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Abstract
Background and Objective: Linear inverse problems emerge throughout the engineering and the mathematical sciences. Over the last
two decades, sparsity constraints have emerged as a fundamental type of regularizer. This paper implements and assesses the role of
dictionary miscellany in sparse representation for image processing prospective. Materials and Methods: A dictionary is formed by a
linear basis using a mathematical model from the set of images referred as analytic dictionary or using a set of realizations of the images
referred as trained dictionary. This study considers the problem of true sparsity formation and analyzes the two most commonly used
algorithms-the Matching Pursuit (MP) and Orthogonal Matching Pursuit (OMP) using analytical dictionaries. These methods were
compared using diverse dictionaries formation for image restoration applications. Results: The results were validated using peak signal
to noise ratio and mean square error of the sparse approximation for the images. The different dictionaries like-discrete wavelet dictionary,
Discrete Cosine Transform and Kronecker Delta dictionary and Haar Wavelet Packets and DCT dictionary had been used for
implementation of these two algorithms. Conclusion: This experiment showed that the discrete wavelet based dictionary performs best
with orthogonal matching pursuit algorithm in terms of MSE and PSNR performances. The result also shows the out performance of OMP
in comparison with MP. From the experiments, it has been observed that high number of iterations and small patch size proves to be
advantageous.
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INTRODUCTION

Linear inverse problems emerge throughout the
engineering and the mathematical sciences. These problems
are undetermined in most applications, so for obtaining
interesting or useful solutions one must enforce extra
regularizing constraints. Sparsity constraints have developed
as a fundamental type of regularizer over the last two
decades1. This approach looks for an approximate solution to
a linear system by finding dictionary where condition for
requirement is that the target signal (i.e., b = b1, b2,…bn) can
be approximated by very few nonzero elements (i.e., x)
regarding to its dimension. Thus sparse approximation can be
presented as:

min {2x20:Ax = b} (1)

where,  is a dictionary and x is the sparse matrix. m
j j 1

A a




This formulation is also known as a sparse approximation.
These types of problems occur in many areas including fields
of statistics, signal/image processing, approximation theory,
coding theory and machine learning etc.1.

In sparse approximation, images are divided into number
of small rectangle patches2. This process of breaking the
image allows an easy way of dictionary learning and sparse
coding with low computational complexity. To fit for the
dictionary learning and sparse coding processes, each patch
is reshaped as a one-dimensional (column) vector3.

The signals which are representing the columns of the
matrix A in Eq. 1 are called "atoms" and "dictionary" is the set
of these atoms. If n = m then it generates complete dictionary
and if n>m then it provides over-complete dictionary4.

In Eq. 1, the L0 norm is used to denote the number of
nonzero components. The equation 1 is an ideal case with
zero error. The problem statement which allows some
approximation error for representation can be presented as:

min{2x20 : 2Ax-b2p < δ} (2)

where, δ is the threshold value. The norm p is generally 2 but

it can be any value between 1 to 4 as well depending upon
requirement. Combinatorial optimization methods are used to
find the exact solutions to the problem statement mentioned
above. There are essentially two ways to deal with suboptimal
solution. One approach is a greedy approach in which signal
vector is approximated via a sequence of incremental
approximations  by   selecting   atoms   suitably.   This   kind  of

approaches are known as Matching Pursuits (MP) and
Orthogonal  Matching  Pursuit (OMP)5,6. The second is known
as the Basis Pursuit (BP)  which  relaxes  the  L0  norm
condition by L1 norm and solves the problem through linear
programming7. Greedy algorithms matching pursuit and
orthogonal matching pursuit algorithms are discussed in this
study.

Though sparse coding is used in large extent, the
exploration of algorithm which solves the equation 1 has been
inadequate in the literature. Therefore, this paper reviews
these sparse approximation algorithms with blend of different
dictionaries and proposed the optimum combination of
dictionary with sparse approximation algorithms for optimum
image restoration.

