Journal of
Artiticial Intelligence

ISSN 1994-5450

science
alert

ANSI%@ZZ

s publisher
hﬁp //ansmet com

Journal of Artificial Intelligence 7 (3): 94-112, 2014
ISBN 1994-5450 / DOI: 10.3923/a1.2014.94.112
© 2014 Asian Network for Scientific Information

Survey on Graphical User Interface and Machine Learning Based
Testing Techniques

'B. Uma Maheswari and *S. Valli
'Department of Master of Computer Application, St. Joseph's College of Engineering, Cld Mamallapuram
Road, Chennai, 600119, Tamilnadu, India

Department of Computer Science and Engineering, College of Engineering Guindy, Anna University,
Sardar Patel Road, Guindy, Chennai, 600 025, Tamilnadu, India

Corresponding Author: B. Uma Maheswari, Department of Master of Computer Application, St. Joseph's College of
Engineering, Old Mamallapuram Road, Chennai, 600119, Tamilnadu, India

ABSTRACT

The Graphical User Interface (GUI) is used in building interactive and web based applications.
Several components are available for building the front end of the software. The interaction among
components is accomplished through their corresponding events. This survey explains the testing
concepts in detail by addressing the various testing techniques, test model structure and detected
fault category. Various testing techniques such as data flow testing, object oriented testing, model
based testing, web applications testing, user interaction testing, user interface testing, machine
learning based testing, state based testing, test suite reduction and specification based testing are
discussed in this survey. The survey also presents the parameters used for evaluation. Machine
learning algorithms, features and the data set used for classification in the this study are analyzed
in survey. Considering of role of direct and indirect metrics in software testing is alse addressed in
this survey. The testing tools and frameworks used for testing the Graphical User Interface (GUT)
applications and their issues are also handled.

Key words: Web applications, graphical user interface, machine learning, defect prediction, model
based testing

INTRODUCTION

Developer’s challenge 1s to ensure that the intended functionality of the GUI applications is
achieved. Automatic failure identification was done by Travison and Staneff (2008) using the test
instrumentation and pattern matching. Numerous model based testing (Neto ef al., 2007)
approaches are used in developing various software projects. The quality of the testing approach
depends on project characteristics (Dias Neto and Travassos, 2008) such as the structural model,
inputs to the test model, complexity level, support tools, test coverage criteria and the level of
automation. These project characteristics are identified and characterized by the machine learning
based testing through qualitative and quantitative analysis. The logical and runtime errors that
are present in the software are detected using the translators, whereas, the runtime errors
generally occur during the execution of the code. There are numercus existing researches for
finding the issues in the software. The asscciation and categorization among the faults and the
failures was analysed by Hamill and Goseva-FPopstojanova (2009). The deviation from the
behaviour and the viclation with the functional constraints were identified. Requirement, faults,

94

oJ. Artif. Intel., 7 (3): 94-112, 2014

coding faults and data faults cause the system to fail and hence the software practitioner detect the
faults and the failures are uncovered by clients after the software is delivered. Fault detection in
the GUI applications 1s the act of locating bugs in the components or events of a program.

GRAPHICAL USER INTERFACE TESTING TECHNIQUES

Testing involves input and output verification. But GUI testing should also test data and
events. In order to improve the programmer productivity, testing and quality assurance activities
should be carried out in the software life cycle. GUI testing is not an individual activity, it should
be conducted from different perspectives which include test coverage, test case generation, test
oracle and regression testing. There are different testing techniques for GUI applications in view
of its varicus aspects and features. The GUI is the front end design of any software system.

Therefore, it 1s essential to verify its components and their interactions. All the GUI applications
have interactive components. The input actions, entering text, mouse clicks, selecting a graphical
object, selecting the menu items and closing a window are the triggering events. Test seripts should
be written to verify the user interactions in GUI testing. Since, there are various approaches for
GUI testing, each has its own advantages and disadvantages. For this reason, it is essential to
evaluate such techniques to know their effectiveness. Most, of the web applications are built with
GUI components. So, it is essential to find the correct testing technique to verify them. A collection
of testing techniques, to verify the logic and the functionalities of the graphical applications, are
discussed in this survey.

The graphical user interface testing techniques are illustrated in Fig. 1. The survey of various
white box testing techniques, such as data flow testing, object criented testing, model based testing,
user interface testing and machine learning based testing are conferred in the described. Model

GUI
testing techniques

A 4 A 4

White box Black box
testing testing
v
v v A4 l v
Data flow Model User interface | | Machine learning || State based Specification
testing based testing testing based testing testing based testing
v v
Object oriented Test suite
testing reduction
A4 v
v v v A4
Web appﬁcalions User interaction Support vector J48 decision Genetic
testing testing machines tree algorithem

Fig. 1: Graphical user interface testing techniques

95

oJ. Artif. Intel., 7 (3): 94-112, 2014

Structural data
flow testing

\ 4 A4 v A

Functions Function cluster Objects Applications

Fig. 2: Structural data flow testing between objects

Data flow graphs
¥ v v v
Control flow Interprocedural object control flow Composite
control flow
graph control flow graph graph araph

Fig. 3: Data flow graph for testing web applications

based web application testing and user interaction testing are discussed. Machine learning based
testing using Support Vector Machines (SVYM), J48 Decision Tree and Genetic Algorithm are also
elucidated in this survey. Bearing out the software functionality using the state based testing, test
suite reduction and specification based testing of black box techniques are also elucidated.

DATA FLOW TESTING OF GRAPHICAL USER INTERFACE APPLICATIONS

Structural data flow testing, as shown in Fig. 2, was performed by Liu (2008) for testing the
Java Server Pages (JSP) in the web applications. The structural data flow testing was performed
between the functions, the group of functions, objects and the applications. The computational use
of the variables was walked arcund by the contral flow graph. The logical errors in the JSP web
pages were identified by the data flow paths. They navigated the Session Control Flow Graph
(SCFG) to detect the errors.

Various techniques (Di Lucea and Fasolino, 2006) were examined for testing the functional
and non-functional metrics. Unit testing was performed to verify the individual components of the
web design. The flow of data in web applications isillustrated in Fig. 3. The data flow between the
individual functions is captured by the Control Flow Graph (CFG).

