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ABSTRACT

Today chaotic dynamical behavior in scientific field 1s focused by the researchers. There have
been many studies on chaotic systems. In addition, scientists achieved that chaotic dynamical
behaviors play an important role in biological neural networks. Therefore, they are trying to model
natural neuron's behavior with artificial neuren by using chaotic dynamie. It’s obvicus that, chaos
theory describes the behavior of certain dynamical systems which evolve with time that may exhibit
dynamics that are highly sensitive to initial conditions and depend on its dynamic properties.
Designing such a system which has enough ability, for identification and predication is our final
goals. In chaotic system, the initial conditions are changed in each steps and there isn't a clear
dynamie system. This study reviews the fundamentals of chaos theory, 1ts application and tries to
identify and predicate them by using dynamic neural network which has more adaption with
different types of condition. In this study, first of all some definition of chaos 1s explained, then the
two different types of dynamie neural units are introduced, next by using these structures, some
chaotic systems such as Henon map and Mackey-glass series are identified and predicted.

Key words: Chaos systems, back-propagation algorithm, dynamiec neural networks, identification,
prediction

INTRODUCTION

As a mathematical notion, the term chaos has first been used in 1975 (Li and York, 1975).
Period three implies chaos but even before it has been observed that very simple functions may give
rise to very complicated dynamies. One of the cornerstones in development of chaotic dynamic is the
1964 work (Sarkovskii, 1964; Sarkovskii et «l., 1989). During the 17th and 18th, the interest in
chaotic dynamics has heen exploding and various attempts have been made to give the notation
of chaos a mathematically precise meaning. Outstanding works in this context are the 1980 book
{Collet and KEckmann, 1980; Ayanzadeh ef al., 2009a; Ayanzadeh et al., 2010; Jaberi ef al., 2011).

Chaos theory was originally a branch of mathematical physics developed by Lorenz {1963). It
deals with events and processes that cannot be modeled or predicted by using conventional
mathematical laws and theories, such as those of probability theory or biostatistics. Chaos theory
is concerned with finding rational explanations for such phenomena as unexpected changes in
weather. The theory assumes that small, localized perturbations in one part of a complex system
can have widespread consequences throughout the system. The vivid example 1s often used to
describe this concept, known as the butterfly effect (Jaberi et al., 2012).
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In addition, chaos theory 1s a 20th century development but the man who probably hest
deserves the title "Father of Chaos Theory" was a great French mathematician of the 19th century
named Henri Peincaré. As discussed on the Dynamical Systems page, [saac Newton had given the
world what seemed to be the final word on how the solar system worked. But Poincaré made the
observation that Newton's beautiful model was posited on the basis of the interaction between just
two bodies (Jaberi et al., 2012; Khosravani-Rad et al., 2014).

In addition chaos theory is defined as a mathematical sub-discipline which studies complex
systems. Examples of these complex systems are earth's weather system, the behavior of water
boiling on a stove, migratory patterns of birds, or the spread of vegetation across a continent. Chaos
is everywhere, from nature’'s the most intimate considerations to art of any kind. Beside, chaos
theory can be generally defined as the study of forever-changing complex systems. Discovered by
a meteorologist in 1960, chaos theory contends that complex and unpredictable results will occur
in systems that are sensitive to small changes in their initial conditions (Ayanzadeh et al., 2012;
Gholami et al., 2014; Jaberi et al., 2012).

Chaos theory is an attempt to understand a complex system that, at first glance, appears to
have no sense of order. Chaos theory can be applied to all sorts of things, from the weather to
population growth to the spread of disease. It 1s a popular theory used for predicting trends within
the stock market, as well (Ayanzadeh et al., 2009b).

Moreover another definmition is that chaos theory can be generally defined as the study of
forever-changing complex systems. Discovered by a meteorologist in 1960, chaos theory contends
that complex and unpredictable results will be occurred in systems that are sensitive to small
changes in their initial conditions (Ayanzadeh ef al., 2011a; Shahamatnia ef al., 2011).

