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Abstract: Irreducible parts of elastic campliance (modulus) tensor are presented.

It is shown that Voigt

average (polycrystalline) elastic constant can be cbtained from the scalar parts of the elastic constant
irreducible parts. It is also shown that the volumetric compressibility is directly related to the first irreducible
scalar part of the elastic comgpliance tensor and this relation holds for all symmetries of the linearly anisotropy
materials. Norm concept of Cartesian Tensor is given. The norm of a Cartesian Tensor is used as a criterion
for representing and comparing the overall effect of a certain property of the same or different symmetry.
The norm of elastic compliance tensor and the norms of the irreducible parts for different materials are
calculated. The relation of the scalar parts norm and the other parts norms and the anisctropy of the material

are presented.
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Elastic Compliance Tensor Decomposition:

The constitutive relation characterizing linear anisotropic

solids is the generalized Hook's law Nye, 1964:
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Where ¥ and are the symmetric second rank
stress ‘and strain tensors, respectively C is the

fourth-rank elastic stiffness tensor (elastic constant

tenser) and S’ﬂd is the elastic compliance tensor.

There are three index symmetry restrictions on these
tensors. These conditions are:
'Slij*S}w' SkuS;;m' S:jH=Sug 2)
which the first equality comes from the symmetry of
stress tensor, the second one from the symmetry of
strain tensor, and the third one is due to the presence of
a deformation potential. In general, a fourth-rank tensor
has 81 elements. The index symmetry conditions (2)
reduce this number to 21. Consequently, for most
asymmetric materials (triclinic symmetry) the elastic
constant tensor has 21 independent components. Elastic

constant tensor (- iy possesses the same symmetry

properties as the elastic constant tensor S, u and their
connection is glven by Teodosio, 1982;  *

Q_'jleklmn= 1(5 S5 +65.5. )
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Where CS;J' is the Kronecker delta

The Einstein summation convention over repeated
indices is used and indices run from 1 to 3 unless

otherwise stated. Schouten (1954} has shown that: Clsn
can be decomposed into two scalars, two deviators, and
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one-noner parts. The same decomposition in terms of
the irreducible representations of the three-dimensional
rotation group has been given in Heine (1960) as:

2Dy +2D, + D, (4)

where the subscripts dencte the weight of the
representation. By applying the symmetry conditions (2)
to the decomposition results obtained for a general
fourth-rank tensor, the following reduction spectrum for
the elastic compliance tensor is obtained. It contains two
scalars, two deviators, and one-nonor parts:

Sy = y%ll) + ijolélz )+ y%}) + yilz )+ g:’;ll)
’ {5}
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4 notation Nye (1964) for q and §

" That is:
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- The scalar parts of the elastic constant tensor ™ are:

.Wr! =2 5HC,;,;1;{; (11}
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These parts are orthonormal to each other. Using Voigt's

ikl can be expressed

in 6 by 6 reduced matrix notation, where the matrix

" coefficients CMand 8,5 @re connected with the tensor

components Cm and S respectively by the recalculation
rules: -

(fou=l.. GkoA=]. . 0)

el 2262 33(—)3, 233264 31=1365
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and
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Y When m and n are 1, 2 or 3,

2‘Sajk1=
4S'J"U Son When both m and n are 4, 5 or 6.
Yoigt Average (Polycrystaline) Elastic Constants:
Elastic constants of a macroscopically isotropic
_polycrystaline aggregate in terms of the elastic constants
- of the constituent single crystais was first given by Voigt
{1989), who assumed uniform strain throughout the
. Bggregate and derived average elastic constants in terms
of the single crystal elastic constants averaged over all
- possible orientations. Reuss (1980) assumed uniform
- stress and obtained average compliances in terms of the
. single crystal averaged over all directions. A different
method was used in Leibferied. (1953) and Povolo and
" Bofmare (1987) to obtain the same average elastic
" constants by employing linear combinations of invariants

of C The above average elastic constants can be
obtaifl léd from the scalar part of

Smn :
When either mornare 4, 5 or 6,

- C"kl' i.e. from the sum of (11) and (12) as follows

i
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where (' _Hdenotes the macroscopically isotropic
i
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polycrystalline elastic constant tensor. Using Voigt's
notation Nye (1964) for 'Cf p (13) can be expressed in

6 by 6 reduced matrix notation as:
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From (14), we have:
_ 4
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2 (15)
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Where the Voigt average polycrystalline bulk and shear
moduli are:

s .
Kv 9 ppqq (Cll+2C12) (17)
and
1 1 1, _ _
G = E(Cpqpq—g Cppqq] :‘2'(01 1 _CIZ) =Cy4
(18)

