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Abstract: This paper provides survey of the progress made in applying error control coding techniques
used in deep space and satellite communication over the last five decades and see the great advances
that have occurrgd in designing practical systems that narrow the gap between real system performance

and channel capacity.
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Introduction

The error control coding applications are in six areas:
1- Space and Satellite Communications

2- Data Transmission -

3- Data Storage

4- Digital Audio/Video Transmission

5- Mobile Communications

6- File Transfer ‘

Included among the applications are the Consultative
-Committee on Space Data Systems (CCSDS) standard
coding scheme for space and satellite communications,
trellis coding standards for high-speed data modems, the
Reed-Solomon coding scheme used in compact discs,
coding standard for mobile cellular communication, and
the CRC codes used in HDLC protocols. :
Applications to Space and Satellite
Communications: Most of the early work in coding
theory was directed at the low spectral efficiency, or
power-limited, portion of the capacity curve. This was
principally due to two factors. First, many early
applications of coding were developed for the National
Aeronautics and space administration (NASA) and the
European Space Agency (ESA) deep space and satellite
cormmunication systems, where power was very
expensive and bandwidth was plentiful. Second, no
practical coding schemes existed that could provide
meaningful power gain at higher spectral efficiencies.
Thus we start with a survey of applications of error-
control coding to space and satellite communication
systems.

Deep-Space Channel and Power of Coding: The
deep-apace channel turned out to be the perfect link on
which to first demonstrate the power of coding. There
were several reasons for this, most notably those listed
below, :

The deep-space channel is almost exactly modeled as the
memoryless AWGN channel that formed the basis for
Shannon’s noisy channel coeding theorem. Thus all the
theoretical and simulation studies conducted for this
channel carried over almost exactly into practice.
Plenty of bandwidth is available on the deep-space
channel, thus allowing the use of the low-spectral-
efficiency codes and binary-modulation schemes that
were most studied and best understood at the time,
Because of the large transmission distances involved,
which caused severe signal attenuation, powerful, low-
rate codes, with complex decoding methods, were
required, resulting in very low data rates. However, since
a deep-space mission is by nature, a very time-

consuming process, the low data rates realized in

practice did not present a problem.
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A deep-space mission is also by nature, a very expensive
undertaking, and thus the additional cost of developing
and implementing complex encoding and decoding
solutions can be tolerated, especially since each decibel
of coding gain realized resulted in an overall savings of
about $1,000,000 (in the 1960's) in transmitting and
receiving equipment.

Thus It is no surprise that Massey, in 2 recent paper
(Massey), called deep-space communication and coding
a “"marriage made in heaven.”

BPSK Coding for Deep-Space Channel: As a starting
point to understand the gains afforded by coding on the
deep-space channel, we consider an uncoded BPSK.
system with coherent detection. Throughout this
discussion we assume BPSK modulation, which transmits
uncoded information at a rate of 1,0 information bit per
signai. If coding is used, the code rate r, in information
bit per BPSK signal, then represents the spectral
efficiency of the coded system.

Simulation results and anaiytical calcutations have shown
that uncoded BPSK achieves a BER of 1075, considered
“reliable” in many applications at an Eb/No = 9.6 dB.
This point is plotted in Fig. 1 with the label BPSK. All the
points in Fig 1 are plotted for a BER of 107°. Actual BER
requirements vary from systern to system in deep-space
applications depending on several factors, such as the
nature and sensitivity of the data and whether it has
been compressed on the spacecraft prior to
transmission.

From the capacity curve in Fig. 1 it can be seen that the
minimum

E ., /N, required to achieve error-free communication at
a code rate r =1/2 bit per signal is 0.0 dB, and thus a
power savings of 9.6 dB is theoretically possible with an
appropriate rate r=1/2 coding scheme. Looking at the
BPSK capacity curve, however, reveals that to achieve a
rate r 1/2 with BPSK modulation requires only a
slightty larger E , / N, = 0.2 dB. Thus for code rates r =
172 or less, very little in potential coding gain is
sacrificed by using BPSK modulation. This, combined with
the difficulty in coherently detecting signal sets with
more than two points and the relative abundance of
bandwidth on the deep-space channel, resulted in the
choice of BPSK modulation with code rates r 1/2
bit/signal or below for deep-space communication.

