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Abstract: Developments in computational models of evolutionary processes have led to the realization of
powerful, robust and general optimization and adaptive systems collectively called -evolutionary algorithms.
In this paper, we consider one member of this class of algorithms, the genetic algerithm and describe the
features and characteristics that are particularly apprcpriate for applications in control systems engineering.
The versatility and robust qualities of the algorithm are considered afd a number of application areas
described. Some prospective future directions are also identified.
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Introduction

There has been widespread interest from the control
community in applying genetic algorithms (GAs) Holland
(1992) to problems in control systems engineering.
Based on computational models of natural biclogical
evolution, GAs are members of the class of evolutionary
algorithms Spears et al. (1993) that also includes
evolutionary programming Fogel et a/., (1966}, evolution
strategies Rechenberg (1973) and genetic programming
Koza (1991). Compared to traditional search and
optimization methods, such as calculus-based and
enumerative strategies, the GA is robust globa! and
generally more straightforward to apply in situations
where there is little or no a priori knowledge about the
process to be controlled. For the control engineer GAs
and evolutionary algorithms in general, present
opportunities to address some classes of problems that
are not. amenable to efficient solution through the
application of conventional techniques. In recent years,
GAs have been applied to a broad range of activities in
controi systems engineering, including combinatorial and
parametric optimization, robust control analysis,
multiobjective design, process scheduling and adaptive
control.

Searching from a population of solution estimates, the
GA is an adaptive and robust search method, which in
control systems engineering may be used as an
optimization tool or as the basis of a more general
adaptive or learning system. Starting with . an
introduction to the basic GA, this paper considers some
of the variations that are possible from the simple model.
Important characteristics, relevant to applications in
control engineering, are then identified, including the use
of parallelism. A range of recent control applications are
surveyed and the benefits, or disadvantages, of using
the GA are considered. Finally, the paper speculates on
likely promising areas for future developments.
Genetic Algorithms: Genetic algorithms are stochastic
global search methods that mimic the metaphor of
natural biological evolution. GAs operate on a poputation
of potential solution estimates, individuals, applying the
principle of survival of the fittest to produce better and
better approximations to a solution. At each epoch, or
generation, of the algorithm, a new set of
approximations is created by the process of selecting
individuals according to their level of fithess in the
problem domain and breeding them together using
operators borrowed from natural genetics. This process
leads to the evolution of populations of individuals that
are better suited to their envircnment than the
individuals from which they were created, just as occurs
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in natural adaptation.
Fig. 1 shows an outline of the simple GA described by
Goldberg {1989). Individuals are encoded as strings,
chromosome, composed over some particular
alphabet(s) so that the genotypes (chromosome values)
are uniquely mapped onto the decision variables,
phenotypes. The first step of a GA is therefore to
initialize the population by randomly sampling the
chromosome space. Once this has been accormnplished,
the initial population may be evaluated by converting the
chromosomes to their phenotypic values and evaluating
some objective function. The objective function can be
seen as characterizing an individual's performance in the
problem domain and is used in the selection phase as the
hasis for defining the relative fitness of an individual.
procedure GA {
t=0;
initialize P{t);
evaluate P(t);
while not finished do {
t=t+1;
select P(t) from P(t-l );
repraduce pairs in P(t);
mutate P(t);
evaluate P(t);

}

Fig. 1.: A simple genetic algorithm

During the reproduction phase, each individual
assigned a fithess value derived from its raw
performance measure, given by the objective function,
and this is used to bias the selection process. Highly fit
individuals, relative to the whole population, have a high
probability of being selected for reproduction and less fit
individuals a correspondingly.

Lower probability of being selected. The selected
individuals are then modified through the application of
genetic operators to produce the next generation.
Genetic operators manipulate the characters (genes ) of
the chromosomes directly, using the assumption that
certain individuals' gene codes, on average, produce
fitter individuals. Genetic operators may be divided into
two main categories:

Recombination: Exchanges genetic information
between pairs, or larger groups, of individuals in order to
create new chromosomes. It is not necessarily applied to
all groups of individuals selected for reproduction,
allowing some chromosomes to survive into successive

is
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generations unaltered.