The above results are the same as those given in Voigt
(1989) and Hearmon (1961). Thus, we have established
the macroscopically isotropic polycrystalline elastic
constants, which were obtained by Voigt in 1889, can be

obtained directly from the scalar irreducible parts of /4

Isotropic Elastic Constant Tensor and Stress-Strain
Relation: A material is isotropic with respect to certain
properties if these properties are the same in all
directions. The isotropic elastic constant tensor elements
in matrix form are:

o o2 o2 0 0 0
az gl e 0 0 0
e ar i 0 0 0
6 0 ¢ (@1 —<2) 0 0
0 0 0 0 (cu _cu) 0
¢ 0 0 4] ] T,rcll_clz\
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For isotropic elastic materials, there are only two
irreducible parts, they are the following two scalar parts:

op 1
ifkt _6 5!:'5* PPag

(11)
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~ Their 6 by 6 reduced matrix form are:
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Where
|
K‘_'E(cu'*‘zclz)

is the bulk modulus and
1
G = 2_(c|| - Cp )

is the shear modulus, here c“and clzare the elastic
constants in two indices notation.
The sum of (11) and (12) becomes:

1, 1
Cu = K5,6, + ZG[ 5 (6,6,+5,5,)- 3% a,t,}

(21)
Equatian {21) is an expression for C:w, in terms of

K and G which is different than the traditionally known

form: Cf_‘fkf = /15”-5” + ,U(5,~k§ﬂ + 6;'{5;‘1:

(22)
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Where ,/_G) and ol are the Lame’s constants.

From (1) and (21) the stress-strain relation, for isotropic
solids, can be defined as:

o, = Kerré',j + 2G(e,j —%e”cgy] (23).

This is also different than the traditionally known form:
oy =Ae, b, +2ue, (24)

Equation (23) was obtained in Landau and Lifshits (1959) |
by a different method, which was based on the
expansion of the strain energy density function in powers

of & The decomposition of
O'I.jinto spherical and deviatoric parts is:

i 3 Lt} 3 Lt}

The resultant equation, which is obtained by writing the
hand sides of (23) and (25) equal to each other, can be
broken down into independently operating physically
meaningful parts Borodich {1963):

Ji'=3KI, (26)

o <los +(%_la J,J (25)

and
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Where

(27)

Jo=g,and | = &, are the first fundamental invariants of

stress and strain tensors, respectively.

It is known Landau and Lifshits (1959) and Borodich
(1963) that {(26) represents volume-change without
distortion under hydrostatic stress and (27) represents
shape-change without volume-change under deviatoric
stress (or pure shear stress).

Similarly, the strain energy density 4 can be separated
into two independently operating parts Fraijs and
deVeubeke (1979):

W =WI+WI=;_m,’—zcr2 - (28)
Where

l_:qis the second fundamental invariant of strain
deviator,

+
energy pa’uﬂ, and

) is the volume-change
Kn



= -2GT,

i b is the shape- change energy part.-

- We coriclude that the separation of (23) and (28) into

- two independently operating meaningful parts is a direct
- consequence of (22) and of the two irreducible

» C.
- orthonormal scalar parts (11) and (12) of U4

* Yolumetric Compressibility of Anisotropic
: Materials: Volumetric compressibility is defined as the

- relative reduction of material’s volume under unit

.~ hydrostatic pressure. -

.. The uniform stress tensor or hydrostatic compression is:

| oy =-pdy

3 The strains due to hydrostatic compression are:
=-PS by = —PS

"' and volumetric compression is:

: :.A: AV/V = 81 = mpSukk

“Where } is the volume of the crystal.

Consequently the volumetric compressibility is:
- A
- "; =S =SS5 +2(S| 1853+, 3) =S

:which implies that the volumetric compressibility is
-~ related to the first scalar part of elastic compliance
" tensor for anisotropic materials.

 The Norm Concept: Generalizing the concept of the
modulus of a vector, norm of a Cartesian tensor (or the

" medulus of a tensor) is defined as the square root of the
contracted product over all indices with itself:

Nel={y0 . Ty )"

Dencting rank-n Cartesian ];ikl.‘......' by ]:,, the square

of the norm is expressed as Jerphagnon et af. {(1978):

~||71J =2 9 =2k = T

(m)r

This definition is consistent with the reduction of the
tensor in tensor in Cartesian formulation when all the
irreducible parts are embedded in the original rank-n
tensor space.