PURSUIT METHODS

Greedy algorithm is a pursuit method used to solve the
problem of sparse approximation by iteratively refining the
current estimate for coefficient vector x by changing one or
several coefficient elements yielded a substantial
improvement in approximation of a given signal. The main
advantage with the greedy algorithms is that the complexity
of the sparse approximation problem is reduced by ensuring
that the current support is always sparse during the execution
of the algorithm. This section presents simplest effective
greedy algorithm, Matching Pursuit (MP) initially and later it is
exploited further using Orthogonal Matching Pursuit (OMP)8.

MATCHING PURSUIT

Matching Pursuit (MP) is a type of greedy algorithm that
iteratively solves for the sparse approximation of a given signal
with the help of a series of mono-atomic approximations1.Two
steps are involved for each iteration of the algorithm: The first
step being an atom selection step and the second step of the
residual update step. In atom selection step, an atom is
selected based on the condition that it provides the highest
correlation with the current residual error, provided the
correlation is measured with respect to the length of the
orthogonal projection. Second step involves update in residual
error by subtraction of the correlated part from it5.

The working principle of MP involves replacement of the
simultaneous atom selection with selection of the sequential
atoms3. At a time only one atom gets the chance for being
selected and for each iteration, it is removed from the signal.

The steps describe the MP process are listed below:
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1. Initialize x = 0, residual r = b
2. While *X*0<L
3. Select the element  with  maximum  correlation  with  the  residual 

T
i = 1, ... m iÎ = argmax Ia rI

4. Update the coefficients and residual
T

i i ix x a r 
 T

i ir r a r d  

Here, L is the threshold level and r represents residual
error.

The major drawback of the MP is selection of same atom
multiple times. The residual r(i) is calculated by the projecting
the previous residual r (i-1) with the condition of orthogonality
for the selected atom A(i). So for any i, there are r(i), A(i). If ‘A’
do not matches the condition of orthogonality, then a
correlation with a previously selected atom can be brought
back by subtracting an atom. Hence, the same atom can be
selected several times in Matching Pursuit. In noiseless case
also, for getting a null residual, large number of iterations are
required though complete support has already been
recovered8.

ORTHOGONAL MATCHING PURSUIT

The matching pursuit algorithm is the simplest method
for sparse approximation but due to the sub-optimality, it
faces the problem of poor sparsity result and the slow
convergence. This drawback can be overcome by using
Orthogonal Matching Pursuit algorithm by projecting signal
vector into the subspace which is spanned by selected
atoms5,9. The working principle of OMP is prevention of atom
getting selected more than once by promising the residual r(i)
by matching the condition of orthogonality with all atoms
which are previously selected10. Let the sub-dictionary
A(i)=(Aj)1< j <I. The residual r(i) is computed by projecting
orthogonally to A(i)8. The steps describing the process are
listed below.

Here, Ω represents active set. Orthogonal Matching
Pursuit  (OMP)  is  a  greedy  algorithm.  Hence, weakness of
the OMP is  that  the  process  used  to  select  the  atoms is
sub-optimal. The criteria for selecting an atom depend only
upon the residual   known   at   the   current   iteration  which
is being executed.  Once   an   atom   gets   selected,  it does
not get any chance for  removing  it.  This  scenario can
produce a  situation of  a  sub-optimal  atoms  getting selected 
at  an  earlier  stage  which  will   never  be correlated8:
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1. Initialize x = 0, residual r = b, active set Ω = Φ
2. While *x*0<L
3. Select the element  with  maximum  correlation  with  the  residual

T
i = 1, ... m iÎ = argmax Ia rI

4. Update the active set, coefficients and residual
Ω = ΩUÃ

  1T Tx a a a r


   
r = b-aΩxΩ

FORMING THE DICTIONARY

The dictionary is generalized concept to form the basis
function in linear algebra. For given dictionary better
localization of transformation provides better sparsity. The
choice of dictionary used for sparse code can be made using
either analytical approach or training approach.

In Analytic approach, choosing a predesigned transform,
such as wavelet or curvelet can make the optimization faster.
The disadvantage of this approach is that it is not accurate and
cannot be used as a general model for each problem
statement11.

