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Abstract: Decomposition of elastic constant tensor into irreducible parts is given. Elastic constant tensor
norm and norm ratios for various anisotropic materials of the same or different symmetry are calculated.
The norm of a tensor is used as a criterion for comparing the overall effect of the properties of anisotropic
materials and the norm ratios are used as a criterion to represent the anisotropy degree of the properties
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- Elastic constant tensor decomposition:The
" constitutive relation characterizing linear anisotropic solids

is the generalized Hook's law Nye (1964):
6y =S Cu
(1)

Where O-;j and ‘9kl are the symmetric second rank stress

and strain tensors, respectively Cw is the fourth-rank

' elastic stiffness tensor (hereafter we call it elastic constant

tgnsor) and ,S‘w‘lr is the elastic compliance tensor.

. There are three index symmetry restrictions on these

tensors. These conditions are:

Cur=Cast  Cyr=Cu’ Ciur=Co!

(2)

. which the first equality comes from the symmetry of

'_ symmetry properties as the elastic constant tensor C"kl
" and their connection is given by Teodosio, (1982):

stress tensor, the second one from the symmetry of strain
tensor, and the third one is due to the presence of a
deformation potential. In general, a fourth-rank tensor
has 81 elements. The index symmetry conditions (2)
reduce this number to 21. Consequently, for most
asymmetric materials (triclinic symmetry) the elastic
constant tensor has 21 independent components.

Elastic compliance tensor .

ik _possesses the same

iy

, = 1 , 3
CiarS kimn _?(5,.,,5}.,, + 8100 ju (3
Where é;j is thé kronecker deita. The Einstein summation

convention over repeated indices is used and indices run
from 1 to 3 unless otherwise stated. Schouten {1954) has
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shown that C"m can be decomposed into two scalars,
two deviator‘é, and one-nonor parts. The same
decomposition in terms of the irreducible representations
of the three-dimensional rotation group has been given
in Heine (1960) as: )
ZDn+2Dz+D4‘l (4)

where the subscripts denote the weight of the
representation.By applying the symmetry conditions (2)
to the decomposition results obtained for a general
fourth-rank tensor, the following reduction spectrum for
the elastic constant tensor is obtained. It contains two
scalars, two deviators, and one-nonor parts:

1
C(y‘z"z) = % (35‘k5ﬂ + 35‘75“,;* - 26;56&’ XSCPW -C

ee)

These parts are orthonormal to each other, Using Voigt's
notation Nye, (1964) for C‘w, can be expressed in 6 by

6 reduced matrix notation, where the matrix coefficients

Cmare connected with the tensor components by the

recalculation rules:

¢1=Cu

(f © g =1y 6, & A =1, 6);
that is:

111,222,336 3,

23=32 & 4,

31=135,12=2166

The Norm Concept: Generalizing the concept of the
modulus of a vector, norm of a Cartesian tensor (or the
modulus of a tensor) is defined as the square root of the
contracted product over all indices with itseif:
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O = 53548, + 35,8, - 26,6, Y3C . - € s )

Denoting rank-n Cartesian ,

the squére of the norm is expressed as Jerphagnon et af.
{(1978):

This definition is consistent with the reduction of the
tensor in tensor in Cartesian formulation when all the
irreducible parts are embedded inthe original rank-n
tensor space,

Since the norm of a Cartesian tensor is an invariant
quantity, we suggest the foliowing:

Rule 1: The norm of a Cartesian tensor may be used as a
criterion for representing and comparing the overall effect
of a certain property of the same or different symmetry.
The larger the norm value, the more effective the
property is.

It is known that the anisotropy of the materials, i.e., the
symmetry group of the material and the anisotropy of the
measured property depicted in the same materials may be
quite different. Obviously, the property, tensor must
show, at least, the symmetry of the material. For
example, a property, which is measured in a material, can
almost be isotropic but the material symmetry group itself
may have very few symmetry elements. We know that,
for isotropic materials, the elastic constant tensor has two
irreducible parts, i.e., two scalar parts, so the norm of the
elastic constant tensor for isotropic materials depends

oniy on the norm of the scalar parts, e, N= N, . Hence,

N

3 .1 for isotropic materials. For cubic
N
symmetry materials the constant tensor has two scalar

the ratio

parts and one nonor part, so we define two ratios: N 5
N

for the scalar irreducible parts and ¥ » for the nonor
N .

irreducible part. For more anisotropic materials, the

elastic constant tensor additionally contains two deviator

N, for the deviator irreducible

N

parts, so we can define

parts.
Generalizing this to Irreducible tensors up to rank four, we

can define the following norm ratios: L for scalar parts,
N

for vector parts, Ny for deviator parts,

N,
N N
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N, for septor parts, and N, for nonor parts. It is

N . o N CoL
to be noted that we calculate norms for weights only,’
i.e., for values of j = 0,2,3,4. Although norm ratios of;
different irreducible parts- represent the anisotropy of
that particular irreducible part, they can also be used to:
asses the anisotropy degree of a material property as a
whole, we suggest the following two more ruies

Rule 2: When Ns is dominating among norms of

irreducible parts: the closer the norm ratio N, is to one, |
N
the closer the material property is isotropic.

Rule3. When Ns is not dominating or not present, -
norms of the other jrreducible parts can be used as a

criterion. But in this case the situation is reverse; the

larger the norm ratio value we have , the more
anisotropic the material property is.