Mutation: Causes individuals' genetic representations to
be altered according to some probabilistic rule.
Generally, mutation is applied with a much lower
probability than recombination and is usually viewed as
a background operator that ensures that the probability
of searching any particular subspace of the search space
is never zero.

After recombination and mutation, the individual strings
are then decoded and evaluated by the objective
function and so the process continues through
subsequent generations. In this way, the average
performance of individuals in a population is expected to
increase as fit individuals are preserved.and reproduced
with one another and the less fit individuals die out. The
GA is terminated when some criterion is satisfied, for
example, a certain nurmber of generations is reached, or
a mean deviation in the average performance of the
population, or when some point in the search space is
encountared.

Many variations of the simple GA have been developed.
Selection algorithms have been introduced that reduce
the stochastic errors associated with roulette wheel
methods, bounding the actual number of offspring that
an individual produces to the expected number derived
from its relative fithess measure Baker (1987). Ranking
methods Whitley (1989) have been introduced as an
alternative to proportional fitness, which reduces the bias
of the selection algorithm to highly fit individuals and
help avoid premature convergence. Variations of
recombination operators have been developed, such as
multiple point and reduced surrogate crossover Booker
{1987} for binary-coded GAs and intermediate and line
recombination Muhlenbein and Voosen (1993) for real-
valued representations. Further parameterization of the
GA has been introduced through the introduction of
generation gaps and variable recombination and
mutation rates. In the simple GA populations are non-
overlapping, which is known not to be the case in
biclogical systems. The concept of a generation gap
establishes how many individuals are replaced in a
population at each generation. If only a single offspring
is produced at each generation then the GA is said to be
steady-state Whitley (1989). Parameterization of the
recombination and mutation rates allows the amount of
disruption during reproduction to be controlled with
genegrations, without Iintroducing a bias towards the
length of representation used Smitendorf et al. (1992).
Genetic Algorithm Issues for Control; As the GA does
not require derivative information or a formal initial
estimate of the solution region and because of the
stochastic nature of the search mechanism, GAs are
capable of searching the entire solution space with more
likellhood of = finding the global optimum than
conventional optimization methods. Indeed, conventional
methods usually require the objective function to be well
‘behaved, whereas the generational nature of GAs can
tolerate noisy and discontinuous function evaluations.
A number of considerations commonly arising in control
engineering problems and the way in which these are
treated through the application of GAs, are discussed
below.

Representation: Continuous decision variables may be
handled either directly through real-valued
representations and the appropriate genetic operators or
by using binary representation schemes and standard
genetic operators. In the case of binary representations,
real values can be approximated to the necessary degree
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with a fixed point binary scheme. In most control
problems, however, it-is the relative precision of the
parameters that is significant rather than absolute
precision. In such cases, the logarithm of the parameter
may be encoded, reducing the number of bits and hence |
memory usage Smitendorf et al. (1992). Alternatively, a
direct floating point representation may be used.
Discrete decision variables can be encoded using either
binary or n-ary representation. When functions can be
expected to be locally monotonic with respect to such
variables, the use of Gray coding is known to better .
exploit such monotonicity Caruarfa and Schaffer (1988).
This consideration also applies to binary representations |
of continucus decision variables. In cases where a
mixture of discrete and continuous decision variables is
to be used, it is feasible to use a mixed representation
provided care is taken.to ensure that the genetic
operators used function correctly over the set of
encoding chosen. However, encoding all of the
parameters using a single binary representation can
simplify the operation of the GA.