Training approach focuses upon training the dictionary
with the help of given examples, optimizing with respect to
some criteria i.e., sparsity. This approach makes the
approximation slower but has advantage in terms of accuracy
and can be used as a general model11.

Dictionaries mentioned in first approach are called
analytic dictionaries due to their characteristic of analytic
formulation and they are faster to implement. While
dictionaries mentioned in second approach can be more
flexible in terms of ability to adapt to specific data and due to
this reason being they are referred as trained dictionaries12.

Analytic dictionary approach: An image is multidimensional
signal. The complex geometry like curves and manifolds need
to be trace for better representation. Thus transformation
model requires localization and orientation to represent the
images in sparse form. Generally tight frames are used to
formulate these analytic dictionaries. Tight frames can be
viewed as the main characteristics for the formulation of
analytical dictionaries that means AATb = b for all b and due to
this type of characteristic the transpose of dictionary is useful
to acquire a good representation by means of the dictionary.
Further this approach gets advanced by resolving the
behavior of the filter-set ATb. This approach is quite
advantageous because the operator for analysis can be
viewed as an easy option than synthesis framework where the
sparsity   bounds  must  be derived. Another major advantage
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is algorithm simplicity. The ability to produce a useful structure
simultaneously for both of the analysis and synthesis
frameworks gives a meaningful interpretation11.

First of all coefficients ATb are computed and then passed
through a non-linear shrinking operator. This approach has an
advantage in terms simplicity and is able to give efficient
sparse representations over given dictionary11.

There exists a number of modeled dictionaries in
literature including dictionaries based on wavelets, fourier or
gabor transform based structure6,13,14. Moreover, there are
dictionaries with combinations of orthogonal bases15,
curvelets or contourlets16,17.  Mentioned dictionaries are able
to satisfy requirement of the target signal or data. However,
the chosen model is deciding factor to specify the quality of
the sparsest solution.

Dictionary in wavelet domain: One can obtain a sparse
representation of the target signal with the help of the
wavelet transform to some degree18. Consider the learning
problem expressed by the following modification to Eq. 3:

(3)
2

0s 2A,x
arg min ( b W Ax ) s.t x L 

Here, A represents the dictionary, b is the target and x is
sparse vector. The wavelet synthesis Ws operator (inverse
Wavelet) or equivalently the  wavelet atom dictionary
proposes that the data can be represented by a sparse
combination of atoms, which are combinations of atoms from
a fixed multi-scale core dictionary18. This problem is quiet
difficult for reasonable sized data, without additional
constraints or assumptions on the unknown A. Here, assumed
that A has very sparse columns19. This implies that the overall
dictionary atoms are linear combination of few (and arbitrary)
wavelet atoms. Assuming that Ws is square and unitary (i.e.,
orthogonal wavelet with periodic extension), it can be
formulated as:

(4)
2

0A 2A,x
arg min ( W b Ax ) s.t x L 

where, WA is a wavelet analysis operator. This formulation
proposes  that   the  training  of  dictionary  is  not  in  the
image   domain   but     in   the   analysis   domain   of  the
multi-scale  decomposition  operator,  specifically  the  wavelet
transform18.

The idea of learning a wavelet-dictionary had already
been proposed in using a MAP approach20,21. However, the
effectiveness of various wavelet dictionaries is not mentioned.

This study presents detail analysis of three basic analytic
dictionaries including discrete wavelet, DCT and haar and their
performance are compared.

EXPERIMENTS RESULTS AND DISCUSSION

The sparsity has been integrated with various algorithms
including support vector machine, genetic algorithm, deep
learning, convolutional neural network etc8,9,22 to fulfill the
various applications including image denoising, scene
classification and pattern recognitions23,24. In the experiment,
the compatibility of MP and OMP algorithms is checked with
the dictionaries mentioned in above section for the image
enhancement application. The quality of the enhancement is
generally calculated using the peak signal to noise ratio (PSNR)
and mean square error (MSE). MSE and PSNR can be calculated
as:

(5) 
M 1 N 1

2

M 0 N 0

1
MSE I(i, j) I '(i, j)

MN

 

 

  

(6) 255 255
PSNR 10log

MSE




The comparison of approximation algorithms has been
given in terms of PSNR and MSE. In Fig. 1, the images of
dimensions 256×256 were used for the experiment. The
patch size and number of iterations used for the dictionary
plays an important role in image restoration. Therefore, both
methods were analyzed with reference to type of dictionary
and size of patch and simulation results were presented in
Table 1-3.