The information passed between the functions was confined by inter-procedural graph. The
object functions which are triggered by GUI events were integrated using the object contral graphs.
The data flow information passed in the web pages were identified by composite flow graphs. An
object model (Zeng and Miao, 2007) describes the navigation behaviour and object structure of the
web applications. Node coverage and edge coverage were exercised by trapping the properties of
the object model.

96

oJ. Artif. Intel., 7 (3): 94-112, 2014

Kervinen et al. (2006) developed a Liabelled Transition System (L'TS), which examines the GUI
components in maobile device functioning with the Symbian operating system. Various performance
problems 1in the network like web server, database server and application server, while
transferring the content from the server to the clients, were tested. The non-functional
requirements (Iyer et al., 2005) such as performance, scalability and reliability issues in multi-tier
web applications were also identified.

OBJECT ORIENTATION TESTING

In the object orientation testing, the Flex Rules was developed (Sarala and Valli, 2004,
20064, b) for finding the missing new operator. The algorithm checks the exact match of the data
type in actual and formal parameters. The testing 1s accomplished for detecting defects in
C# console based applications. Errors due to unintended characters and the missing argument
indicator, leading to execution errors were detected. Wrong usages of formal parameters leading
to logical errors are addressed. The authors have identified defects in hybrid inheritance, runtime
polymarphism, member functions, conditional statement and function overriding. They also
handled the dangling reference problem and identified the missing of address and new operators
in C++ applications. Data exchange in business applications can be performed using the Extensible
Markup Language which provides a convenient format.

The same data 1s converted in XML and relational database. Verifying the accuracy between
these objects is done by Raha and Jadhav (2008) through object mapping. The discussed works
detect defects which lead to logical and execution errors in object oriented languages. This
encourages identifying the defects leading to logical errors in GUI applications. Geetha et al. (2008)
performed static testing for finding the inheritance related bugs and property errors in the product.
The code analysis extracts the code for testing and the data flow testing was based on the bug
analysis of the program.

MODEL BASED TESTING (MBT) TECHNIQUES

The actions of the GUI applications were represented by Chen et al. (2008) as a tree and each
sub tree denotes one or more test cases. A group of strongly related components are macro
components which has high level operations. A GUI Testing Tocl (GTT) was developed using GUI
Testing Modelling Language (GTML) with an Extended Backus Naur Form (KENF) grammar for
testing JAVA swing based applications. They tested the swing, classes, visual macro model editor
and word processor components. The test cases were generated and executed by the GUI testing
framework (GUITAR). Mariani ef al. (2012) developed aAutoBlackTest tool to generate test cases
automatically by navigating the GUI for software verification process.

The “Q-Learning Agent act’ together with software and the automaticblack box testing
performed much better than the GUITAR. It performed code coverage for the complex actions, such
as File Chooser, Color Chooser, Fill Form, HandleList and Compound statements. It verifies the
GUT frameworks of NET applications and also reveals the faults in widgets, such as Label, ToolTip
button, Toggle Button, Checkbox, Radic Button ete. of JAVA applications. The AutoBlackTest
detects failures such as crashes, hangs and uncaught exceptions in the JAVA programs. If the
target application is not available, the system crashes and if the target application does not respond
to actions, it hangs.

Identifying the undetected defects, which lead to logical errors, has been attempted by
Maheswari and Valli (2011). Structural testing is performed to identify defects which produce

97

oJ. Artif. Intel., 7 (3): 94-112, 2014

unexpected results. All the GUI controls have several properties assigned to them. These
assignments of the properties can be done during the design time or compile time of the software.
Even though, several properties and actions are assigned for the GUI controls, there are some
errors exists. The unrestricted input control text box was used for testing. Valid and invalid values
were set for the properties of the control and the behaviour of the textbox control was examined.
The tokenizer in the Visual Basic Control Testing (VBCT) analyses the GUI code, extracts the
tokens of the text box contrel and the property assignment checker scans the tokens for submitting
them to the error handler. Several algorithms were written to detect the defects leading to logical
errors 1n textbox control.

These algorithms in the VBCT verify the properties of the text box control which are not
detected by the interpreter. The algorithms identify the invalid assignments of the source code of
the GUI applications. The algorithm detects the issues and provides suggestions to modify the
source code and properties. The GUI control properties, such as Appearance, Border Style,
Dragmode, Forecolor, Index, Mouse Icon, Mouse Pointer and Tabindex were also analyzed. The
performance analysis of the VBCT algorithmic tool and the Visual Basie compiler were compared
for detecting the defects leading to logical errors.

The DART (Daily Automated Regression Tester) framework was developed by Memon et al.
(2003) for testing GUI applications. It uses GUI ripping for opening all the windows and extracts
all the widgets and their properties. The MS WordPad software was used for evaluating the DART
framework. The “File” Menu 1s considered as one of the widgets for evaluation. Code coverage for
the properties that 1s open, save and print was accomplished, by generating test cases of different,
lengths. With the use of event flow graphs and the integration tree, regression testing has been
attempted by verifying all the objects and properties of all the windows in the application.

The survey on models (Kumar and Yogi, 2012) explains the Performance Testing Analysis
(PTA). Testing the software with capture and playback tool was analysed. Xie and Memon (2007)
designed a system with six instances of the test oracle to ensure the software execution by
comparing the actual output with the expected cutput of the Application Under Test (AUT). A test
oracle was used in checking the correctness of the database operations. GUI testing was attempted
by McMaster and Memon (2008). The active calls of the space application were examined.

The WEB application fault detection VIsualiZation with ORacles (WEBVIZOR) is an open
source tool. Sprenkle ef al. (2008) enables visualization and is used in the performing comparative
analysis of the test results of web applications. It visualizes the actual and expected results of the
program and also the output from the oracle comparators for fault detection. Strecker and
Memon {2008) accomplished the relationship between the errors and test cases with event flow
testing. The coverage function detects the faults in the mutation and branch statements and also
verifies the mutant type statements in the byte code. The GUI-event coverage identifies the faults
in the components of the web applications.

TECHNIQUES FOR TESTING WEB APPLICATIONS

Wide ranges of web applications are used by governments, businesses and consumers. Changes
in the business rules lead to software modification, so it should be verified to avoid loss in software
development. Web applications handle http requests, generate dynamic content for the user and
interact with the other components. Most of the JSP pages are not checked by the compiler hence,

it 18 essential to verify the data flow information between the web pages. Bugs in web applications

98

oJ. Artif. Intel., 7 (3): 94-112, 2014

Web application models

A4 A 4 v A 4

Personalization

Structural model Hypertext model Presentation model
model

Fig. 4: Web application models

were identified by Artzi et al. (2010). They designed the Apolle architecture, an algorithm that
generates test cases for evaluating dynamiec web applications. The architecture checks whether the
web application 1ssues and the output of the application.