One of the earliest attempts to improve on the
performance of uncoded BPSK was the use of a rate r =
6/32 biorthogonal, Reed-Muller block code, also referred
to as the (32, 6) RM code. This code was used on the
1969 Mariner and later Viking Mars missions in
conjunction with BPSK modulation and soft-decision



Sher: Error-Control Coding in Satellite Communication

maximum-likelihood decoding. The code consisted of 64
codewords, each 32 bits long, with a minimum Hamming
" distance between codewords of d ,,, = 16. The 64
codewords can be viewed as a set of 32 orthogonal
~vectors in 32-dimensional space, plus the complements
of these 32 vectors, and thus the name “biorthogonal.”
_Full soft-decision maximum-likelihood decoding
{decoding using ungquantized demeoduiator output) was
achieved by using a correlation decoder, based on the
‘Hadamard Transform, developed by Green at the Jet
Propulsion Laboratory (JPL) th&t subsequently became
known as the “Green Machine” (Green, 1966). The
Mariner system had code rate r = 6/32 =0.1875
bit/signal and it achieved a BPSK of 10-*with an E /N, =
6.4 dB.
This point is plotted in Fig. 1 with the tabel *Mariner.”
From Fig.1, it is seen that the Mariner code requires 3.2
- dB less power than uncoded BPSK for the same BER, but

: - it requires more than five times the bandwidth and is stili

7.5 dB away from the BPSK capacity curve at the same
spectral efficiency. It is important to note that even with
-its significant bandwidth expansion, the coding gain
actually achieved by the Mariner code was rather
modest. This is due to the fact that this code, as is
- typical of block codes in general, has a relatively large
number of nearest neighbor codewords, thus
substantially reducing the available coding gain at
moderate BER' s. (At lower BER's. a coding gain of up to

4.8 dB is achievable, but this is reduced to 3.2 dB at a _

BER of 10 * by the code’s 62 nearest neighbors.) In fact,
most of the coding gain achieved by the Mariner code
was due to the extra 2-3 dB obtained by using full soft-
decision decoding, a lesson that has carried over to
. almost all practical coding implementations where coding
gain is a primary consideration. .
A significant advance in the application of coding to
deep-space communrication systems occurred later in the
1960's with the invention of sequential decoding
(Mozencraft and Reiffen, 1961) for convolutional codes
and its subsequent refinement (Fano, 1963). It was now
possible to wuse powerful long-constraint-length
convolutional codes with soft-decision decoding. Thus for
“the first time, practical communication systems were
capable of achieving substantial coding gains over
- uncoded transmission.
" Sequential Decoding: Sequential decoding was first
used in 1968 on an “experimental” basis. (This was
- actually a deliberate stratagem to circumvent lengthy
NASA qualification procedures {Massey). The pioneer 9
solar orbit space mission used a modified version of a
rate r = % systematic convolutional code originally
constructed by Lin and Lyne , but the coding scheme was
changed for subsequent missions. (A Convolutional code
is said to be in systematic form if the information
sequence appears unchanged as one of the encoded
_sequences.) It is interesting to note that, even though
the Mariner coding system was designed first, the
Pioneer 9 was actually launched earlier, and thus the Lin-
Lyne code was the first to fly in space. The Pioneer 10
Jupiter fly-by mission and the Pioneer 11 Saturn fly-by
mission in 1972 and 1973, respectively, both used a rate
r = %, constraint length K = 32, ie., a (2,1,32 )
nonsystematic, Quick-Look-In (QLI) Convolutional code
constructed by Massey and Costello (Lin and Iyne,
1967). The two32-bit code generator sequences used for
“this code are given in octal notation by.
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g = 733533676772

g ® =53353367672

The code was chosen to be nonsystematic in order to
give it a larger minimum free Hamming distance d ;. in
this case d (.. = 21, compared to the best systematic
code of the same constraint length. This is true for
Convolutional codes in general, i.e., for a given
constraint length, a measure of decoding complexity
more free distance, and thus better performance, can be
achieved using a nonsystematic rather than a systematic
code. The fact that the two generators differ.in only one
bit position gives the code the “quick-look” property, i.e.,
the capability of obtaining a reasonably accurate quick
estimate of the information sequence from the noisy
received sequence prior to actual decoding. Thus is an
important capability in some situations that is aiways
available with systematic codes, but not, in general, with
nonsystematic codes. Requiring this capability does
result in some reduction in free distance, however, and
thus represents a compromise between choosing the
best possible code and retaining the “Quick-Look”
property. Nevertheless, the above code has had a long
and distinguished career in space, having been used, in
addition to the above two missions, on the Pioneer12
Venus orbiter and the European Helios A and Helios B
solar orbiter missions. .