Since the norm of a Cartesian tensor is an invariant
" quantity, we suggest the following:

Rulel. The norm of a Cartesian tensor may be used as a
criterion for representing and comparing the overall
effect of a certain property of the same or different
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symmetry. The larger the norm value, the more effective
the property is.-

It is known that the anisotropy of the materials, i.e., the
symmetry group of the material and the anisotropy of
the measured property depicted in the same materials
may be quite different. Obviously, the property, tensor
must show, at least, the symmetry of the material. For
example, a property, which is measured in a material,
can almost be isotropic but the material symmetry group
itself may have very few symmetry elements. We know
that, for isotropic materlals the elastic compliance
tensor has two irreducible parts, i. e., two scalar parts, so
the norm of the elastic compllance tensor for isotropic
materials depends only on the norm of the scalar parts,

i.e., N=N,. Hence, the ratio ﬂ=] for isotropic

N
materials. For anisotropic materials, the elastic constant
tensor additionally contains two deviator parts and one

nonor part, so we can define N, for the deviator
irreducible parts and N

~2 for nonor parts. Generalizing this to irreducible

N

tensors up to rank four, we can define the following

norm ratios: w»_for scalar parts, N, for vector parts, w,
N N N
for deviator parts, N for septor parts, and N,

N N

for nonor parts. It is to be noted that we calculate
norms for weights only, i.e., for values of j = 0,1,2,3,4.
Although norm ratios of different irreducible parts
represent the anisotropy of that particular irreducible
part, they can also be used to asses the anisotropy
degree of a material property as a whole, we suggest the
following two more rules:

Rule 2. When Ns is dominating among norms of

irreducible parts: the closer the norm ratio V, s to

N
one, the closer the material property is isotropic.

Rule3. When ]Vs is not dominating or not present,
norms of the other irreducible parts can be used as a
criterion. But in this case the situation is reverse; the
larger the norm ratio value we have, the more
anisotropic the material property is.

The square of the norm of the elastic compliance tensor

S

e is:

- et et e e
2 5{21)5(2;2 )+ 5(4 ) (29)

mn mn

273



Radwan: Irreducible Parts of Elastic Com

pliance Tensor and Anistropy

¥,
Table 1: Compiiances at room temperature (unit = ]Utzcnf/dvlu)_
Crystal Class S, S Si. S S,y S, Sis
Sodium m3m 2.21 -0.45 07.83 - - - -
Chloride
Alurminum m3m 1.59 -0.58 03.52 - - - -
Copper m3m 1.49 -0.63 01.33 - - - -
Nickel m3m 0.79 -0.31 00.84 - - - -
Tungsten m3m 0.25 -0.07 00.66 - - - -
Sodium 23 2.20 -0.60 80.60 - - - -
Cholrate
Tin 4/mmm 1.85 -0.99 05.70 1.18 0.5 - 13.5
ADP 42m 1.80 00.70 11.30 4.30 -1.16 - 16.2
Zinc &6/mmm “0.84 00.11 02.64 2.87 -0.78 - -
Cadmium 6/mmm 1.23 -0.15 05.40 3.55 -0.93 - -
Quartz 32 1.27 -0.17 02.01 0.97 -0.15  -0.430 -
Tourmaline im 0.40 -0.10 01.51 0.63 -0.01 00,058 -

ADP: Ammonium dih
the norms and norm

Table 2: The norms and norm ratios

ydrogen phosphate. By using Table 1
ratios as in Table 2.

(the anisotropy degree)

and the decomposition of the elastic tensor, we calculategd

Crystal N, N, N N NJ/N NN N./N
Tungsten 01.2397162 0 0 01.2397262 1.000000 0O 0
Aluminum 07.2117795 v} 0.6661711 07.2424822 0.995761 0 0.9198100
Sodium 12.837292 0 2.0391336 12.998236 0.987618 ¢ 0.1568777
Chloride

Sodium chlorate 13.8802020 0 2.4372115 14.0925510 0.9849318 0 0.1729432
Nickel 02.6160401 0 1.1194925 02.8455103 0.9193571 0o 0.3934241
Copper 04.6715122 0 2.3640952 05.2356444 0.8922516 0 0.4515385
ADP 19.2765000 1.387309 7.7853870 20.8355500 0.9251730 0.066583 0.3736580
Tin 12.5106800 4.310237  4.3698460 13.9352400 0.8977730 0.309305 0.3135820
Cadmium 09.0985770 3.319803 0.9211400 09.7293900 0.9352100 0.341210 0.0946800
Zinc 05.5425590 2.641131 1.9535371 06.4430200 0.8602400 0.409920 0.30323G0
Tourmaline 00.3162510 0.318069 0.3618600 02.3658200 0.8790500 0.134440 0.1529500
Quartz 04.6469620 0.566354 1.1244600 04.8145000 0.9652000 0.117630 0.2335600

From Table (2) we can no
{which are cubic s
is Tungsten
Tetragonal s
the next tw
Cadmium Is more iso
two crystals (which are Trigonal symm

0 crystals

is more isotropic than Quartz.
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