Table 1 depicted that for images 1-10, though PSNR of
discrete wavelet was better in comparison to haar wavelet
packets and DCT, the mean square error (SME) very
significantly improved in haar wavelet packets and DCT. From
Table 2, it has been observed that MSE and PSNR were better
for haar wavelet packets and discrete wavelet in comparison
with DCT based dictionary.

Table 1 and 2 presented the PSNR and MSE obtained for
the defined set of images using MP and OMP method.

The orthogonal matching pursuit out performing the
matching pursuit algorithm was depicted in Fig. 2 and 3. The
DCT based transformation has higher MSE. The localization
property of DCT affect the performance to achieve better
sparsity and hence reconstruction of images.

The quality of sparse representation mainly depends on
the choice of dictionary, number of iterations and patch size.

4



J. Artif. Intel., 11 (1): 1-8, 2018

Fig. 1(a-j): Set of images used for experiment (a) Circles bright dark, (b) Barbara, (c) Manon street, (d) Lifting body, (e) Baboon,
(f) Concord orthophoto, (g) Circuit, (h) Pout, (i) Cell and (j) Rice blurred

Table 1: Results for matching pursuit algorithm
Discrete wavelet DCT and Kronecker delta Haar wavelet packets and DCT

Dictionary ---------------------------------------- ------------------------------------------ ------------------------------------------
image PSNR (dB) MSE PSNR (dB) MSE PSNR (dB) MSE
1 40.12 6.31 37.60 43.78 38.43 9.34
2 30.74 23.40 29.18 86.13 29.06 94.51
3 33.18 1.78 32.37 4.56 31.53 37.41
4 33.98 28.81 30.28 60.94 32.95 32.97
5 30.83 21.56 29.17 87.17 29.89 49.15
6 31.65 38.27 29.49 67.81 30.96 35.31
7 33.02 2.15 31.82 8.17 32.51 3.89
8 33.44 1.30 32.97 2.29 32.97 2.29
9 34.14 0.52 32.93 2.41 33.82 0.80
10 34.63 22.39 31.63 44.66 34.43 23.46
PSNR: Peak signal to noise ratio and MSE: Mean square error

Table 2: Results for orthogonal matching pursuit algorithm
Discrete wavelet DCT and Kronecker delta Haar wavelet packets and DCT

Dictionary ---------------------------------------- ------------------------------------------ ------------------------------------------
image PSNR (dB) MSE PSNR (dB) MSE PSNR (dB) MSE
1 45.17 1.98 43.78 2.72 44.41 2.36
2 31.39 12.67 30.97 18.90 29.07 94.02
3 33.82 0.80 32.99 2.25 31.53 37.73
4 33.53 25.97 31.17 49.66 34.45 23.32
5 31.51 11.22 30.88 20.50 30.37 32.63
6 31.89 39.29 31.09 16.97 31.47 37.44
7 33.74 0.89 33.07 2.05 33.03 2.15
8 33.88 0.74 33.77 0.86 33.77 0.85
9 34.45 0.34 33.17 1.82 34.08 0.567
10 37.36 11.94 38.34 31.63 37.73 10.97
PSNR: Peak signal to noise ratio and MSE: Mean square error

Further localization property plays an important role to
achieve better sparsity. Wavelet transform project the image

in both low frequency components and high frequency
components.  Hence,  wavelet  transform  is  more localized in
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Fig. 2: MSE comparisons for image sets
MSE: Mean square error, wmp: Discrete  wavelet  dictionary for matching     pursuit, womp: Discrete wavelet dictionary for orthogonal matching pursuit,  dmp: 
Discrete  cosine  transform and Kronecker delta dictionary for  matching pursuit, domp:  Discrete   cosine transform  and Kronecker delta dictionary for
orthogonal matching  pursuit, hmp: Haar wavelet packets and DCT dictionary for matching pursuit