A sequential decoder using a modified version of the
Fano tree-searching algorithm with 3-bit soft decisions
(3-bit quantized demodulator outputs) was chosen for
decoding. For lower speed operation, in the Kilobit-
second (kbps) range, decoding couid be done in
software. Faster hardware decoders were also developed
for operation in the megabit-per-second (Mbps) range.
This scheme had code rate r = % = 0.5 bit/signal and
achieved a BER of 10 ¥ at an E /N, = 2.7 dB (Fig 1:
Pioneer), thus achieving a 6.9-dB coding gain compared
to- uncoded BPSK, at the expense of a doubling in
bandwidth requirements. This represented a significant
improvement compared to the Mariner system and
resultedin performance enly 2.5 dB away from the BPSK
capacity went into the design of these early deep-space
coding systems is included in the paper by Massey ,
Sequential decoding algorithms have a  variable
computation characteristic that resuits in large buffering
requirements, and occasionally large decoding delays
and/or incomplete decoding of the received sequence. In
some situations, such as when almost error-free
communication is required or when retransmission is
possible, this variable decoding delay property of
sequentiat decoding can be an advantage. For example,
when a long delay occurs in decoding, indicating a very
noisy and therefore probably unreliable frame of data,
the decoder can simply stop and erase the frame, not
delivering anything to the user, or ask for a
retransmission. A so-calied “complete” decoder, on the
other hand, would be forced to deliver a decoded
estimate, which may very weil be wrong in these cases,
resulting in what has been termed a "foois-rush in where
angels fear to tread” phenomenon (Lin and Iyne, 1967).
However, fixed delay is desirable in many situations,
particularly when high-speed decoding is required. In
addition, the performance of Convolutiona!l codes with
sequential decoding is ultimately limited by the
computational cutoff rate Ro (the rate at which the
average number of computations performed by a
sequential decoder becomes unbounded), which requires
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" - SNR’ s higher - than i:apacity to achieve reliable
communication at a given code rate as shown in Fig 1.
_For example, to achieve reliable communication at a

coderateof r = 0.5 bit/signal using sequential decoding _

“and BPSK modulation on the AWGN channel requires an
E /N, =
requires an € , /N, = 0.2 dB. The E /N, at which the
picneer code achieves a BER of 10 is only 0.3 dB away
from the cutoff rate, and thus there is little to be gained
with longer constraint length codes and sequential
decoding at this code rite and BER.

- Viterbi Decoding for Deép-Space Communication:

These undesirable characteristics of decoding and the

- possibility of higher decoding speeds led to the use of

“maximum-likelihcod Viterbi decoding in the next
generation of deep-space communication systems. The
Viterbi algorithm, like sequential decoding, is compatible

2.4 dB, whereas the capacity bound only.

.-with a variety of modulation and quantization schemes. .

- Unlike sequential deccding, though, the Viterbi algorithm
has a fixed number of computations per decoding branch
and thus a fixed number of computations per decoding
branch and thus does not suffer from incomplete
decoding and, ultimately, Is not limited by a

-computational cutoff rate.

The Voyager 1 and 2 space mission were launched in
1977 to explore Jupiter and Saturn. They both used a (2,

1, 7} nonsystematic Convoiutional code with generator
polynomials . '
G (D) =1+ D+ D* + D*+D"

G (D) =1+ D* + D* + D° + D¢ (1)

And d .. = 10. This code and a companion (3, 1, 7,)
 code with generators -

" GW(D)=1+D +D3 +D* + D*
GO (D)=1+D*+ D'+ D* +D°
G (D) =1+D? + D* +D* + DF (2)
And d .. = 15, were both adopted as NASAJESA
Planetary Standard Codes by the Consultative Committee
on Space Data Systems (CCSDS). The (2,1,7) code has
- atso been employed in numerous other applications,
including satellite communication and cellular telephony,
and has become a de facto industry standard.
The above codes were decoded using a 3-bit” soft-

- consisted of mostly of uncompressed image information,

decision maximum-likelihood Viterbi decoder. Since the

. complexity of Viterbi decoding grows exponentially with
code constraint length, it was necessary to chose short
constraint length codes. rather than the iong constraint
length Pioneer cades used with sequential decoding. The
K = 7 codes chosen have a decoding trellis containing 64
states, considered reasonable in terms of implementation
complexity. The performance of these codes is plotted in
Fig. 1 with the.label “Planetary Standard”, The (2, t, 7,)
code requires an E , /N, = 4.5 dB to operate at a BER of
10 . Though this code results in a 5.1 dB power
advantage compared to uncoocded transmission, its
performance is 1.8 dB worse than the Pioneer system,
due to the. short constraint length used. However, its
decoder implementation complexity is simpler than a
sequential decoder, it does not suffer the long buffering
delays characteristic of sequential decoding, and because
of its regular trellis structure, it is adaptable to parallel
implementation, resulting in decoding speed in the 100's
of Mbps.