Another coneept. about chaos is Deterministic chaos which is understood as a periodic behavior
very sensitive to imtial condition. In the last years, it has been found that many non-linear systems
present a chaotic behaviar. There is not a universally agreeable definition of chaos. According to

(Kaplan and Cohen, 1990) some characteristics of deterministic chacs are as follows
{Avanzadeh et al., 2011b):

«  Chaotic trajectories are a periodic and deterministic

+  Chaotic systems are extremely dependant on initial conditions. Therefore small uncertainty in
the initial state will be grown exponentially very fast

+  Chaotic behavior is bounded and presented strange attractors

There are several studies related to modeling and predicting none-linear time series using
neural networks. For example, (Hayashi, 1994; Holmgren, 1994} analyses the behavior of an
oscillatory network with external inputs. His network is made of excitatory and inhibitory neural
groups. Kach excitatory cell is connected to an inhibitory cell and to other excitatory cells. Hayashi
observed that, when the external inputs to the network were similar to a memory pattern. For an
input far from the memory patterns, a chaotic orbit was generated. Principe and Kuo (1994) studied
a dynamic modeling of chaotic time series using a recurrent neural network with a global feedback
loop. Their network was trained using back-propagation through time. They proposed to use
dynamic invariants as a measure of the success of the predicator, instead of a global error.
Recurrent neural networks have shown to be crucial for activities involving none-linear dynamics
and especially for chaos. Logar (1992) showed that a 3-node fully-connected recurrent neural
network is able to oscillate; hence it may capture the dynamics of sine wave and work as an
autonomeous predicator.
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Predicting fossil fuels consumption based on emotional learning (Ayanzadeh ef al., 2011a),
modeling heart rate variabilities (Bila ef al., 2000), applying artificial neural networks for prediction
chaotic signals (Bukovsky, 2002), using genetic algorithms and time delay neural networks to
forecast short term inter-city traffic (Lingras and Mountford, 2001) and empleying genetic
algorithms in hot steel rolling for scale defect predicting (Haapamaki and Roning, 2005) are
examples of applying intelligent approaches in chaotic research area,

DYNAMIC NEURAL NETWORKS

Artificial neural networks can identify a system by the use of training data which 1s obtained
from the system inputs and outputs. Neural networks have been widely used as time series
forecasters due to its ability and error tolerance. In the study of neural systems Dynamic feedbacks
play an important role. The Dynamics Neural Units (DNU), as the basic elements of dynamie
neural networks, receive not only external inputs but also state feedback signals from themselves
and other neurons.

The synaptic connection in a DNU, contains a self-recurrent connection that represents a
weighted feedback signal of its state and lateral inhibition connections which are the state feedback
signals from other DNUs in the network. In term of information processing, the feedback signals
involved in a DNU deal with some processing of the past knowledge and store current information
for future usage. Each DNU has its own internal potential or internal state that 1s used to describe

the dynamic characteristics of the network. A topological structure of a DNU network 1s shown in

Fig. 1 and 2 (Asari, 2001).

DNU 1: The topology of a dynamical neural unit (DNU-1) consists Lateral recurrences, feedforward
and feedback synaptic weights, Thershold or external input, self feedback and self recurrence. The
architecture of the DNU meodel 1s illustrated in Fig. 3. This dynamic neural unit is based on the
early work of Hopfield (1982) and. The mathematical description of DNU-1 as continuous form is
given by Eq. 1 and 2:

RO o Wil = X O WL D S W)L x, =1 M

dt j=0j=

Lateral Self-recurrence DNU

recurrence
;; ;

v

Neural
outputs

Neural
inputs

Fig. 1: A topologieal structure of a DNU networks
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Fig. 3: DNU-1, the state feedback structure associated with Eq. 1 and 2

vt =g(x(t),1i=1,2,..n (2)

Where:
f JFeR*! = Vector-valued non-linear funetion

o f=f, ), ., T
o x, = [%,, X, X4, X,]"€R™ x, = 1 = augmented state vector of n neural units (internal state of

DN
In neural state equation, Kq. 1, the first term -o,x, is called the self-feedback term representing

the passive exponential decay in the absence of both the state recurrent signals and the direct
external input. Also W;F.(x)) is the self recurrence term:

Y wbix ()

j=n =i

is the lateral recurrence contribution from other neurcons. The neural output v, 1s defined by the
output equation, Eq. 2. Discrete form Eq. 1 is given by:
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x,(K) = (1~ )%, (k ~)+ E XMW+ W, + W,E (x,(k 1)) (3)

i

Based on back propagation algorithm, the parameters of Kq. 3 such as (¢, W, W, W) are
trained Kq. 4-9:

B (5, -x,) @
O el x & D) ®
aO‘Li

a‘;’ff e (6)

a‘;’ff e (7)
aa—v\E/ii =neF(x (k1)) (8)
JE - 9
W—neF(X ) t))

DNU 2: The topology of a dynamical neural unit (DNU-2) consists of Lateral recurrences,
feedforward and feedback synaptic weights, threshold or external input, self feedback and a
Refractory control. The architecture of the DINU model is illustrated in Fig. 4. The difference
equation which describes the behavior of the dynamiecal structure is given in Kq. 10 and 11
(Principe and Kuo, 1994}
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Fig. 4: Block diagram of the ith DINU-2 with state feedback associated with Eq. 10 and 11
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P (01, B (WO + W, |, =1
o (10)
=—ox (O+{y, —Bx)w. y (O+ (v, Bixi){ 2 Wy, (O Wln}
vio=1fx{t) 1=1,2,.,n (11)

where, term (y,-P.x), represents the refractory process of the ith DNU and the parameters v, and
B; perform, respectively, an automatic gain control and total normalization for the internal state of
ith DINU. DINU-2 1s called additive and shunting network and has the following mathematical form
{Principe and Kuo, 1994):
Discrete form Eq. 10 is given by Eq. 12:
—(1- - _ oy EXDWwW, 12
x, (k) =(1- o x (k—D+ (v, -Bx, (k 1))(+F,(X, (k DJW,,} (12)

Based on back propagation algorithm, these parameters (or;, W, W, W, B, 7)) from Eq. 12
(e, W, W, W, B, v) are trained as in Eq. 13-19:

E:%(Xlﬂild)2 (13)
JdE
o TNex k=1 (14)
9E B (k- o (15)
vy~ el B (kD) (EG G -1)
E 18)
S~ el B 1) (
2% ey, ~ B G- D)(RXD) (a7
dE ST 18
> =ne(E(XIW + W, + E(x, (k- 1)W, ) (18)
OB _ oy BEDW W, (19)
op, e 1)){+E<xl<k—1>>wu}

PROPOSED APPROACH

Time series are generally sequence of measurements of one or more visible variables of an
underlying dynamic system, whose state changes with time as a function of its current state vector
uit) Eq. 20:
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duit)

o =G (20)

For the discrete case, the next value of the state is a function of the current state:
u(t+1) = f(ult)) such dynamic systems may evolve over time to an attracting set of points that is
regular and has a simple shape; any time series derived from such system would also have a smooth
and regular appearance. However another result is possible: The system may evolve to a chaotic
attractor. Here, the path of the state vector through the attractor is non-periodic and because of
this, any time series derived from it will have a complex appearance and behavior.

Mackey-Glass (MG) is time-delay differential equation. This time series is chaotic and so there
is no clearly defined period. The series will not converge or diverge and the trajectory is highly
sensitive to initial conditions. This is a benchmark problem in the neural network and fuzzy
modeling research communities. Here we assume x(0)=1.2, 1 =17, a=0.2, b =0.1 and for t<0

Fq. 21-22:

x(t) =0 (21)
) _ ax(t - T) -~ 22
X0 =g X (22)

The Henon map is a discrete-time dynamical system. It is one of the most studied examples of
dynamical systems that exhibit chaotic behavior. The Henon map takes a point (x,, ¥ in the plane

and maps it to a new point Kq. 23;

Kot — Yn+1_a'X2n
Vo = DX, (23)

The map depends on two parameters, a and b which for the canonical Henon map have values
of a=1.4 and b = 0.3. For the cancnical values the Henon map is chaotic. For other values of a and

b, the map may be chactie, intermittent, or converge to a periodic orbit.

Method 1: In this method, in each step, the data set (x, x-6, x-12, x-18) of time series is applied as
input to a dynamic neural network discrete-time which is shown in Fig. 3-4 for prediction of x+6
of data of time series and then with two proposed structures, the simulation results are compared

with for Mackey-glass series and Henon map. this method is shown in Fig. b.

X+6
A
Hidden unit
X X-6 x-12 x-18

Fig. 5: First method of performing time series prediction using a sliding window
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Method 2: In this method, at first a frame length such as n (n is window size) of time series 1is
selected as input to a dynamic neural network discrete-time and applied for predication of n+step-
ahead (step-ahead is forecast horizon). For example if n = 4, step-ahead = b in each step, this
method will predict the X(i+8) of series which is shown graphically in Fig. .

