Pakistan Journal of Applied Sciences 1 (4) 446-451, 2001

© Copyright by the Science Publications, 2001

Content Based Compression of Turkish Documents

Banu DIRI
Yildiz Technical University, Department of Computer Engineering
Yildiz 80750, Istanbul, Turkey

Abstract. The main goai of this study is to analyse the morphological structure of the Turkish documents.
The new proposed method consists of lossless compressing the menograms, digrams, trigrams, roots-stems
and suffixes individually using a statistical approach. In this work 1-gram, 2-gram, 3-gram, root-stem and
suffix frequencies have been computed for Turkish language. A tuned template has been prepared for each
group. The compression of Turkish documents has been performed by using the static Huffman Coding
method and a compression performance of 39 % for 1-gram, 47 % for 2-gram, 51 % for 3-gram and 59 %
for Word Based Dynamic Huffman has been measured.

Keywords: Text compression, Language modelling, Huffman coding, n-gram models, Turkish Corpus

Introduction
Data compression is simply the efficient digital
representation of a source. Infact, data compression is
the representation of a scurce in digital form with as few
bits as possible while maintaining an acceptable loss in
fidelity. The squrce can be data, still images, speech,
audio, video, or whatever signal needs to be stored or
transmitted. There are many known methods for data
compression. They are based on different ideas and
produce different results, but they are all based on the
same principle, they compress data by removing
redundancy from the original data in the source file. Data
compression methods can be divided inte two groups:
lossy and Jjossless compression , Salomon, (1998).
Lossless means perfect reconstruction of the source and
lossy means that the source is not perfectly preserved in
the representation.
Information Theory Concepts: Entropy: Entropy (H)
and Redundancy (R) have itmportant application areas
- such as compression, language identification, etc. The
entropy of a single symbol a;, is defined as -Pjlog,P;
Salomon, (1998) and Gibson et af, (1998) where P, is the
probability of occurrence of 3, in the data, The entropy of
3, is the smallest number of bits needed, on the average,
to represent symbol 3, (eq.1).

-2 log, P ®
1 .

This is the smallest number of bits needed, on the
average, to represent the symbol. The entropy of the
data depends on the individual probabilities P, and is
smallest when all n probabilities are equal. This fact is
used to define the redundancy R in the data, It is defined
as the difference between the entropy and the smallest
entropy (eq.2).

n
R:[—%PI. log2 PiJ—logz(%,)

n
—%Pj 10g2 F’[+log2 n

(2

One several quantities that are commonly used to
express the efficiency of a compression method. It is the
compression ratio {eq.3).

446

Size of the output stream
Compression ratio =

Size of the input stream (3)
Sormetimes the quantity n=100%(1 ~ compression ratio)
is used to express the quality of compression.

Huffman Coding: This is commonly used method for data
compression. It serves as the basis for several popular
programs used on personal computers. Some of them
use just the Huffman method while others use it as one
step in a multi-step compression process.

The method starts by building a list of all the alphabet
symbois in descending order of their probabilities. It then
constructs a tree, with a symbol at every leaf, from the
bottom up. This is done in steps where, at each step, the
two symbols with smallest probabilities are selected,
added to the top of the partial tree, deleted from the list,
and replaced with an auxiliary symbol representing both
of them. When the list is reduced to just one auxiliary
symbaol the tree is complete. The tree is then traversed
to determine the codes of the symbols. The size of th
Huffman code for symbol x is less than or equaﬂ-logzPi
Salomon (1998).

Huffman Decoding: The decoder must know what is at
the start of the stream, by accessing the start of the
stream it constructs the Huffman tree for the alphabet.
After having constructing the Huffman tree the rest of
the stream can be decoded. The algorithm for decoding
is simple. Start at the root and read the first bit of the
compressed stream. If it Is zero, follow the bottomn edge
if it is one, follow the top edge. Read the next bit and
move another edge toward the leaves of the tree. When
the decoder gets to a l|eaf, it finds the original,
uncompressed code of the symbol, and that code is
emitted by the decoder. The process starts again at the
root with the next bit.

