{— AES+ECB mode
40 -
35 4
30 +
E 25
£ 5
g
£ 20 4
15 A
10 -
5 -
0 T T T 1
1 5 10 15

Data size (Gb)

Fig. 3: Time taken for symmetric AES encryption with ECE mode and XTS mode

224

oJ. Artif. Intel., 6 (3): 220-228, 2013

30 7 —E- AES without reducer
—&— AES with reduce

15

Time (min)

10

1GB 5 GB 10 GB 15 GB
Data size (GB)

Fig. 4: Performance of the algorithm with reducer and without reducer

259 m Text
B Audio
@ Video
O Image
20
154
g
E
(0]
£
g —
10 1
51 |
0 =1 T T T

1 5 10
Data size (Gb)

Fig. 5: Evaluation of the proposed approach for different datasets

Experiment 2: Execution of MapReduce for encryption with reducer and without
reducer: Figure 4 shows the performance of MapReduce Algorithm using AES (under XTS5 Mode)
with reducer and without reducer. When it is used without reducer all the nodes of the cluster were

assigned as mapper and hence it increases the speed of the encryption followed by compression
process.

Experiment 3: Evaluation of AES+XTS encryption using mapreduce process for different
datasets: Figure b gives the evaluation of the proposed approach for different datasets. It was

2256

J. Artif. Intel., 6 (3): 220-228, 2013

30 1 3 Encryption without compression

O Encryption with compression

Time (min)
— (5%
w (=]
1 1

S
)

0 T T T 1
1 5 10 15
Data size (Gb)

Fig. 6: Performance evaluation of compression technique on different datasets

inferred from the results generated that the proposed approach shows remarkable difference for
large size of text, audio, video and image files than for small size user generated content files. It
was identified that the time taken for encrypting text was relatively high but less for image files.
Audio and video files required relatively equal time for performing the process.

Experiment 4: Performance evaluation of compression on different dataset without
reducer: From the previous experiment. 2 it was concluded that without reducer the performance
of the algorithm was better. So compression on large dataset was experimented with a setup where
all the nodes of the cluster act as mapper. Figure 6 shows the result that eneryption with
compression takes relatively less time. From the experiment with various datasets the compression
ratio obtained for text and image data were in the order of 1:10 and 1:2. But for audio and video
files no remarkable difference in the ratio was noticed.

DISCUSSION

Many security issues related to cloud were identified during large datastore, data reduction
technique, effective storage and data archiving (Foster et al., 2008). Several programming models
have been introduced to sclve the issues related to large data in cloud through parallelize
computation (Chaiken ef al., 2008; Micel et al., 2009). In this study protecting cloud data through
encryption and to efficiently utilize the resources of the cloud, compression using MapReduce has
found to be model is proposed and implemented. The model has found to be adaptable for different
datasets like audio, video, text ete., MapReduce is considered as a simplified model designed for
compute cloud have and Grids. MapReduce and its derivatives have the ability to operate on large
dat (Abadi, 2009; Dean and Ghemawat, 2008). Parallel Algorithms like Message Fassing Interface
(MPFI) and Bulk Synchronous Programming provide a high level of abstraction that allows users
to write parallel programs (Valiant, 1997; Gropp ef al., 1999). When compared with other parallel

226

oJ. Artif. Intel., 6 (3): 220-228, 2013

code, Hadoop’s MapReduce is designed to parallelize user program automatically. It has an
additional feature of providing fault-tolerant mechanism. The Hadoop’s MapReduce
implementation proposed in our study allows performing encryption in parallel. Among the various
modes of encryption, XTS proved to be slower than narrow block moede. But narrow block requires
the more time when dealing with large datasets (Dworkin, 2005; El-Fotouh and Diepold, 2008). So
the present study reveals that XT'S mode which has a special tweak key is found to be secure than
the other modes of encryption. It is suggested that compressing encrypted data, tends to be efficient,
in terms of storage space (Johnson et al., 2004; Ziv and Lempel, 1977).

In the present study, improved level of security 1s achieved through MapReduce framework
which is being used in cloud world in recent years. The model was designed with three objectives.
Firstly, KCB and XTS mode that supports parallelism, second XTS mode with AES running under
mapper and reducer inorder to provide security to the user’s data and thirdly the performance
evaluation of the entire framework with and without using reducer. Finally the hybrid framework
is tested for different datasets and the evaluation is done. It is clear from the results that AES with
XTS mode running under mapper gives better result than using mapper and reducer together. The
experimental result of the proposed technique shows that encryption methodology requires
relatively less time for large datasets in a cluster of machines. The compression is done at the
expense of time in order to utilize the resources of storage environment. Future enhancements of
the work needs to focus on evaluating the performance under different configuration parameters
and improve the kind of encryption through a selective mode. Moreover, compression of audio and
video files based on the type of codec which is our future area of research.