Invariant based testing was performed by Mesbah ef al. (2012). They proposed a method for
testing Asynchronous JAVASCRIPT and XML (AJAX) applications. AJAX specific faults such as
the Document. Object Model (DOM) validity, discoverability and back button compatibility were
identified. Ceri et al. (2000) proposed four types of models for representing the web applications,
as shown in Fig. 4.

A multi agent system MAEST, for software testing, had been attempted for providing assistance
to testers in the testing process. Some of the agents, such as the administrator, testing, interface
and helping agents are used to organize and design the test cases in MAEST. They discussed the
use of ontology for software testing (Kisenbarth et al., 2003) distinguished the specific and
computational part of the source code, where the features occur. They used the concept analysis to
investigate the binary relations between the features and the computational units, using the
execution profiles of different scenarios. The cyclomatic complexity (Deng et al., 2004) computed
from the generated application graph. The relational database content is tested using the tool
AGENDA.

COMBINATORIAL INTERACTION TESTING FOR GUI

Klaib ef @l. (2010) reduced the number of test cases by the tree generation strategy. The
maximum cost was computed for the test cases for the inclusion of testsuite. Interaction testing was
performed by Yuan et al (2011). Array based test cases were generated, by examining the
sequence of events of GUI widgets and their corresponding states in the event interaction graphs.
They found event faults in the edit window. The interaction among the events, cut, copy and paste
are evaluated by generating all possible permutations of the events,

The test suite size is reduced using the event flow graph. Undetected faults are revealed with
the help of the starting and ending positions of the events. The size of the test suite 1s the efficiency
and the fault detection ability is the effectiveness. GUI and Web applications states change,
depending on the events. Bryce ef al. (2011) developed a design for graphical and web applications.
Combinatorial interaction testing was performed, by verifying the event sequences of the “Find”
GUI window and “Online Bookstore” web application. Faults were seeded by medifving the
relational, arithmetic and logical operators in the JAVA programs.

99

oJ. Artif. Intel., 7 (3): 94-112, 2014

USER INTERFACE TESTING TECHNIQUES

Test suites (Ames and Jie, 2004) from the capturefreplay testing tool creates the call graph for
regression testing. The test cases were written in the XML format and the redundant test cases
were identified with the weights assigned in the call graph. The correctness of the states was
verified in the critical paths.User interface testing by Maheswar and Valli (2013) detects the
defects leading to logical errors in the various GUI widgets. The defects in the Listbox, Combaobox,
Checkbox, Option Button, Command Button, Label and Drive List Box were detected. The
appearance faults in the picture box and the data store faults in data control were also identified.

When the code fragment (Table 1) is interpreted, it is free of compilation errors. On execution,
the background color for the listhox, combobox, checkbox and option box is black, which is incorrect
even though the white color 1s assigned in the property window. The tooltip message and the
caption text are not associated with the controls, as they are not enclosed in double quotes.

The data items are not inserted in the list and combo hoxes. The picture 1s not aligned and the
navigation of the records is not possible. All the above violations, which are not detected by the GUI
compiler, are identified by the Graphical User Interface Widget Testing (GUIWT) tool. From the
experimental results, it is evident that the designed test scripts detect the faults in a robust manner.

Test suite reduction techniques: Technology improvement in reusability and development. in
multiple languages requires regression testing. Eegression testing ensures that no new errors are
introduced after the modification of the software. During this testing, redundant and cbsolete tests
were identified and they were deleted from the original test suite. Figure 5 provides some of the test
cases removal techniques.

TEST SUITE REDUCTION USING CALL STACK COVERAGE

The active calls were collected for the executing application (McMaster and Memon, 2008),
when the methods called they were inserted in the stack and retrieved when they return the value.
It was tested for the space program. In the test suite reduction, techniques by Kumar
and Yogi (2012), the test set Ti test the application Ai. The Ti’ which is a subset of Ti test modified
application A,,; using the control flow graphs. Control flow graphs were constructed using Java
Architecture for the Byte code Analysis (JABA). Depth First Traversal is used in identifying the
dangerous edges.

TEST SUITE REDUCTION USING USER SESSIONS
It is essential to detect the obsolete tests from the original set. Sampath ef al. (2007, 2008),
Sampath and Bryce (2012) performed regression testing using the concept analysis for web

Test suite reduction

techinques
v v v
Call stack User session Condition
coverage based testing based testing

Fig. 5: Test suite removal techniques

100

oJ. Artif. Intel., 7 (3): 94-112, 2014

Table 1: Coding window environment

Code editor window

Private Sub Form_Load()

Listl BackColor=a+B
Combol.BackColor = White
Checkl.BackColor=C+ D
Optionl.BackColor = Blue
Textl.ToolTipText = Textbox
Optionl.Tool TipText = Optionbox
List1.Tool TipText = Fruitslistbox
Combol.Caption = Combobox

Picturel. Caption = Picturebox

Optionl. Caption = Optionbox
List1.ToolTipText = Laplacetransform, 4
Listl.AddItem = Fruitslistbox
Combol.AddItem = Expertsystem
Pictureb. Align — AlignRight
Datal.RecordSource = “Book Details”
End Sub

Table 2: Fault types and fault actions

Fault types Fault actions

Data store Errors in the code which interacts with the database
Logical Logical errors in data flow

Form Changes in the web pages

Appearance Errors which change the user view

Link Errors which change the web page location.

programs. The URL requests were given to the lattices for reducing the test suite for various web
sites. Most frequently used web sites are examined for failures. The various faults which were
inserted in the original program were listed in Table 2.

The original and fault inserted programs were evaluated with the oracle comparators. The
structure, content and the output were compared with “diff and oracle” comparators. The reduction
of test suites for the web applications was done by Sampath et al. (2007). The fault detection was
increased by prioritizing the test cases in the test suite. The fault detection was computed using
Eq. 1 where, T is test cases “n” and F is faults “m”:

) TF1+TF2+TF3+...+TFn+ 1 (1)
mn 2n

APFD =1

During the test suite reduction, the fault detection ability was upgraded by selectively keeping
the test cases.