Lossless Compression of Documents in Turkish:
Firstly, a Turkish document has been separated into
1-grams (monograms), 2-grams (digrams - 2 letter
combinations), 3-grams (trigrams - 3 letter
combinations) and then has been compressed with the
improved lossless compression method, Secondly, the
words in a document in Turkish have been separated into
root-stem and suffixes and then have been compressed
with the improved lossless compression method.
According to the Galgary and Canterbury corpus used in

’

Banu DIRI: Content Based Compression of Turkish Documents

the testing of the improved compression methods, the
test-group formed by 14 different documents in Turkish
has been used (Tablel).

Table 1: The documents that forms the test-group

File Type Raw Size No File Type Raw Size
{byte) (byte)
articlet 24,623 8 noveiz 236.778
article2 36.596 9 novel3 251.606
article3 41.378 10 article5 666,120
article4 48,880 11 articleé 731.929
textl 93.884 12 articte? 1.055.244
thesis 135.360 13 article8 1.795.215
160.239 14 article9 2.147.095

novell

8y Using Monograms, Digrams and Trigrams,
lossless Compression of Documents in Turkish: In
~ the first part, the frequencies of all the characters (1-
gram) that can be found In a Turkish document have
been computed. In this work, lower case and upper case
letters have been considered individually. Lower case 29
letter, upper case 29 letters pius non Turkish letters (x,
w, q) 3*2=6, together with the space and the special
characters, a set of 89 characters have been taken in
consideration. Frequencies, probabilities and the
codelengths {codelen) of the 89 characters are shown in
Table 2. '
Each 1-gram character represented by a Huffman code.
The entropy of the system is H=-4,37 bpc and the
redundancy R=0,026. All of these data leads us to
measure a compression performance of %39 when we
implement all of the files in the test-group. Experimental
results have been given in the Table 5,
The second part of the work, 2-gram processing has
been considered. The 2-gram histogram of each file in
the test-group has been collected and by fittering the
most least used digrams a modified tempiate has been
taken in consideration, By merging the digram and the
maonagram template & new template has been set up.
. The new template contains 533 elements. The 1-gram
part of the new template is for coding the digram
character set which are not in the filtered digram
template as 1-gram characters. The frequencies,
probabilities and codelengths of the template are shown
in the Table 3.
The most common digrams in Turkish documents are
(ar, la, er, an, le, in, de, yn, da, en, ..). Each digram
character set and also the monogram character
represented by a Huffman code. The entropy of the
System is H=-6,63 bpc and the redundancy is R=0,033.
The measurement of the compression shows us a %47
compression performance, implementing all of the files
in the test-group. Experimental resuits have been given
in the Table 5.
The third part of the work is for trigram compression
method. The trigram character set histogram of each file
in the test-group has been collected and by filtering the
least used trigrams a modified tempiate has been taken
in consideration, By merging the trigram and the
monogram template a new template with 602 elements
has been set up. The frequencies, probabilities and the
codelengths of the template are shown in the Table 4.
The most common trigrams in Turkish documents are
(lar, ler, bir, eri, ary, yor, ara, nda, ini, ile,..). Each
trigram character set and also the monogram characters
represented by a Huffman code. The entropy of the

bytes

system is

H=-6,056 bpc and the redundancy is R=0,034,

Implementing the trigram compression systern on all of

files in the test group leads us to measure a %51

compression performance. Experimental results have

been given in the Table 5.

Comparison of Experimental Resuits (I. Step): The

Huffman coding Method has been considered for

compressing the text ¥iles Knut, (1985). 3 different

algorithms have been developed for the compression,

The analysis of the text has been done individually for 1-

gram, 2-gram and 3-gram characters by using the

appropriate compression algorithm. The compression
performance (n) of the files in the test-group has been
given in the Table 5. The (Fig.1) is the graphical layout,

The average compression perfarmance for monogram is

%39, for digram is %47 and for trigram is %51. The

compression performance varies depending on the length

and the text data (for example the space character
usage).

To improve the compression performance:

1, Instead of lower case and upper case characters,
considering the text as a single case, would give a
better result because of the abllity of using a shorter
template. But this is not a real compression
implementation.