CCSDS Telemetry Standard: The Planetary Standard
also played a major role in military Satellite

12

Communications well into the 1980's (as incorporated
into the Satellite Data Link Standard (SDLS)). In general,

Convolutional encoding with Viterbi decoding  will -

continue to be used in earth orbiting sateilite

communication systems well into the next century. The

Globalstar and Iridium systems use K = 9, rate ¥: and ¥
= 7, rate 3%
rationale for the differing constraint lengths and rates
fies with the nominal lengths (and consequent space
loss) of the satellite-to-ground links for the two
Goperates systems. Globalstar satellites operate at

altitudes of approximately 1400 km, while Iridium at haif )

that height. Coding gain beyond that provided by the
planetary Standard can be achieved using code
concatenation. Concatenation is a scheme first
introduced by Foreney in which two codes, an “inner
code and an outercode” are used in cascade. The inner
code should be designed to produce a moderate BER
{typically on the order of 107 to 10™*) with modest
complexity. The cuter code can be more complex and

should be designed to correct almost all the residual

errors form the inner decoder, resulting in nearly error-
free performance (BER's, on the order of 107'%). The
most common arrangement is a combination of a short
constraint length inner Convolutional code with soft-
decision Viterbi decoding and a powerful nenbinary
Reed-Sotomen (RS) outer code. This combination was
eventually accepted in 1987 as the CCSDS telemetry
standard, . : : : )

In fact, though, several other concatenation schemes
had been tried earlier. For example, on the 1971 mariner
mission a (6,4) RS outer code with symbals drawn from
GF (2°) was used in conjunction with the (32,6) RM code
as an inner code, and on the two 1977 Voyager
missions, a (24,12) extended Golay outer code was used
together with the (2,1,7) Planetary Standard code as an
inner code. In both cases, the data to be transmitted

along with small amounts of sensitive scientific
information. The outer codes were used only to qive
added protection to the scientific information, so that tile
overall coding rate was not reduced much below the
inner-code rates. In the case of the Mariner system, each
6-bit symbol from tile outer code is encoded into one 32-
bit codeword in the inner code. This "matching” between
the outer code symbol size and the information block
size of the inner code means that each block error from
the inner decoder causes only one Symbol error for tile
outer decoder, and desirable property for ‘a

concatenation scheme consisting of two block codes,

Finally, although both inner decoders made use of soft-
decision inputs from the channel, the outer decoders
were-designed to work directly with the "hard decisions”
made by the inner decoders. Quter decoders which also
make use of soft-decision inputs will be considered later
in this section.

The CCSDS Standard concatenation scheme consists of
the (2, 1, 7) Planetary Standard Inner code along with a

(255, 223) RS outer code, as shown in Fig, 2. (Note that

the CCSDS Standard assumes that all the data is
protected by both codes, inner and outer, although it is
clearly possible to protect some data using only the inner
code or to send some data without any protection at all.)
The RS code consists of 8-bit symbols chosen from the
finite field GF(2®) based on the primitive polynomial
PIX) =X+ x4+ x*+x + 1 3y

Convolutional codes, respectively, The -

IR L S
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H(x—a“f-.)

L g(x) = @
_ =112

Where a.is root of p(x). From {4) we see that g{x) has
" 32 first order roots, giving it degree 32, and thus the
¢ode contains 32 redundant symbols. Since RS codes are
. maximum ‘distance separable (MDS), their minimum
distance is always one more than the number of
_redundant symbols. Hence this code has dmin = 33 and

can correct any combination of 16 or fewer symbol
- errors within-a block of 255 symbols (2040 bits). Hard-

14

decision decoding of the outer code is performed using
the Berlekamp-Massey algorithm, Finally, in order to
break up. possibly long bursts of errors from the inner
decoder into separate blocks for the outer decoder, thus

making them easier to decode, a symbol interleaver is -

inserted between the inner and outer codes. Interleaver
depths of between two and eight outer-code blocks are
typical. . ’