TEST SUITE REDUCTION USING CONDITION BASED TESTING

All the conditional and decision statements (Jones and Harrold, 2003) were collected for the test
suite. The uncovered modified decision statements were removed from the test suite which wasthe
weakest test cases. The highest entity coverage was obtained by prioritizing test cases. The program
dependence graph detects the modified functions and the statements where the relational and
arithmetic operators were interchanged.

101

oJ. Artif. Intel., 7 (3): 94-112, 2014

Tahle 3: Widgets and their verifications

Widgets Verifications

JTextField, JTextArea Compare the text displayed in text field and in text area
JComboBox, JList Verifies the value of the combo and list boxes
JCheckBox or JRadioButton Evaluate the selection of check box and radio button
JLabel Verify the display of the text

Automated session data repair removes the session data which are potentially obsolete
{Harman and Alshahwan, 2008). The Reweb and Testweb tools were used for creating the UML
graph for test suite reduction. The changes in the structure of the pages and the parameters of the
forms and files were analysed.

SPECIFICATION BASED TESTING

The reliability and scalability of the applications was increased. Hence, testing the specification
of the applications with respect to SRS was mandatory. The testing technique (Sun and Jones,
2004) uses the Jemmy Test Engine to generate the GUI events and to capture the event responses.
The Jemmy Test Engine tests the GUI and the verification performed on these widgets as shown
in Table 3.

The GUI based test specifications verified the handlings of the GUI controls and their responses.
The N-Version condition based testing was conducted in an identical manner, since each version
satisfied the same specification. Testing with customized test requirements was done by
Sampath et al. (2007). The data flow requirements were used for designing the test case. The cost
effectiveness of the requirements was defined by the figure of merit (fom) and it is calculated using

Eq. &
forn = reduxxcvgxfd (D

where, redux is reduction of the test suite (%), cvg is coverage (%) and fd is fault detection (%).
If the fom is higher, the reduced test suite is cost effective. By using this technique, redundant
test cases are identified for elimination.

CASE STUDIES FOR GUI TESTING
Researchers have conducted numerous case studies for proving their testing techmques and

methodologies. Some of the testing technigques and the experimental applications are listed in
Table 4.

MACHINE LEARNING BASED TESTING TECHNIQUES

GUI testing is very expensive and takes more time. So, automating the testing process provides
good solutions for complex and bigger applications. Most of the defects were found only in less
number of modules in the software (Fenton and Ohlsson, 2000), These modules with the defects
lead to software failures. Defect prediction is a quality assurance activity, which assists the software
developer to allocate effort and rescources efficiently (Koru and Liu, 2005). Recently, machine
learning techniques were used to automate the software testing process. A framework has been
designed by Noorian et al. (2011) to perform software testing, using machine learning.
Briand et al. (2008) applied machine learning technology for evaluating the test suites. The test

102

oJ. Artif. Intel., 7 (3): 94-112, 2014

Tahble 4: Casze Studies conducted for graphical user interface testing technicques

Reference Testing performed Data set

McMaster and Memon (2008) Call stack based test suite reduction Space application (Antenna steering system) terpoffice

suite

Sampath et al. (2007) User session based testing Online book Store, CPM, MASPLAS, Dspace
Alshraideh (2008) Unit testing of JAVA Scripts Triangular

Gross et al. (2012) Search based testing Address book, Calculator

Sun and Jones (2004) Specification driven testing Currency convertor
Ames and Jie (2004) Critical paths for GUT Numerical chameleon

Liu (2006) Data flow analysis for JSP based, Session jsp

Applications Login jsp

Kervinen et ¢l. (2006) Model based testing Microsoft windows

Jones and Harrold (2003) Test suite reduction using condition testing Space

Deng et al. (2004) Testing on static web pages Omline bookstore

Kumar and Yogi (2012) Regression testing of web pages Jakartaregex, NanoX ML, JABA

Sprenkle et al. (2008) Analysis tool for JAVA programs Masplas, dspace

Raha and Jadhav (2008) Automation method for testing XML layers EPCIS

suite and test specifications were given as inputs using the Category-Partition (CP) strategy. These
test suites were evaluated using the C4.5 machine learning algorithm. The weaknesses and
redundancies of test specifications and test suites were overcome by adding or deleting the test cases
from the test suites.

Mair ef al. (2000) used neural networks reasoning and induction techniques to build a effort
prediction model. They compared the prediction system using accuracy, explanatory value and
configurability. The investigation proved that ANN methods are better than rule induction.
Briand et al. (2007) in another study have identified the failure conditions of the statements, using
the failing test cases of the program. Statements with faults were considered as suspicious and
caused the system to fail. The Space program written in “C" language was tested.

The Tarantula and RUBAR algorithms ranked the faulty statements. The Category-Partition
black box testing technique identified the invalid, empty, non-existent files and the wrong number
of parameters, invalid inputs and missing values, using C4.5 decision trees. Supervised binary
classification is used for fault identification using the factorization algorithm (Zhang, 2011). It
extracts the external features of the software. Product and process metrics, such as McCabe
complexity, Basic Halstead, Derived Halstead and Line Count, were the features used for training
the model. They proved that the NMF algorithm performs the classification with a high F-Measure,

MACHINE LEARNING BASED TESTING USING SUPPORT VECTOR MACHINES

Since software testing 1s a quality assurance activity, to allocate the effort and resources
efficiently, Elish and Elish (2008) have recommended a mechanism using support vector machines
to detect the error. Various machine learning and statistical models were used to evaluate the SVM
performance for identifying the defects. The defect prone modules were predicted using module
level features such as cyclomatic complexity, essential complexity, design complexity, effort estimate
and Halstead measure. The prediction was used in evaluating and comparing the prediction models.
They proved that the defect evaluating performance of the SVM 1s superior to other machine
learning models. Boetticher (2003) developed a predictive effort estimation model using the neural
networks machine learner in formulating the estimation model. Inputs were derived from the GUI
interface specification documents.