2. Considering the carriage return (#13) and the line
feed {(#10) characters, as a single character would
give a better result.

3. Instead of symbolising individually lower case and
upper case characters having two new characters in
the template to differentiate the lower cases and
upper cases would give a better resuit.

2250000 -

2006000

1750000

1580060 <1

1250000 -

1000000

50000

00090 4

250000

12 13]

BRawSize 8 MenoGam O0hvGram 8 ToGrem Document no

Fig 1: The graphics of the compression performances
received from the three different methods

Compression of Words in a Document Written in
Turkish: To increase the success of the compression
method that we are trying to develop the morphological
structure of Turkish and in order to code more data at
once, the word separated its root-stem and suffixes. The
derivative formed by adding forming suffixes to the noun
or verb roots is called the stem (like ag-lyk, bak-y-m,
gor-U-p). It is possible to code more data at once by

analysing the words divided into the stem and suffixes. .

In a word there may be the root and the stem at the
same time, in this case the stems which are longer than
the roots are taken in consideration. For example, let's
say that both “ay” and “aydyn” are included in the

447

Banu DIRI: Content Based Compression of Turkish Documents

dictionary. If the word which will be separated is
*aydynlyk”, we should take “aydyn” instead of “ay” as
the root. That means “aydynlyk” should be written as
aydyn:root and lyk:suffix. The method doesn’'t need a
data, which uses the knowledge on frequency of use of
the root-stem, and suffixes are taken from the document
" which is going to be compressed if only they still stay
related to the file, So the Huffman code word for the
same word that will be the most suitable for every
document’s characteristic is found Diri, (1999). The
method developed for thatts called the dynamic Huffman
algorithm.
Word Based Dynamic Huffman Method: We need two
different dictionaries of root-stem and suffixes in order
to separate the word into root-stem and suffixes. In the
formation of root-stem dictionary, a root dictionary that
includes 13.206 roots and stems by using Turkish
dictionary Kurumu, (1992) and thesaurus Kurumu
(1996). A dictionary of suffixes has been formed which
includes all the suffixes (522) and all the control data to
be used in the separation of lower case and upper case
letters. All the information in root and suffix dictionaries
i5 stored with lower case and the analysis of the
document is done and coded according to the lower case.
In the decompression of a file, in order not to lose its
original form, we have to know which letters are used in
the suffix dictionary. If all the letters are upper case or
there is one or more upper case letters in the word,
_these control characters are used to find their places in
the word.
After the prepared root-stem and suffix dictionaries are
stored in the memory, the document that will be
compressed is put into the memory in blocks and every
character in each block examined. At the end of each
block, the next block is read automaticaily in the
memory and when a word starts in a block and ends in
the next that means it is fauitless. A modular finite state
machine has been developed in order to accelerate the
examining of characters in blocks. All the phases starting
from the output of two machines to the input of the
Huffman trees is shown in the block diagram in Fig. 2.
When the finite state machine finds a word in a block, it
separates the word into the root-stem and suffixes in the
most appropriate way by calling the most necessary
algorithms. As the words are analysed by changing into
lower case letters for the lossless compression of the
upper case letters, all the necessary control data has to
be formed. And when a word in Turkish or any other
language that is not in the root-stem dictionary used
during the analysis, this word is coded character by
character. Because of this, during the compression, the
- developed system adjusts to special occasions. As it can
be seen Fig. 2, two Huffman trees are formed. One form
Huffman codes for the root-stem & Huffman tree) and
the other for suffixes (S Huffman tree). In both trees, as
the code confliction is possible, in order to prevent the
confusions during the decoding “0” bit before the
Huffman codes in “R" tree, and ™1” bit before the
Huffman codes in “5” tree is added.
In the decompression of a coded compressed data, “R*
and “S” trees are used. The first bit of the coded bit files
shows which Huffman tree the code should be taken
from. If it is “0", the “R” tree and if it is “1", “S” tree
shouid be used in the process, After this bit control, the
shortest code length of the tree is taken into
consideration and is searched on the bit file. If the match

between the root-stern or suffix which has this code
value, the following bit used to decide which of "R” or *S”
trees will be used in the process. If the match cant be
made, the process continues by increasing the length of
code searched till the match can be made. For the
lossless decompression of the data compressed with
codes, the decoder needs the header data, which is
added to the comprgssed data. The format of header
data can be seen in Fig. 3.