With the CCSDS Standard concatenation scheme, the
Eb/No needed to achieve a BER of 10* is reduced by a
full 2.0 dB compared to using the Planetary Standard
code, alone, with only a slight reduction in code rate
(fromr=0.5tor= 0.44). The performance of the (2,1,
7) code in a concatenatecd system with the (255, 223) RS
outer code is shown in Fig. 1 with the label "Voyager."
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-The concatenated Voyager system operates in the same
Eb/No region as the Picneer system, gaining about 0.2
dB with @ 12.5% loss in rate. Thus short constraint

" length convolutional codes with Viterbi decoding in

‘concatenated systems can be considered as alternatives

to long constraint length codes with sequential deceding.

Variations on the concatenated CCSDS theme continued

to be used to the end of the century in near-earth

applications. For example in 1998, the DirectTV Satellite
system was using a concatenated - convolutional-

Viterbi/Reed-Solomon Systern to brlng Television Signals

to 3 Million Subscribers.

Recently, technological advances have made it practical

to build maximum-likelihood Viterbi Decoders for larger

constraint lengths convolutional codes. The culmination

. ofthis effort was the Big Viterbi Decoder {VBD) designed
- by Collins to decode a (4, 1, 15) code. The VBD was

- eonstructed at JPL for use on the Galileo Mission to
-Jupiter. The decoder trellis has 2% 16384 states
making internal decoders formidable task. but decoding
speeds up to 1 Mbps were still achieved. The code has
octal generators

G = 46321
6% = 51271

G® = 63667
G*® = 70535 and

‘D e = 35, clearly a very powerful code, It achieves BER
of 107° at an Eb/No = 1.7 dB, only 2.6 dB away from the
BPSK capacity curve { Fig 1). Compared to the (2, 1, 7)
Planetary Standard Code, It gains a full 2.8 dB. In a
concatenated systerm with the (255, 223) RS outer
codes, the (4, 1, 15) requires an Eb/No = 0.9 dB to
‘achieve a BER of 10™° is within 2° dB of Capacity, and
is 1.6 dB more powerful, efficient than the Voyager
System ( Fig 1, Galileo). Although the above rate 1/4
Systems are 50% less bandwidth efficient than their rate
1/2 counter parts, it should be recalled that bandwidth is

_plentiful in deep-space thus it is common to sacrifice to
the spectral efficiencey for added efficiency. Infact an

" even less spectrally efficient {6, 1, 15) code is currently

scheduled to be flown abroad the Cassini Mission to

Sturn. However further bandwith expansion may be

difficult to achieve due to the fact that addition

" redundancy may reduce the energy per transmitted

symbo! below the level needed for reliable tracking by

the phase-locked loops in the coherent demodulators.

. As a further improvement on the CICSDS Concatenation
Standard, errors-and-erasures decoding, a suboptimum
form of soft-decision decoding, can be used o provide
‘some performance improvement if erased symbols are
available from the inner decoding. One method of
.providing ‘erased symbols is based on two facts
mentioned above: :

a frame of several RS code block is interleaved pricr to
encoding by the inner code, and

- Decoding errors from the inner decoder are typically
bursty, resulting, in strings of consecutive error symbols.
Although long stings of error symbols will usually cause
_problems for an RS decoder, After de-interieaving they
are more spread out, making them easier to decode. In

_ addition, once a symbaol error has been corrected by the -

RS decoder, symbols in the corresponding positions of
the other codewords in the same frame can be flagged

. as erasures, thus making them .easier to decode. This
technigue is known as "error forecasting” and has been
discussed in a paper by Paaske.
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Ancther method of improving the CCSDS Concatenation
Standard makes use of iterative decoding, In one
approach, the RS codes in a given frame are assigned
different rates, some higher that the (255, 223) code
and some lower, such that the average rate is
unchanged. After an initiat inner decoding of one frame,
the most powerful (lowest rate) outer code is decoded,