103

oJ. Artif. Intel., 7 (3): 94-112, 2014

The program unit with different types of widgets, such as labels edits hoxes, check boxes, radio
buttons, list boxes, memo boxes, filelistbox buttons, charts, comboe boxes, grids, menus, navigational
bars and trees is the input for the neural network machine learner. The output measure was the
actual effort spent for developing the program unit. The four major subsystems of E-Commerce
organization were the data sets used in the experiments. The program events were used to detect
faults in the applications (Gove and Faytong, 2011, 2012). If one or more of the events in the event,
sequence are disabled or inaccessible, the test case 1s infeasible to detect the faults. The researchers
identified such infeasible test cases using the SVM and Grammar induction,

The SVM and MartiRank algorithms, designed by Murphy et al. (2007), used for software
testing, where test cases are created by analyzing the problem domain, the corresponding data sets,
the algorithm and the implementation’s runtime options. These algorithms do not address the
negative class labels. In this study, the class label 1s a Boolean variable (Defect/No-Defect). A
hot method prediction model for compiler optimization has been developed by Johnson and
Valli (2008, 2011) using the Support Vector Machine. Programs written in “C” language were
taken for training the prediction model and various static features were used in identifying the
program method as hot or cold. The SPEC and UTDSP benchmark suites were used in validating
the prediction system.

MACHINE LEARNING BASED TESTING USING THE J48 DECISION TREE

Automating the testing process in GUI applications improves the quality of the software.
Machine learning based testing identifies the defects leading to logical errors. The user interface
widgets such as textbox, listhox, combobox, checkbox, option button, command button and label
controls were considered. The features were extracted using the Graphical User Interface Widget
Testing (GUIWT) tool. This training data set bulds the defect prediction model. The testing
instances without class labels were the input to the defect prediction model which classifies the GUI
statements into the “Defect / No-Defect” categories. The defect prediction model was evaluated using

the confusion matrix. The confusion matrix comprises of:

+« TP-Correctly classified as defects

« ['N-Misclassification of defects as no-defects
« TN-Correctly classified as no-defects

« FP-Misclassification of no-defects as defects

The prediction performance measures were calculated using following equations:

Accuracy - TPHTN 3)
TP+ TN+ FP+FN
Precision = P (4)
TP +FP
Recall = Ll (5)
TP+ FN

104

oJ. Artif. Intel., 7 (3): 94-112, 2014

{2 Precision x Recall) (B)
(Precision + Recall)

F —measure =

By using this automation process, more than 90% defect classification rate has been achieved.

MACHINE LEARNING BASED TESTING USING GENETIC ALGORITHMS

New solutions can be searched by improving the testability of the applications. A search based
testing done by Gross ef al. (2012) for the highest code coverage was conducted by applying the
genetic algorithm over the test suites. The genetic operators were used to improve the fitness value
of the individuals in populating the candidate solutions. In this approach, the set of GUI interaction
sequences 18 the search and the creossover creates the offspring. The interaction sequences were
added, removed or changed with the help of the mutation process. The branch coverage of the
program evaluates the fitness of the test suite. Alshraideh (2008) performed the unit testing of
JAVA seript programs. An automated test data generation tocl was used in performing unit testing
in JAVA seript functions. The conclusions were, that 50% developmental cost 1s applied for testing
and 15% time is scheduled for regression testing. The testing automation technique helps the
testers to detect the bugs in the JAVA script programs. The tester annotates the file to be tested.
The JAVA seript code 1s parsed, to generate the dependency graph for the function under test.

Regression test suite removal was analyzed by Li et al. (2007) using genetic Algorithms. The
test cases positions were exchanged for ordering of the test suite. Test cases were selected with
Baker's linear ranking algorithm. Huang et al. (2010) designed the framework for performing the
black box testing of the JAVA editor window and tested the File Menu properties. The functionality
of the software was verified, using the genetic algorithm and combinatorial interaction testing was
performed to test the event sequences of the GUI. The metamorphie relation proposed by Xie ef al.
(2011) between the input and output of the applications in bicinformatics and computational
linguistic domain was analyzed. Metamorphic testing was conducted to validate the machine
learning classifiers. There 1s proof that cross validation 1s not sufficiently effective to detect faults
in a supervised classification program. Some of the features of the machine learning algorithms and

the data set used for classification in machine learning based testing are mentioned in Table b.

Tahble 5: Parameters used in machine learning based testing

Machine learning algorithm

Reference Features used for classification Data set

Briand et ¢l. (2008) Category partitions 4.5 decigion tree Space program

Elish and Elish (2008) Software metrics (Mccabe complexity, Vector machines (SVIM) NASA (CM1,PC1,
basic halstead, derived halstead, Support KC1,KC3)
line count and branch count)

Gove and Faytong (2011) GUI events Bupport Vector Machines (SVM) Java Editor

and induced grammars
Mair et al. (2000) Cost estimations Neural networks, reasoning Desharnais
and induction.
Boetticher (2003) GUI controls Neural networks E-Commerce
Koru and Liu (2005) Module measures (Size, coupling, 4.5 decigion tree NASA

cohesion, inheritance and complexity)

105

oJ. Artif. Intel., 7 (3): 94-112, 2014

Tahble 6: Kvaluation parameters for testing graphical user interface applications

Evaluation Parameters

Description

GUI Representation
Testing techniques
Level of testing
Test case model
Software domain
Coverage conditions
Tool suppart,
Automated

Case study

Fault injection

How is the GUI software modelled for the testing ?

Which testing technique is used either logical or functional?
Which kind of system testing is performed?
What type of test model has been used?
What kind of software domain does the testing program belong to?

Which kind of coverage criteria is adopted by the technique?

Does the technique use the support of other tools?

Is the software fully automated or semi-automated?
Whether the technique is evaluated or not?
Whether the fault has been seeded manually or not?