Renewal of suffixes for

o 1 freqenciesinformation
affix :
Cogtructioe: of suffix and
Reneval of root-stem for | stymbad for Hufnan codes *1°
fnaqumnu informetion d e

G:mmnimofmut-dan
for Hufinan codes 0™

Fig. 2: The block diagram of the system used to analyse
the document and form the code words

RBC R SC RSAD RID SAD D Copressonof doounert

O O O

Fig. 3: Format of the header

RBC (residue-bit-count) has a 1 byte length and when
the last value is less than 8 bits; it shows how many bits
of the value in last byte to be decoded as real data. The
root-stem number received after the analysis of the
document is stored in RSC and the number of suffixes is
stored in SC. The field in which the root-stem address
data is stored, RSAD, shows the dictionary address of
every root-stem that can be found in the documentary
and dictionary. As there are 13.206 words in the root-
tem dictionary used, address data of each is stated with
log, 13.206(bits. The total length of this field in the
header i5 14*(the number of root-stem in the
document)/8| bytes. Suffix-address data (SAD) includes
the address data of the suffixes. As we have a total sum
f 580 syffix data, each suffix can be expressed with
to?z 580/ bits and the field of suffix address information
is 110*(the number suffixes in the document)/8| bytes
iong. In RSFD field, the information on Huffman tree that
is formed to code the root-stem information is
transferred and in SFD, the information on Huffman tree
that is formed to code the suffix information is
transferred.
Sending the tree code data: By transferring the data
on Huffman tree codes instead of the frequency data of
root-stem and suffixes which are at the beginning of the
compressed file and in the header data, the following are
done: (1). The average length of the header datais

- 448

Table 2 Freguencies, probabilities and codelengths of monograms
—Llaram __ Frea, "Codelen

Banu DIRI: Content Based Compression of Turkish Documents

Fre

Codelen [1 gram Freqg. Codelen P,
blank 2057045 2 0,277502 s 55048 7 0,007426
a 553340 4 0,074647 S 50422 7 0,006802
e 433174 4 0,058437 3 49160 7 0,006632
i 407126 4 0,054923 h 44463 7 0,005998
n 350248 4 0,04725 v 44419 7 0,005992
r 339737 4 0045832
f 310492 5 0,041886 0 5269 10 0,000711
v 241875 5 0,03263 G 5257 10 0,000709
Kk 219736 5 0,029643 N 4553 11 0,000614
e P 4432 11 0,000598
z 71914 7 Q009701
q 56930 7 0,00768 u 1048 13 0,000141
; 55048 7 0,00743 1] 937 13 0,000126

Table 3: Frequencies, probabilities and codelengths of digrams
2 F

gram req. Codelen

P,

2 gram

PP 1294889 3 0,093166 en 52685 0,003791
pa 553340 5 0,039812 e s e,
pe 433174 5 0,031167 ni 29578 9 0,002128
Pi 407126 5 0,029292 el 29565 9 0,002127
®n 350248 S 0,0252 ay 28894 9 0,002079
............. . ek 28592 9 0,002057
ar 92437 7 0,006651
la 85776 7 0,006172 oy 3637 12 0,000262
.............. " nk 3600 12 0,000259
er 73370 8 0,005279 ga 3554 12 0,000256
an 73126 8 0,005261 ... et veees i
.................................. od 1038 14 7,47E-05
le 71235 8 0,005125 "t 1033 14 7,43E-05
in 69539 8 0,005003 zg 1029 14 7,4E-05
........................ ht 1020 14 7,34€E-05
da 52752 8 0,003795 .. commee s
Table 4: Frequencies, probabilities and codelengths of trigrams (gpblank)
3 gram Freq. Codelen P 3 _qgram Freq. Codelen P,
PP 1294889 3 0,101757 s e v
Pop 1227308 3 0,096446 iye 10133 10 0,000796
Ppa 553340 5 0,043483 ele 10102 10 0,000794
Pppe 433174 5 0,03404 ala 10034 10 0,000789
ler 32701 g 0,00257 miz 2526 12 0,000199
bir 27169 9 0,002135 una 2525 12 0,000198
eri 26025 9 0,002045 vyaz 2521 12 0,000198
Irg 24892 9 0,001956 wusu 2515 12 0,000198
ara 16946 10 0001332 tag 2383 12 0,000186
nda 16911 10 0,001329 rov 2359 12 0,000185
ool 16345 10 0001284 rar 2349 13 0,000185