Fig. 3: PSNR comparisons for image sets
PSNR: Peak signal to noise ratio, wmp: Discrete wavelet    dictionary for matching    pursuit, womp: Discrete wavelet dictionary for orthogonal matching  pursuit, 
dmp:  Discrete  cosine  transform and Kronecker delta dictionary for  matching   pursuit, domp: Discrete  cosine transform   and  Kronecker delta dictionary
for orthogonal  matching pursuit, hmp: Haar wavelet packets and DCT dictionary for matching pursuit

Fig. 4: Computationally time for different dictionaries using several number of sparse and redundant elements

both  time  and  frequency  domain.  While DCT is fourier
based approach which follows the Heisenberg uncertainty
principal. Therefore,  it  cannot  depict  information both in
time domain and frequency  domain.  Hence DCT is localized

in frequency domain only. Thus sparsity achieved by the
wavelet transform was better than DCT25.
Table 3 summarized the effect of patch size and iteration

used  to  correlate  the  atoms  by reducing the redundancy in
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Table 3: Effect of patch size and number of iterations
Patch size Iterations PSNR(dB) MSE
4×4 8 30.1854 62.3072

16 50.8933 21.5030
24 75.7330 9.0175

8×8 8 21.1845 495.0274
16 24.9425 208.3698
24 29.1205 79.6219

16×16 8 19.6955 697.4762
16 20.3608 598.4157
24 21.3845 472.7471

PSNR: Peak signal to noise ratio and MSE: Mean square error

sparse. Table 3 concludes that as number of iterations
increases the quality of sparse representation also increases.
However, an increase in patch size registers poor performance.
The MP and OMP were also analyzed in terms of execution
time. Figure 4 showed the variation of the computational time
for various over complete dictionaries with different number
of sparse elements26.

As shown in Fig. 4, the DWT based dictionary was more
time consuming process to calculate the sparse and
redundant elements then the DCT dictionary.

The different number of atom size was implemented and
the dictionary having patch size of 16×16 uses more time to
adapt the sparse elements. The DCT dictionary used lesser
time with all different sizes as compared to DWT. When DWT
dictionary incorporated with KSVD algorithm, the
computational  time  was  little  increase  with   the  increase
of accuracy.  The   proposed   method   improved  the PSNR for 
 image   index  224. The choice of  dictionary,  number of
iterations and patch size were significantly effect on the
quality of sparse representation.  Some of more parameters
like that high number of iterations and small patch size also
effect the same. This experiment clearly showed that high
number of iterations and small patch size have serve better
PSNR and MSE.

CONCLUSION

The quality of sparse representation mainly depends on
the choice of dictionary, number of iterations and patch size.
From above experiments, it has been observed that high
number of iterations and small patch size proves to be
advantageous. It was clear that in comparison of OMP, MP
performs slightly cheaper. The reason behind this is that in
matching  pursuit  several  atoms  get selected more than
once. This can lead to higher MSE and lower PSNR. This can be
overcome by using OMP algorithm in which, one atom is
selected only once, which improves  the  performance
measure  of   MSE    and     PSNR.    Also    different  dictionaries

like-discrete wavelet dictionary,  discrete  cosine transform
and Kronecker delta  dictionary  and  haar  wavelet  packets
and DCT dictionary have been used for implementation of
these two algorithms and by observing the results, discrete
wavelet dictionary has an upper hand with comparison of
other two dictionaries in terms of MSE and PSNR
performances.

SIGNIFICANCE STATEMENT

This paper presents study the effect of dictionary in
sparse based image processing applications. The
implementation of various dictionaries is analyzed using
image enhancement application. Dictionary formation is the
basic steps in sparse based image processing applications.
This analysis will help the researchers to decide the patch size
which affect the enhancement quality parameters. The
comparative analysis presents that wavelet is dominant in
dictionary formation in comparison with DCT.
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