Scale: The concept of fithess is central to all
evolutionary algorithms. Given that many optimization
problems are characterized by a real-valued objective
function, these wvalues must be converted into a
nonnegative fitness value if they are to be handled
correctly by the GA. Early work on GAs concentrated on
the use of offsetting objective function values so that
selection could be based directly on an individual's
performance within a population Goldberg (1989). The
use of scaling retains an individual's relative performance
and also attempts to bias the selective pressure towards -
better individuals while still allowing relatively unfit
individuals the potential to reproduce. Alternatively, by
discarding the relative differences between individual's
raw performance and considering them only according to
their ranking in a population, a constant selective
pressure may be applied throughout the evolutionary
process Whitley (1989). Off setting and scaling can result
in more and more individuals receiving fitnesses with
relatively small differences as the population converges. -
The rank-based methods maintain a constant selective
pressure towards good individuals throughout
convergence and are claimed to bring a number of other
advantages, such as computational efficiency and |
reduced bias. Additionally, rank-based schemes offer a
convenient mechanism for considering multiple
objectives simultaneously; this is discussed in the next
section.

Constraints: Most control engineering problems are
subject to constraints. For example, actuator have finite
timits on their operation and control loops are required

to be stable. GAs can handle constraints in a number of

ways. The most efficient and direct method is to embed .
these constraints in the coding of the individuals. Where
this is not feasible, penalty functions may be used to
ensure that invalid individuals have fithess levels that
reflect that they are low performers. However, -
appropriate penalty functions are not always easy to
design for a given problem and may effect the efficiency
of the search Richardson et al. (1989), An alternative
approach s to consider constraints as design objectives
and recast the problem as a multiobjective one (see, for
example, Fonseca and Fleming (1995).

Adaptation: The vast majority of applications of GAs in
control have concentrated on their use as function
optimizers. However, GAs have been shown to be well
suited to tracking time-varying systems Dasgupta and
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McGregor (1992), that is, systems in which the optimum
ftness or fitness criterion changes over time. Such
changes typically occur as a result of a change in the
external environment (e.g., a change in operating
conditions) or of system changes (e.g., wear of
mechanical components). The GA has the advantage
over many conventional methods of being able to
respond to such changes by exploiting the diversity of
individuals in the current population and evolving
towards the new performance measure. If there is
insufficient diversity in the population, then new material
¢an be readily introduced by randomly reinitializing some
members of the population.

Software: Although there exist many good public-
domain genetic algorithm packages such as GENESYS
Grefenstette (1990) and GENITOR Whitley (1989), none
of these provide an environment that is immediately
compatible with existing tools in the control dormain. The
MATLAB Genetic Algorithm Toolbox aims to make GAs
accessible to the control engineer within the framework
of an existing CACSD package. This allows the retention
of existing rmodeling and simulation tools for building
objective functions and allows the user to make direct
comparisons between genetic methods and traditional
procedures. By building GAs into a standard CACSD

- package, GAs can be made available to control engineers

as a powerful tool to complement those already in use.
The Neural Works Professional II/Plus neural network
software from NeuralWare Inc. now comes with a genetic
reinforcement learning system that augments the
standard training procedures using an EA to avoid
getting stuck in local optima, It can be expected that
many CACSD and CAE packages will be supplied with GA
toals as a standard feature in the.near future.

Parallelism: Apart from the cbvious benefits of speedup
in execution time, parallel GAs have a higher degree of

robustness and, typically, require fewer function
evaiuations to reach optimal solutions than a
comparable, so- called, panmictic GA. In addition,

parallel GAs may be made fault tolerant by exploiting the
process replication inherent in parallel implementations
Goldberg (1989). Employing a distributed population
structure with local selection and reproduction and some
form of genetic mobility may enhance the performance
of the GA over one where the population is treated
globally, These benefits may be realized even when the
GA is implemented on a sequential machine. A full
discussion of parallel GAs can be found in Chipperfield
and Fleming (1994).

Control Applications of Evolutionary Algorithms:
The application of GAs to control engineering can be
broadiy classified into two main areas: offline design and
analysis and online adaptation and tuning. In offline
applicaticns, the GA can be employed as a search and
optimization engine, for example to select suitable
control laws for a known plant to satisfy given
performance criteria or to search for optimal parameter
settings for a particular controllér structure. In online
adaptation GAs may be used as a learning mechanism to
identify characteristics of unknown or non-stationary
systems or for adaptive controller tuning for known or
unknown plants.