ACKNOWLEDGMENT
We acknowledge Yahoo! India, Banglore for giving valuable suggestions to complete this
study.

REFERENCES

Abadi, D.J., 2009, Data management in the cloud: Limitations and opportunities. [IEEE Data Eng.
Bull., 32: 3-12.

Chaiken, R., B. Jenkins, P.A. Larson, B. Ramsey, D. Shakib, S. Weaver and J. Zhou, 2008,
Scope: Kasy and efficient parallel processing of massive data sets. Proceedings of the VLDE,
August 24-30, 2008, Auckland, New Zealand, pp: 12.

Chen, Y., V. Paxson and R.H. Katz, 2010, What’s new about cloud computing security? Berkeley
University of California, Report No, UCB/EECS-2010-5, January 20, 2010,

Dean, dJ. and S. Ghemawat, 2008. Mapreduce: Simplified data processing on large clusters. Comm.
ACM, 51: 107-118.

Dworkin, M., 2005. Recommendation for block cipher modes of operation: The CMAC mode for
authentication. National Institute of Standards and Technelogy, Special Publication 800-28B.
esre.nist.govipublicationsmistpubs/800-38C/SPS00-38B.pdf.

El-Fotouh, M.A. and K. Diepcld, 2008. A new narrow block mode of operations for disk encryption.
Proceedings of the 4th International Conference on Infermation Assurance and Security,
September 8-10, 2008, IEEE Computer Society, Napoli, Italy, pp: 126-131.

Foster, 1., Y. Zhao, I. Raicu and S. Lu, 2008, Cloud computing and grid computing 360-degree
compared. Proceedings of the Grid Computing Environments Workshop, November 16, 2008,
Austin, Texas, pp: 1-10.

227

oJ. Artif. Intel., 6 (3): 220-228, 2013

Gropp, W., B, Lusk and E. Thakur, 1999, Using MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press, ISBN: 0-262-57133-1, Cambridge, MA.

Johnson, M., P. Ishwar, V. Prabhakaran, D. Schonberg and K. Ramchandran, 2004, On
compressing encrypted data, IEEE Trans. Signal Process., 52: 2992-3006,

Kaufman, L.M., 2009. Data security in the world of cloud computing. TEEE Security
Privacy, 7. 61-64,

Keller, 5.5, and T.A. Hall, 2011. The XT5-AKES validation system. NIST-National Institute of
Standards and Technology-XTS-AES(2011).

Lapkin, A., 2012. Hype cycle for big data. Gartner Ine. http:.//www.hadoopeonsultant.nl/wp-
content/uploads/hype_cyele_for_big_data_2012_235042 pdf

Martin, L., 2010. XTS: A mode of AES for encrypting hard disks. IEEE Secur. Privacy, 8: 68-69.

Mieceli, C., M. Micels, S. Jha, H. Kaiser and A. Merzky, 2009, Programming abstractions for data
intensive computing on clouds and grids. Froceedings of the 2009 9th IKEE/ACM International
Symposium on Cluster Computing and the Grid, July 21, 2009, IEEE Computer Society,
pp: 478-483.

Nicolae, B., D. Moise, G. Antoniu, L. Bouge and M. Dorier, 2010, BlobSeer: Bringing high
throughput under heavy concurrency to hadeop map-reduce applications. Proceedings of the
24th TEEE International Parallel and Distributed Processing Symposium, April 18-23, 2010,
Atlanta, GA., pp: 1-11.

Pavlo, A., E. Paulson, A. Rasin, D.J. Abadi, D.J. DeWitt, S. Madden and M. Stonebraker,
2009, A comparison of approaches to large-scale data analysis. Proceedings of the
International Conference on Management of Data, June 29-July 02, 2009, Providence, RI,
USA., pp: 165-178.

Schneier, B, and D. Whiting, 2000. A performance comparison of 5 AES finalists. Proceedings of
the 3rd AES Candidate Conference, April 13-14, 2000, Hilton, New York, pp: 231-249,

Valiant, L.G., 1997. A bridging model for parallel computation. Communi. ACM, 33: 103-111.

Zav, J. and A. Lempel, 1977. A universal algorithm for sequential data compression. IKEE Trans.
Inform. Theory, 23: 337-343.

228

	JAI.pdf
	Page 1