Table 7: Comparison of GUI testing using evaluation parameters

GUI Testing Level of Test case Software
Reference representation technigues testing model domain
Alshraideh Data dependency graph and ~ White box testing Unit testing Data flow testing JAVA
(2008) Control dependency graph
Chen et al. Event flow graph White box testing Integration testing Machine learning JAVA
(2008) based testing
Gross et ¢l. (2012) State transition model White box testing Unit testing Machine learning JAVA

based Testing

Sun and Jones FEvent based test specification Black box testing Integration testing Specification based JAVA
(2004) Testing
Ames and Jie Call graph White box testing System testing User interface testing XM, JAVA
(2004)
Liu (2006) Control flow graph White box testing Integration testing Dataflow testing JAVA
Di Lucea and Control flow graph White box testing System testing Data flow testing HTM, JSP
Fasolino (2006)
Kervinen et al. State transition model Black box testing Integration testing User interface testing VBS cript
(2006)
Paivaet al. (2005) State transition model Black box testing Integration testing State based testing Microsoft office
Travison and Call Stacks Black box testing Integration testing User interface testing HTML
gtaneff (2008)
Jones and Harrold Program dependence graph White box testing Unit testing Data flow testing CH+
(2003)
Deng et al. (2004) Web application graph White box testing Integration testing Data flow testing XM, JAVA
Kumar and Yogi Control flow graph White box testing Integration testing Data flow testing XML
(2012)
Harman and URLGraph White box testing Integration testing DFT XML
Alshahwan (2008)

EVALUATION CRITERIA FOR VARIOUS TESTING TECHNIQUES
It is mandatory to identify the issues in the GUI testing techniques. For this purpose, the
following parameters in Table & were used by several authors for testing GUT applications.

The parameters in Table 6 are identified in the study and listed in Table 7 and 8.

METRICS USED IN GRAPHICAL USER INTERFACE TESTING

There are various measurements and metrics to evaluate the system. The test metrics are

used to verify the effectiveness of the testing techniques. The direct metrics measure the GUI

106

Tahble 8: Comparison of evaluation for testing parameters

oJ. Artif. Intel., 7 (3): 94-112, 2014

Referance Coverage conditions Tool support Automated Case study Fault injection

Alshraideh (2008) Data coverage, Java seript compiler Semi Yes Yes
Branch coverage

Chen et al. (2008) Transitions coverage Full Yes Yes No

Gross et al. (2012) Transitions coverage Full Yes Yes No

Sun and Jones Functional coverage Jemmy test engine Semi Yes No

(2004)

Ames and Jie (2004) Transitions coverage Abbat, Semi Yes No

Liu (2006) Data coverage Full Yes Yes No

Di Lucea and Data and transition coverage Reweb, testweb Semi Yes No

Fasolino (2006)

Kervinen et al. Transition coverage QTP Semi Yes No

(2006)

Paivaet al. (2005) Transition coverage SPEC Semi Yes No

Travison and Transition coverage - Yes Yes No

Staneff (2008)

Jones and Harrold Code coverage - Yes Yes No

(2003)

Deng et al. (2004) Transition coverage AGENDA Semi Yes No

Kumar and Yogi Transition coverage DEJAVOO Semi Yes No

(2012)

Harman and Transition coverage JSpider Semi Yes No

Alshahwan (2008)

Table 9: Direct metrics for testing graphical user interface applications

Metrics

Description

Reduced test suite size

Program coverage
Fault detections
Space requirement.
Classes, methods
Conditions

NLOC

User sessions

Uniform resource locators

Size difference between the original and modified test suite.
Whether the testing verifies codes and the data flows?

Number of faults detected by the testing technique.

How much memory space is required by the test suite?

Are all the classes and methods verified in the application?
Whether all the conditions are tested for their true and false values
Do the test cases verify all the lines in the software?

Are all the user sessions evaluated for web applications?

Whether all the URLs are verified

applications quantitatively and the indirect metrics are used to evaluate the quality of the software,

The direct metrics and their description are given in Table 9.

The list of indirect metrics and the components to be evaluated for those metrics are described

in Table 10.

TESTING TOOLS USED IN THE GRAPHICAL USER INTERFACE TESTING

There are numerous testing tools and frameworks for verifying the GUI applications. The usage

of testing tools and frameworks is presented in Table 11. Most of these tools are used to test the
JAVA and C++ applications and the testing techniques in [17,33,65] test the GUI based

applications.

107

oJ. Artif. Intel., 7 (3): 94-112, 2014

Tahble 10: Indirect metrics for testing graphical user interface applications

Metrics Components to be evaluated

Functionality Links, forms, cookies, database

Usability Navigation, content, help

Interface Webservers, application servers, database servers
Compatibility Browsers, operating systems, mobile applications
Performance Load testing, stress testing

Security Authorization, authentication

Tahble 11: Testing tools and framewaorks

Testing tools and frameworks Usage of the tool

Cactus, JUnit Unit testing the JAVA programs

HTTP Find the correctness of theretrieved web pages

ParasoftWebking, Rational Robot, CanooWebTest Automated testing tool

AGENDA Test relational database applications

ColdFusion Enables to build JAVA-EE applications for the enterprise

Groovy High productivity web framewark for the JAVA platform

PHP Produce dynamic web pages

Psthon Integrates ohject-oriented programming language, functional programming and

imperative programming

Ruby Drsmamic object-oriented programming language.
Scala Multi-paradigm language
AJAY A framework to build dynamic web pages

There are many methods and play backing tools for preparing test scripts. Capture and
playback tools capture the input and store it in the test log. They prepare the test scripts to
evaluate the system by recording the user actions which are replaved for comparing the actual and
expected results.

CONCLUSION

Since graphical user interface testing is critical in the testing field, this study addresses various
testing technologies performed by various researchers. It explains the test models, metrics, software
domain used for testing and issues in the existing studies. This survey gives an idea of testing GUI
applications and using graphical user interface testing techniques. The direct and indirect metrics,
to evaluate the user interface and web applications, are discussed. The regression techniques and
the reduction of the test suites are studied. The extraction of the GUI components and the events
using various tools has been discussed. The usage of machine learning algorithms, such as Support
Vector Machines (SVM), J48 Decision Tree and Genetic Algorithms (GA) and the various data sets
used for evaluation are also addressed. Some of the testing tools are spotted and the limitations of
the play back tools are listed.

REFERENCES

Alshraideh, M., 2008. A complete automation of unit testing for Javascript programs. J. Comput.
Sei, 4:1012-1019.

Ames, A K. and H. Jie, 2004, Critical paths for GUI regression testing. University of California,
Santa Cruz, USA. http:/fusers.soe.ucsc.edu/~sashalproj/gui_testing pdf

108

oJ. Artif. Intel., 7 (3): 94-112, 2014

Artzi, 5., A, Kiezun, J. Dolby, F. Tip, D. Ihg, A. Paradkar and M.D. Ernst, 2010, Finding bugs in
web applications using dynamic test generation and explicit-state model checking. IEEE Trans.
Software Eng., 36: 474-494,

Boetticher, G.D., 2003, Applying Machine Learners to GUI Specifications in Formulating Early Life
Cycle FProject Estimations. In: Software Engineering with Computational Intelligence,
Khoshgoftaar, T.M. (Ed.). Vol. 731, Springer, New York, ISBN-13: 9781461504290, pp: 1-16.