In the remainder of this section, some recent
applications of GAs in control are considered where
conventional methods have been found unsuitable,
problematic, or unavailable,

Control System Design: One of the most common
applications of GAs is that of parametric optimization. In
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control system design, many tasks can be cast within an
optimization framework. In particular, in the design of
control systems through parameter optimization, the
final solution can be sensitive to the initial solution
estimate or there may be a number of combinations of
parameter settings that produce the desired control
action. Conventional optimizers may therefore find only
suboptimal sclutions as the search is forced to consider
only small regions of the search space influenced by the
initial estimate. GAs are capable of sampling the entire
solution space and can therefore be expected to produce
solutions that are more global in nature. Additionally,
evolutionary approaches have the potential to. find
solutions in many different areas of the search space
simultaneously. Thus more information regarding the
nature of the design problem may be elicited during the
search, potentially yielding a more informed design
process.

GAs have been shown to be an effective strategy in the
off-line design of control systems through parametric
optimization by a number of practitioners. Krishnakumar
and Goldberg (1992) and Bramlette and Cousin {1989)
have demonstrated how genetic optimizers can be used
to derive superior controller structures in aerospace
applications in less time (in terms of Ffunction
evaluations) than other methods such as LQR and
Powell's gain set design. Varsek et al. (1993) have
shown how GAs may be used in the selection and tuning
of controller structures, and in robotics Gleghocn et al.
(1988} have demonstrated how GAs may be used for
path-planning problems in both stationary and non-
stationary environments

Multiobjective Optimization: Problems in control
engineering very seldom require the optimization of a
single objective function. Instead there are usually a
number of competing design objectives that are required
to be satisfied simultaneously.

Conventionally, members of the Pareto-optimal solution
set are sought through solution of an appropriately
formulated nonlinear programming problem. A number

of approaches are currently employed, including the € -
constraint, weighted sum, and goal attainment methods
Hwang and Masud {1979). However, such approaches
require precise expression of a usually not well
understood set of weights and goals. If the trade-off
surface between the design objectives is to be better
understood, repeated application of such methods will be
necessary. In addition, nonlinear programming rmethods
cannot handle multimodality and discontinuities in
function space well and can thus only be expected to
produce local sclutions. Multiobjective GAs Fonseca and
Fleming (1994} evolve a population of solution
estimates, thereby conferring an immediate benefit over
conventional MO methods. Using rank-based selection
and Niching techniques, it is feasible to generate
populations of non-dominated solution estimates without
directly combining objectives in some way. This is
advantageous because the combination of non-
commensurate objectives raquires precise understanding
of the interplay between those objectives if the
optimization is to be meaningful. The use of rank-based
fithess assignment permits different non-dominated
individuals to be sampled at the same rate, thereby
according the same preference to all Pareto- optimal
solutions. GAs have the potential to become a powerful
method for multiobjective optimization. Including the
control engineer in the design process as a decision



Reza Farshadnia: Genetic algorithms in optimization and Computer aided design

’

maker, the GA may be guided, through the progressive
articulation of preferences, to particular areas of interest
in the search space. The trade-offs between design
criteria and their interactions can be examined closely
and the engineer's knowledge and experience can be
empioyed to make informed decisions on the basis of
design requirements rather than the properties of the
objective functions.

Robust Control: One approach to the design of robust
control systems is through eigenstructure assignment,
Patton and Liy (1994} nhave demonstrated a hybrid
approach  combining GAs and gradient-based
optimization. Their scheme has been appiied to the
design of an aircraft lateral control System and employs
a real-valued representation in the minimization of a cost
function based on a combination of the sensitivity and
complementary sensitivity functions of the closed-loop
system. In the evaluation stage of the GA, each
Individual is improved by one step of the DFp algorithm,
and the resuiting individual is evaluated according to the
cost function. The remainder of the GA operates in the
usual manner for a real-valued population. It is claimed
that a GA approach takes full advantage of the freedom
provided by the eigenstructure assignrent to find a
stabilizing controller that minimizes the performance
index. In another approach, Dakev et al. {1995) employ
a GA in the loop-shaping design procedure to find
suitable weighting functions for a robust MIMO controller
for a critical system. The GA employs a structured