The square of the norm of the elastic constant }

tensorcﬂl, is:

IMP =2 + ST+ 234 SYcf + e
#d ad HA #l A +

z§ (c gm.c em), % (c 4y

(11)

Let us consider the irreducible decompositions of the
elastic constant tensor in the following materials:

Table 1: Elastic constants

Materials Cih Gy C, Ci Cis
Zinc 165.0 61.8 39.3 31.1 50.0
Cadmium . 87.0 94.1 149 -5486 47.5
Sulfide

Cadmium 116.0 50.9 19.6 42.0 41.0

Both materials (tool steel and rocks) are listed with
increasing anisotropy degrees, that is from smaller

i to larger values, Among these five materials,

Normai Tool Steel is the elastically strongest and Slate is
the elastically most anisotropic.

Both materials (rocks and wood) are listed with
increasing anisotropy degrees, that is from smaller

NS

_N to larger values. Among these materiais Dunite is

the elastically strongest and Qak is the elastically mosi
anisotropic.
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Table 2: Norms and the anisotropy degrees {norm ratios)
- Material . N Ny N. N NN . . N./N N/N
Cadmium 165.14 129.48 10.19 210.10 .... 0.786 ... 0.616 0.048
Suffide
Zinc 267.26 . 86.28 12.14 281.10 .... 0.951 ... 0.307 0.043
Cadmium 196.61 . 55.56 2.50 20432 . ... 0.962 ... 0.272 0.012
Among these materials, Zinc is the elastically strongest and Cadmium Sulfide is elastically most anisotropic.
tic constan | steel an ks, hexagonal tem transversely isotropic
Material .Gl C., Cu Cia
TOOL STEEL
Normat . 289.0 284.0 84.5 116.0... 117.0
Hardened . 277.0 272.0 80.8 113.0... 112.0 )
ROCKS ' -
Micaschist . ~165.0 6¢.8 - 39.6 31,1 .... 500
Slate . 87.0 . 94.1 149 . 546 .... 47.5
Eclogite . 116.0 50.0 19.6 420 .... 1410
4: N nd the ani r (norm ratigs)
Material . ..., N, Ny N, .. .. N NN NJ/N N_/N
TOOL STEEL
Normai .... 592,461 . 4,658 .. 0.384 ... 592.479 0.99996 0.0079 0.0006
:grglsged .... 567.798 . 4.438 .. 1.461 ... 567.817 0.99996  0.0078 0.0026
Micaschist .... 152.791 16,753 .. 5.078 ... 153.790 0.99350 0.1089 0.0330
Eclogite .... 260413 27.829 . 10 385. 362.102 0.99356 0.1062 0.0396
Siate ... 181.220 63.857 , 23 2171 . 93.539 0.93653 0.3299 0.1199
horhombic system hotropic sym non- lline materials elasti
Material C,, Ca Cus Caa Cee Cee Ca  Ciy  Cos
ROCKS '

Dunite 263.0 194.0 213.0 70.0 78.0 710 950 74.0 67.0
- Zoistic 175.0 164.0 158.0 63.6 51.1 455 63.0 72.0 72.0
Prasinite

Enslat. 186.0 179.0 159.0 51.6 55.6 60.0 60.0 54.0 56.0
Olivin, 323.0 210.0 199.0 733 709 68.6 93.0 92.0 82.0
Marble 119.0 110.0 104.0 25.7 30,7 326 51.0 520 47.0
Hornb 144.0 125.0 130.4 38.0 42.5 52.0 45.0 52,0 523

WwOOD :

Oak 1.034 6.76 2.98 1.29 0.39 0.76 1.0l 1.01 1.47
Beech 1.66 154 330 1.61 0.46 1.06 143 1.28 2.15
Pine 1.24 17.1 1.79 1.18 0.079 0.91 0.74 0.76 0.94

Spruce  0.755 17.2 0965 0.624 0.035 0.854 0.550 0.332 0.541

Tabte 6: Orthorhombic system non-crystalline materials norms and norm ratios

Material N, Ny N, N NJ/N N./N _N/N
ROCKS
Dunite . 450.668 ... 56.528 . 6.945 454.252 0.9921 0.1244 0.0153
Olivinite . 451.137 ... 37.834 16,696 453.029 0.9958 0.0835 0.0368
Enslatite . 312.494 . .. 22,575 . 6.638 313.379 0.9972 0.072 0.0212
Zoistic . 348.197 . .. 9.754 . 22.742 3490.075 0.9975 0.0279 0.0652
Prasinite
Hornb . 272,307 ... 14,958 . 6.352 272,791 0.9982 0.0548 0.0233
Marble . 234.427 ... 12,530 . 1.455 234.766 0.9986 0.0534 0.0062
WOOD :
Spruce . 8.7391 .. 12.2398 5.3786 15.9723 0.5471 0.7663 0.3368
Pine .. 99011 .. 11.6131 4.8855 16.0238 0.6179 0.7247 0.3049

" Beech . 11.4242 .. 10.0296 3.4586 15.5906 0.7328 0.6433 0.2218
Qak . 2.1576 . . 3.9101 , 09574 . 8.2119 0.8716 0.4762 0.1166
Table 7: Average elastic coefficients measured in units of Gpa, from fresh unembalmed human_and canine femora
Material Ci C. Cy Cao Css Ces Cia C.. Coy
Human - 18.0 20.0 . 27.6 6.23 5.61 4.52 9.98 10.1 10.7
Canine 19.0 22.2 29.7 6.67 _ 5.67 467 9,73 11.9 11.9

Table 8: Norms and the amsotrogx gegrees {norm ratios}

Material N, N N./N N,/N N./N
Human 46.347 7 026 . 0 902 46.886 0.9885 0,1499 0.0192
Canine 49,969 7.966 1.075 50.611 0.9873 0.1574 0.0212
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Considering the ratio s, wecansay that Canine is.

N
more anisotropic than Human and elastically  Canine is
a little bit stronger than Human.
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