Briand, L.C., Y. Labiche and X. Liu, 2007. Using machine learning to support. debugging with
tarantula. Proceedings of the 18th [EEE International Symposium on Software Eeliability,
November 5-9, 2007, Trollhattan, pp: 137-1486.

Briand, L.C., Y. Labiche and Z. Bawar, 2008, Using machine learning to refine black-box test
specifications and test suites. Proceedings of the 8th International Conference on Quality
Software, August 12-13, 2008, Oxford, pp: 125-144,

Bryce, R.C., S. SBampath and A.M. Memon, 2011. Developing a single model and test prioritization
strategies for event-driven software. IKKEE Trans. Software Eng., 37: 48-64.,

Ceri, 5., P. Fraternali and A. Bongio, 2000, Web Modeling Language (WebMLj): A modeling
language for designing web sites. Comput. Networks, 33: 137-157.

Chen, W.K., ZW. Shen and C.M. Chang, 2008, GUI test script crganization with component
abstraction. Proceedings of the 2nd International Conference on Secure System Integration
and Reliability Improvement, July 14-17, 2008, Yokohama, pp: 128-134.

Deng, Y., P. Frankl and J. Wang, 2004. Testing web database applications. ACM SIGSOFT
Software Eng. Notes, 29: 1-10,

Di Lucea, G.A. and A.R. Fasolino, 2008, Testing Web-based applications: The state of the art and
future trends. Inform. Seftware Technol., 48: 1172-1186.

Dias Neto, A.C. and G.H. Travassos, 2008, Surveyving model based testing approaches
characterization attributes. Proceedings of the 2nd ACM-IEEE International Symposium on
Empirical Software Kngineering and Measurement, October 9-10, 2008, Kaiserslautern,
CGermany, pp: 324-326.

Eisenbarth, T., E. Koschke and D. Simon, 2003. Locating features in source code. IKEER Trans.
Software Eng., 29: 210-224.

Elish, K.O. and M.O. Elish, 2008, Predicting defect-prone software modules using support vector
machines. J. Syst. Software, 81: 649-660.

Fenton, N.E. and N. Ohlsson, 2000, Quantitative analysis of faults and failures in a complex
software system. IKEE Trans. Software Eng., 26: 797-814.,

Geetha, B.G., V. Palanisamy, K. Duraiswamy and G. Singaravel, 2008, A tool for testing of
inheritance related bugs in object oriented software. J. Comput. Sei., 4: 59-65,

Gove, R, and J. Faytong, 2011. Identifying infeasible GUIT test cases using support vector machines
and induced grammars. Proceedings of the IEEER 4th International Conference on Software
Testing, Verification and Validation Workshops, March 21-25, 2011, Berlin, Germany,
pp: 202-211.

Gove, R, and J. Faytong, 2012, Machine learning and event-based software testing: Classifiers for
identifying infeasible GUI event sequences. Adv. Comput., 88: 109-135,

Gross, F., G. Fraser and A. Zeller, 2012, EXSYST: Search-based GUI testing. Proceedings of the
34th International Conference on Software Engineering, June 2-9, 2012, Zurich, Switzerland,
pp: 1423-1426.

109

oJ. Artif. Intel., 7 (3): 94-112, 2014

Hamill, M. and K. Goseva-Popstgjanova, 2009. Commeon trends in software fault and failure data.
IEEE Trans. Software Eng., 35: 484-496,

Harman, M. and N. Alshahwan, 2008. Automated session data repair for web application
regression testing. Proceeding of the 1lst International Conference on Software Testing,
Verification and Validation, April 9-11, 2008, Lillehammer, pp: 298-307.

Huang, 5., M.B. Cohen and A.M. Memon, 2010. Repairing GUI test suites using a genetic
algorithm. Proceedings of the 3rd International Conference on Software Testing, Verification
and Validation, April 6-10, 2010, Paris, pp: 245-254.

Iyer, L.S., B. Gupta and N. Johri, 2005. Performance, scalability and reliability 1ssues in web
applications. J. Ind. Manage. Data Syst., 105: 561-576.

Johnson, 5. and 5. Valli, 2008, Hot. method prediction using support vector machines. Ubiquitous
Comput. Commun. J., 3: 67-73,

Johnson, S. and V. Shanmugam, 2011. Effective feature set construction for SVM-based hot
method prediction and optimisation. Int. J. Comput. Sci. Eng., 6: 192-205,

Jones, J A and M.J. Harreld, 2003. Test-suite reduction and proritization for modified
condition/decision coverage. IEEE Trans. Software Eng., 29: 195-209,

Kervinen, A, M. Maunumaa, T. Paakkonen and M. Katara, 2006. Model-Based Testing through
a GUI In: Formal Approaches to Software Testing, Grieskamp, W. and C. Weise (Eds.).
Springer, New York, pp: 16-31.

Klaib, M.F.J., 8. Muthuraman, N. Ahmad and R. Sidek, 2010. Tree based test case generation and
cost calculation strategy for uniform parametric pairwise testing. J. Comput. Sci., 6: 542-547,

Koru, A.G. and H. Liu, 2005, Building effective defect-prediction models in practice. IKEE
Software, 22: 23-29.

Kumar, M.J.P. and M.E. Yogi, 2012, A survey on models and test strategies for event-driven
software. Int. J. Comput. Eng. Res., 2: 1087-1091.

Li, Z., M. Harman and R.M. Hierons, 2007. Search algorithms for regression test case prioritization.
IEEE Trans. Software Kng., 33: 225-237.

Liu, C.H., 2006, Data flow analysis and testing of JSP-based web applications. Inform. Software
Technel., 48: 1137-1147.

Maheswari, B.U. and S. Valli, 2011, Algorithms for the detection of defects in GUI applications.
J. Comput. Sa., 7. 1343-1352,

Maheswari, B.U. and S. Valli, 2013, Algorithms for detecting defects in user interface widgets.
Eur. J. Sci. Res., 94: 261-272.

Mair, C., G. Kadoda, M. Lefley, K. Phalp, C. Schofield, M. Shepperd and S. Webster, 2000. An
investigation of machine learning based prediction systems. J. Syst. Software, 53: 23-29.