simultaneousty. The design problem considered was an
EMS suspension system for a r'nagnetically levitated
vehicle and was based on finding suitable weighting
functions to sha pe the open-loop transfer fy nctions while
satisfying the H « optimization of a normalized Cco-prime
factorization of the nominal plant description and explicit
closed-loop performance criteria. Hin-climbin_g techniques
Whidbome et al. (1994) had Previously been proposed ag
2 potential solution for such "mixed optimization”
problems; however, the GA-based approach was found

particular, it should be noted that the GA-based
approach has the potential to find controllers satisfying
H = criteria of lower order than those found using
conventional approaches,

System Identification: Many - problems in control-
€ngineering, signai Processing, and machine learning can
be cast as a system identification problem where the
task is to determine a Suitable model from a given set of
input-output data. The resulting model can then be used
for the prediction and control of a "black-box" system.
Although there exist many tried and tested methods for
linear system identification, in practice most real-world
control systems are, to some extent, nonlinear, The
extra complexity associated with nonlinear system
identification, particularly when there is no initial
information or model structure detail, has to some
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system identification using the NARMAX approach and
GA- based subset selection Lucasius and Kateman
(1992). The GA is used to select a fixed number of terms
from a set of possible nonlinear terms, and the NARMAX
method is used to identify the parameters of those
terms. Because the GA Operates on a population of
solution estimates, a family of low-variance models is
produced that can be assessed according to different
criteria bafore a final model is chosen, Compared with
the conventional approaches, which search the term
space iteratively, building a rmore and more complex
model, the GA-based approach conducts a global and
rebust search of the model space. Thus, the GA has the
potential to be more effective in identifying a suitable
model structure, and hence more general in nature,

The genetic identification strategy may be made more
effective by allowing the search to be conducted over a
variable number of tefms, Rather than using a minimum
descriptor-length-based objective function, we can cast

as a i

simultaneously. This approach is preferable, as the
impact of the number of terms in the model wili not
obscure the residual performance of any model directly,
To accommeodate a population with individuals consisting
of a variable number of terms, a structured
representation may be appropriate Dasgupta and
McGregor (1992). Using a hierarchical chromosome
representation, individual genes can be used to turn on
or off specific terms in a model formulation. This
approach has been appiied with s50me success to the
related problem of FIR filter design by Roberts and Wade
Robert and wade {1993}, In a similar vein, the group
method of data handling allows the representation of
terms as a tree structure. Sub-trees can then be
exchanged among individuals during reproduction
without the need to re-evaluate that part of the tree. Iba
etal. (1993) have demonstrated how thig approach may
be applied to nonlinear systems identification by
considering time-serieg prediction and pattern-matching
problems. :

System Integration: In, addition to the problem of

implementations, besides control algorithm issues there
hardware realization and
These include design

design for redundancy, fault tolerance, and fault
diagnosis policies, All of these issyes bear on the

optirpization of the_ integration, and it is desirable to

components is dictated by the environment, electronics
cooling requirements,

efficiency, weight, reliability, and operating costs.
The systems integration problem is common to many
industrial applications and can be posed within a
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multiobjective framework. However, it has generally
been found to have properties that render it unsuitable
for conventional optimization technigues. For example,
the decision variables are a mixture of discrete and
continuous parameters and the design objectives cover
a broad range of measures from controller performance
to mechanical considerations. Additionally, the objective
functions can, in general, be expected to be highly
nonlinear and exhibit a high degree of interaction with
one another. The use of genetic based methods has the
potential to search such compiex objective function
surfaces, incorporating the designer's knowledge in both
the formulation and the solution of the problem (see, for
example, Parmee and Denham _(_1994).