reduced by 40%. {2). The success in the compression
performance is increased by 1,5%. {3). During the
decoding process, there will be no need to form a
Huffman code tree for the second time. (4) Decoding
process takes shorter time.

As the bit streams in the RSFD and SFD fields included
in the header data are the Huffman coding tree itself, the
decoder can get the symbol codes withaut forming the
" Huffman tree. In this method, 2(N+M)-4 bits would be
enough for the transferring of root-stem “R" and suffix
“S” if the root number ts N and the suffix number is M.
The direction data of the tree have been used to transfer
the Huffman coding tree to the decoder. Direction data

- 449

has a value of “0” and 1" and it can be expressed by

ane bit. In the practice, if the value is “0” while going to
the left on the tree, we should go a level down and if the
value is "1” on the right we should go a level up. The “0”
and “1"” values which give the direction data are stored
In the RSFD/SFD fields according to their order of arrival
and the values which are suitable for the leaves on the
branches of the tree are stored in the RSAD/SFD field. In
order to provide coherent working of the decoding and
coding processes, all the direction data coding should be
done from left to right. In this way by using the “left-
node-right” notation, starting from the root of a tree we
go to the lowest leaf on the ieft and after that we go to

E

»

Banu DIRI: Content Based Compression of-Turkish Documents

Table 5; The comparison of the compression performance of monogram, digram and trigram

No Rawbize 1-gram N1-gram 2-gram N2-gram 3-gram Na-gram
1 articlel 24.623 14,960 39,2 14,358 41,7 13.575 44.9
2 article2 36.596 21.964 40,0 20.855 43,0 19.471 46,8
3 article3 41,378 26.240 36,6 25,489 38,4 24.180 41,6
4 article4 48.880 29,746 39,1 28.580 41,5 , 26.792 45,2
5 textl 93.884 58.844 37,3 57.103 39,2 53.635 42,9
6 thesis -435.405 86.896 35,8 85.154 37,1 80.368 40,6
7 novell 160.239 100.750 37,1 96.600 39,7 90.652 43,4
8 novel2 236,778 148,326 37,4 141.668 40,2 132.749 43,9
9 novel3 251.606 158,440 37,0 152.102 39,5 143.061 43,1
10 article5 666.120 367.508 44,8 347.380 47,9 319.505 52,0
11 article6 731,929 371.184 49,3 346.045 52,7 312.856 57.3
12 article7 1.055.244 638.116 39,5 522.762 50,5 486.395 53,9
13 article8 1.795.215 1.109.428 38,2 929.803 48,2 842.817 53,1
14 article9 2.147.095 1.389.754 35,3 1.143.691 46,7 1.071.935 50,1

Table 6; The comparison of the compression performance of 3-gram, WBDH with LZW and PKZip