In fact, the aim of this proposed strategies are, to check the ability of DNU-1 and DNU-2
structures for forecasting time series.

SIMULATION RESULTS

In this study, Mackey-Glass time series and Henon map which is known to chaotic time series
are considered with two proposed structures and then by using Back-propagation algorithm,
prediction will be done.

For Mackey-Glass time series approxamately DINU1 and DNUZ structures have the same results.
With comparison RMS which is shown in Table 1, both structures can i1dentify and predict chacs
systems (Mackey-Glass time series) properly. But for Henon map, with this method and based on
back-propagation algorithm, DNUZ2 has better answer with comparison DNUI1, because of
refractory control and by considering Table 2.

It can be found that from Table 3 for Mackey-(Glass time series approximately DNU1 and DINUZ2
with comparison their RMS, both structures have the same results. Froperly, they enable to identify
and predict two steps ahead of this series. For Henon map approximately DNUZ2 has a better

X(i+8)
7

Neural network

T X

x(i) x(i+1) x(i+2) x(i+3)

Fig. 6: Performing time series prediction using a second method

Table 1: Simulation result of the first method based on back-propagation algorithm for DNU1, DNU2 for Mackey-glass series

Epoch DNU1 (RMS) DNUZ (RMS)
1000 0.1216 0.1216
1500 0.1217 0.12186

Learning rate: 0.001, Training set: 801, Test set: 400

Tahble 2: Simulation result of the first method based on back-propagation algorithm for DNU1, DNUZ2 for Henon-map

Epoch DNU1 (RMS) DNUZ (RMS)
150 0.3812 0.2946
200 0.4066 0.3367
300 0.4502 0.4386

Learning rate: 0.001, Training set: 700, Test set: 300

Table 3: Simulation result of the second method based on back-propagation algorithm for NU1, DNU2 for Mackey-glass series

Epoch Step-ahead DNU1 (RMS) DNUZ RMS)
900 2 0.03148 0.03319
1000 2 0.03064 0.03311

Learning rate: 0.001, Training set: 801, Test set: 400
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Tahble 4: Simulation result of the second method based on back-propagation algorithm for DNU1, DNUZ2 for Henon-map

Epoch Step-ahead DNU1 (RMS) DNUZ RMS)
150 g 0.03843 0.05771
200 g 0.39730 0.05775
300 2 0.40630 0.06107

Learning rate: 0.001, Training set: 700, Test set: 300

answer. With comparison RMS which can be seen in Table 4, both structures enable to identify and
predict two steps ahead of this series properly but DINU2 because of refractory control, has less error
and less RMS in both phases.

(Generally, it can be said that, DNU2 structure in Henon map with comparison to DNU1 has
a better answer and it is more adaptive to proposed methods. In Mackey-Glass both DNUs have the
same adaptive, capability to proposed methods. In general due to chaoctic behavior, it's impossible
to say which DINU has best performance for both methods.

CONCLUSION

In summary, Chaotic systems in their state equations have trajectories which are unpredictable
fluctuations, with limited and the surrounding specific neighborhocds but usually such behaviors
are difficult to control and perform incompletely. It should be noted that having the negative view
towards the phenomenon of chaos is not acceptable because in some cases, increasing the under
control of chaotic behavior 1s our aim. Moreover from these experimental results listed above, it can
be clearly seen that the predicated values for the case of the two steps are agreed well with true
values, the predicated results for 10 steps ahead are not better than the two steps but, it’s valuable.

Obviously, the DNU proposed here 1s capable of capturing the underlying chaotic dynamics of
the system based on a few data point. It's expected, the multi-steps predications by the DNIN are
very successful. This 1s due to the DNIN’s internal recurrence and refractory control. The last but
not the least, this method has the following advantages, First, due to DNU’s structure, it has
enough capacity to dynamcally incorporate past experience. Second, unlike the other neural
networks, it can make accurate predications based on a few data. Third, in the dynamic neuron
units, by applying a nonlinear function like sigmoid function on the input to the network, has less
errors in learning and test phases with comparison to a linear function and forth, the results are
shown that the window size does have an important effect on the quality of a neural netwaork based
forecaster. From the experiments reported here, it can be seen that optimal performance is clearly

obtained by choosing the correct window size and appropriate structure of DNU,
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