Mariani, L., M. Pezze, O. Riganelli and M. Santoro, 2012, AutoBlackTest: Automatic black-box
testing of interactive applications. Proceedings of the TEEE Bth International Conference on
Software Testing, Verification and Validation, April 17-21, 2012, Montreal, QC., pp: 81-90,

MeMaster, 5. and A.M. Memon, 2008, Call-stack coverage for GUI test suite reduction. IEEE Trans.
Software Eng., 34: 99-115,

Memon, A., [. Banerjee, N. Hashmi and A. Nagarajan, 2003. DART: A framework for regression
testing nightly/daily builds of GUI applications. Proceedings of the International Conference
on Software Maintenance, September 22-26, 2003, Amsterdam, The Netherlands, pp: 410-419.

Mesbah, A., A. van Deursen and D. Reest, 2012, Invariant-based automatic testing of modern web
applications. IKEER Trans. Software Kng., 38: 35-53.

110

oJ. Artif. Intel., 7 (3): 94-112, 2014

Murphy, C., G.E. Kaiser and M. Arias, 2007. An approach to software testing of machine learning
applications. Proceedings of the 19th International Conference on Software Engineering and
Knowledge Engineering, July 9-11, 2007, Boston, USA., pp: 167-172.

Neto, A.C.D,, K. Subramanyan, M. Vieira and G.H. Travassos, 2007. A survey on model-based
testing approaches: A systematic review. Proceedings of the 1st ACM International Workshop
on Empirical Assessment of Software Engineering Languages and Technologies: Conjunection
with the 22nd TEEE/ACM International Conference on Automated Software Kngineering,
November 5-9, 2007, ACM, Atlanta, GA, pp: 31-36.

Noorian, M., E. Bagheri and W. Du, 2011. Machine learning-hased software testing: Towards a
classification framework. Proceedings of the International Ceonference on Software Engineering
and Knowledge Engineering, July 7-9, 2011, Boston, USA., pp: 225-229,

Paiva, A.C.R., J.CP. Faria, N. Tillmann and RE.AM. Vidal, 2005. A model-to-implementation
mapping tool for automated maodel-based GUI testing. Proceedings of the 7th International
Conference on Formal Methods and Software Engineering, Manchester, UK., November 1-4,
2005, Springer-Verlag Berlin, Heidelberg, pp: 450-464.,

Raha, D. and M.K. Jadhav, 2008, Automation method for testing XML/DB/XML layers.
Proceedings of the 1lst International Conference on Software Testing, Verification and
Validation, April 9-11, 2008, Lillehammer, pp: 458-464,

Sampath, S., S Sprenkle, K. Gibson, L. Pollock and A.S. Greenwald, 2007. Applying concept,
analysis to user-session-based testing of web applications. I[KEE Trans. Software Eng.,
33: 643-657.

Sampath, 8., R.C. Bryee, A.G. Koru, V. Kandimalla and G. Viswanath, 2008, Prioritizing
user-session-based test cases for web application testing. Proceedings of the International
Conference on Software Testing, Verification and Validation, April 9-11, 2008, Washington,
DC, USA,, pp: 141-150.

Sampath, 8. and R.C. Bryce, 2012. Improving the effectiveness of test suite reduction for
user-session-based testing of web applications. Inform. Software Technol., B4: 724-738.

Sarala, S. and 8. Valli, 2004. A tool to automatically detect defects in C++ programs. Proceedings
of the Tth International Conference on Information Technology, December 20-23, 2004,
Hyderabad, India, pp: 302-314,

Sarala, 5. and 5. Valli, 2006a. Algorithms for defect detection in console-based applications in C#.
ICFATJ. Syst. Manage., 4: 46-55.

Sarala, 5. and 5. Valli, 2008b. Algorithms for defect. detection in object oriented programs. Inform.
Technel. J., 5: 876-883,

Sprenkle, S., H. Esquive, B. Hazelwood and L. Pollock, 2008, WebVizOr: A visualization tool for
applying automated oracles and analyzing test results of web applications. Proceedings of the
Testing: Academic and Industrial Conference Practice and Research Techniques, August 29-31,
2008, Windsor, pp: 89-93.

Strecker, J. and A.M. Memon, 2008. Relationships between test suites, faults and fault detection
in GUI testing. Proceedings of the 1st International Conference on Software Testing,
Verification and Validation, April 9-11, 2008, Lillehammer, pp: 12-21.

Sun, Y. and E.L. Jones, 2004, Specification-driven automated testing of GUI-based Java programs.
Proceedings of the 42nd Annual Southeast Regional Conference, April 2-3, 2004, Huntswville,
AL, USA. pp: 140-145,

111

oJ. Artif. Intel., 7 (3): 94-112, 2014

Travison, D. and G. Staneff, 2008. Test instrumentation and pattern matching for automatic
failure identification. Proceedings of the 1st International Conference on Software Testing,
Verification and Validation, April 9-11, 2008, Lillehammer, pp: 377-385.

Xie, Q. and A.M. Memon, 2007. Designing and comparing automated test oracles for GUI-based
software applications. ACM Trans. Software Eng. Methodol., 16: 1-35.

Xie, X., JW.K. Ho, C. Murphy, G. Kaiser, B. Xu and T.Y. Chen, 2011. Testing and validating
machine learning classifiers by metamorphie testing. J. Syst. Software, 84: 544-558,

Yuan, X., M.B. Cohen and A.M. Memon, 2011. GUI interaction testing: Incorporating event
context. [IEEE Trans. Software Kng., 37: 559-574.

Zeng, H. and H. Miao, 2007, Model checking-based testing of web applications. Wuhan Univ.
J. Nat. Sei., 12: 922-926.

Zhang, L., 2011, Software defect prediction using non-negative matrix factorization. J. Software,
6:2114-2120.

112

	94-112_Page_01
	94-112_Page_02
	94-112_Page_03
	94-112_Page_04
	94-112_Page_05
	94-112_Page_06
	94-112_Page_07
	94-112_Page_08
	94-112_Page_09
	94-112_Page_10
	94-112_Page_11
	94-112_Page_12
	94-112_Page_13
	94-112_Page_14
	94-112_Page_15
	94-112_Page_16
	94-112_Page_17
	94-112_Page_18
	94-112_Page_19
	JAI.pdf
	Page 1