No RawbSize 3-gram N3-gram WBDH NwaoH Nizw Newzip
1 24,623 13.575 44,9 12.359 49,8 49,5 59,6
2 36.596 19.471 46,8 17.850 51,2 49,2 64,7
3 41,378 24.180 41,6 20.899 49,5 44,4 59,3
4 48.880 26.792 45,2 23.341 52,2 47,1 66,8
5 93.884 53.635 42,9 45,074 52,0 45,7 58,6
6 135.405 80.368 40,6 61.213 54,8 51,0 69,4
7 160.239 90.652 43,4 75.373 53,0 49,4 61,6
8 236.778 132,749 43,9 110.571 53,3 47,6 57,5
9 251.606 143.061 43,1 118.845 52,8 47,5 58,4
10 666.120 319.505 52,0 272,494 59,1 57,2 68,6
11 731.929 312.856 57,3 270,805 63,0 60,4 72,3
12 1.055.244 485,395 53,9 420.227 60,2 58,6 69,6
13 1.795.215 B42.817 53,1 716.377 60,1 55,9 68,5
14 2,147,095 1.071.935 50,1 910.814 57,6 53,9 65,5

a higher level and go to the right. Then we should control
if the ending point of the process was a leaf or not, and
the same process should be repeated again if the node
point reached wasn’t a leaf. If it is a leaf, we should go
a fevel up till we can find an unprocessed branch con the
right,

Comparison of Experimental Results (II. Step):
- When the files in the test-groups are compressed with
the Word Based Dynamic Huffman method (WBDH), the
average output has reached to a compression ratio of
59% (Table &) Diri, 1999. The WBDH method has a 20%
better result of success when it is compared to the
compression performance of 1-gram method and it has
a 8% better result of success when it is compared to the
compression performance of 3-gram method.

When WBDH method is compared to the LZW {Lempel-

.. Ziv) method, which uses dictionary Philips, 1992, it has

a 4% higher compression performance. PKZIP (uses a
variation of LZ 77 with static Huffrnan Ceoding method
www.pkware.comm has an 8% better result in

450

compression performance than Word Based Dynamic
Huffman method (Table 6). The compression
performances of the four methods mentioned above are
given in Fig.4 as graphics.

. N r)\N‘\.
: _/_ \'/ \\ P
i Bl AN
i: ‘A;*/“/‘h_—""--..__“_‘//
- v \/_.__-1

L ity et

Fig. 4:The graphics of the compression performance
received from the four different methods

Banu DIRI: Content Based Compression of-Turkish Documents

Conclusion: we presented here four method types. All
af them have been experimented using the Huffman
coding tree and have been compared with each other, In
the first phase of the study monograms, digrams and
trigrams of Turkish language have been computed and
by processing the collected data three different tuned
templates have been prepared. The referential corpus
files have been compressed by implementing the
Huffman coding method on the prepared temptates, In
the second phase of study using the advantage of
Turkish agglutinative word” structure, the words have
been placed in two different Huffman coding trees by
classifying the root-stem and suffix occurrences. To
perform the morphoiogical classification adequately, two
dictionaries have been built with 13,206 words of root
and 580 suffixes symbols. Implementing the developed
technique, Word Based Dynamic Huffman method the
fites in the referential corpus have been compressed and
an average compression ratio of 59% has been
measured. As a result this study gives an example of
data compression on Turkish documents using the
morphelogical structure of Turkish Language,

451

Future Work: Having special dictionaries depending on
the subject of the source text will most probably improve
the compression performance.

References

Diri, B., 1999, Turkge’nin Bigimbilim Yapysyna Dayaly Bir
Metin Sykyptyrma Sistemi. Phd.Thesis, Dept,
Computer Eng., YTU, Istanbul,

Gibson, J. D, T. Berger, et a/, 1998. Digital Compression |
for Multimedia, Mergan Kauffmann.

http://www,.pkware.com

Knut, D. E., 1985. Dynamic_ Huffman Coding, J.
Algorithms, 6:163-180. i

Phillips, D., 1992. LZW Data Compression, The Computer
Application Journal Circuit Cellar Inc., 27:36-48.

Salomon, D., 1998. Data Compression, Springer, NY,
USA,

Tiirk Dil Kurumu, 1992. Tiirkge Sézlik, Milliyet Tesisleri.
Turk Dil Kurumu, 1996, Ymla Kylavuzu, Tirk Tarih
Kurumu Basymevi, Ankara.

Tirk Dil Kurumu, 1996. Imla Kilavuzu, Tirk Tarih
Kurumu Basimevi, Ankara.

	JAS.pdf
	Page 1