Real-Time and Adaptive Control:Two major problems
have been encountered in attempts to use GAs in real-
time control applications: generational execution time
and ensuring the production of satisfactory control laws
at each generation. The problem of generational
execution time may be addressed by either parallel GAs,
incremental GAs Whitley (1989), or micro GAs Karr
(1991). Incremental GAs produce only one or two
offspring at each generation, and therefore have the
advantages of reduced generation cycle time and
memory requirements, but may not produce new or
satisfactory Individuals at each generation. Micro GAs,
employing a very small population, have the potential to
produce more offspring but suffer from a lack of genetic
diversity and tend to result in 8 more local search. The
task of producing a satisfactory control law at each
generation is the harder problem to address. For
example, a relatively insensitive controller may have a
large number of suitable parameter settings that result
in a satisfactory control law. Thus, it is possible that-the
GA could produce successive controt laws that resulted
in unacceptably large changes to the controller settings,
possibly introducing stability problems. Nonetheless, a
number of successful schemes based on GAs have been
developed. Porter and Jones ((1992) have developed a
genetic approach to tuning digital PID controllers that is
claimed to be much simpler to implement than previously
applied constrained optimization techniques, even forthe
case of simple plants. Other adaptive approaches have
used GAs to implement classifier systems that learn
production rules online and provide performance
measures for these rules according to how well they
control the plant, Jong (1980). In these GA classifier
systems, individuals are a coding of a set of production
rules that represent the control action to be applied to
the plant under given circumstances. A related approach
to the online use of GAs is that-of fuzzy control. Karr
(1991 and 1992) demonstrates how GAs may be used to
design both adaptive and non-adaptive fuzzy logic
controllers for a dynamic system. In this approach, the
GA is used to optimize the membership functions of the
controller. It is argued that the control rules tend to
remain constant, even across a wide range of conditions,
and that the membership functions should be adapted to
the present situation. However, Linkens and Nyongesa
(1992) see the optimization of membership functions as
an offline task, and a fuzzy classifier system is used to
acquire and modify good sets of rules online. In their
scheme, adaptive control is provided by the constant
adaptation of the rule set to meet the changing dynamics
of the problem, without an explicit identification of a
plant model.
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Conclusion

This study has presented a broad overview of GAs in
control systems engineering, describing many of the
features and characteristics of GAs that are important
and relevant in the implementation of these algorithms
for control engineering applications. In addition, a
number of specific application areas have been
considered in some detail. Clearly, GAs have become an
established search and optimization procedure in control
engineering and elsewhere.

Offline implementations are a particularly rewarding
application area for GAs. 1a control systems design, and
multiobjective optimization in particular, GAs offer the
opportunity to address problems that were hitherto not
susceptible to efficient solution by conventional methods.
Such problems may be addressed directly through GAs
and, by including the control engineer in the optimization
process as a decision maker, afford the opportunity for
the designer to guide the search while learning about the
problems' trade-offs. This consideration is particularly
important when the objective functions are not well
understood or behave poorly.

The ability of the GA to solve complex combinatorial
optimization problems efficiently is also an important
consideration. For example, in systems integration this
allows the control engineer to consider such issues as
sensor/ actuator placement and connectivity
requirements in the same process as the controller
design. Future developments in the field of decision
support and concurrent engineering can expect to benefit
from such advances in GA applications.

Online applications of GAs present a number of
significant challenges that will need to be addressed
before their use becomes widespread. When it is possible
to identify a suitable system model, a conventional GA
can be applied in some adaptive or tuning capacity in a
relatively straightforward manner. However, very few
systems can be expected to exhibit the high degree of
robustness required for direct manipulation by an GA.
Instead, methods are beginning to emerge that either
limit the control action that the GA is capable of, or
bound the scope of the GA's search while maintaining an
acceptable level of performance. In the future, learning
systems, which represent an important growth area in
control, can expect to receive more attention. Such
systems, including artificial neural networks, classifier
systems, and adaptive fuzzy controllers, may be coupled
with GAs to expedite their learning. Future developments
in these areas are likely to involve GAs as a central
component.
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