and then its decoded inforgation bits (correct with very .-

high probability) are fed back and treated as known
information bits {side information) by the inner decoder
in a second iteration of decoding. This procedure can be
repeated until the entire frame is decoded, with each
iteration using the lowest rate outer code not yet
decoded. The use of known information bits by the inner
decoder has been termed "state pinning,” and the
technique is discussed in a paper by Collins and Hizlan.
A more general approach to iterative decoding of
concatenated codes was proposed by Hagenauer and
Hoeher with the introduction of the Soft-Output Viterbi
Algorithm (SOVA). In the SOVA, reliability information
about each decoded bit is appended to the output of a
Viterbi decoder. An outer decoder which accepts soft
inputs can then use this reliability information to improve
its performance. If the outer decoder also. provides
reliability information at its cutput, iterative decoding can
proceed between the inner and outer decoders. In
general, such iterative decoding techniques for
concatenated systems can result in additional coding
gains of up to about 1.0 dB. In the CCSDS system,
however, the outer RS decoder cannot make full use of
such reliability information. Nevertheless, several
combinations of error forecasting, state pinning, and
iterative decoding have been applied to the CCSDS
system by various researchers, resulting in an additional
coding gain of about 0.5 dB.

Turbo Codes: Now we discuss a significant new
discovery called "Turbo Codes,” which is currently being
considered as a software upgrade for the Cassini
mission. Turbo codes, which are also known as parallel
concatenated convolutional codes, were first introduces
in a paper by Berrou, Glavieux, and Thitimajshima were
first introduced. Turbo codes combine a convolutionai
code along with a pseudorandom interleaver and
maximum a posteriori probability (MAP) iterative
decoding to achieve performance very close to the
Shannon limit. The encoder employs a simple (2, 1, 5)
code in systematic feedback form using two copies of the
parity generator separated by a pseudorandom
interleaver. The generator matrix is given by

1+D°

)= 1+D+D +D° + D

(5)

The code is the same as that generated by a
conventional non- systermatic feedforward encoder with
generator polynomials
G!(DY=1+D+D? +D*+D*
G*(DY=1+D*

But it is important that it be encoded in systematic
feedback form because of the way the interleaver
combines the two parity sequences. The encoder output
consists of the information sequence and two parity
sequences, thus representing a code rate of 1/3.
Alternately puncturing {deleting)} bits from the two parity

and
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sequences produces a code rate of 1/2, and other code
rates can be achieved by using additional parity
generators and/or different puncturing patterns. The
pseudorandom interleaver reorders the information
sequence before encoding by the second parity
generator, thus producing, two different parity
sequences. In essence, the interleaver has the, effect of
matching "bad" (low-weight) parity sequences with 11

good” (higher weight) parity sequences in almost all '

cases, thus generating a code with very few low-weight
crosswords. For large. enough information sequence
block tengths, Performance very close to the Shannon
limit can be achieved at moderate BER's, even though
the free distance of turbo. codes is not large. In fact for

most interleaver, the free distance of the above code is -

only dfree=6, even for very long blocklengths. The
excellent performance at moderate BER's is due rather
to a dramatic reduction in the number of nearast
neighbor codewords compared to a conventional
convolutional code. In a paper by Benedetto and
Montorsi, it was shown that the number of nearest
neighbor is reduced by a factor of N, where N
blocklength. This factor is refereed to as file “interleaver
gain." . :
The other important feature of turbo codes, is the
iterative decoder, which uses a soft-in/soft-out MAP
decoding algorithm first applied to convolutional codes
by Bahl. Cocke, Jelinek, and Raviv. This aigorithm is
more complex than the Viterbi algorithm by about a
factor of three and for conventional convolutional codes
- it offers little performance advantage over Viterbi
decoding. However, in turbo deceding, the fact that it
gives the maximum MAP estimate of" clear individual
information bit is crucial in allowing the iterative
decoding procedure to converge at very low SNR's.
Although the SOVA call also be used to decode turbo
codes, significant tmprovement, can be obtained with
MAP decoding.
At almost any bandwidth efficiency, performance less
than 1.0 dB away from capacity is achievable with short
constraint turbo codes, very long blocklengths, 10-2°
iterations of decoding.

This is a full 3.8 dB better than the Planetary Standard
(2, 1, 7) code, with roughly filte same decoding
complexity and is also 1.0 dB better, than the very -
complex BVD code, which operates at 50% less spectral
efficiency! Using the sarme rate of 1/4, the turbo code
outperforms the BVD code by 1.9 dB. The major
disadvantage of a turbo code are its fong decoding delay
due to the large hlockiengths and iterative decoding, and
its weaker performance at lower BER's, due to'its low
free distance. The long delays are not a major problem .
except in real-time applications such as voice
transmission, and performance at lower BER's can be
enhanced by using serial concatenation, so turbo codes
seem to be ideally suited for use on many future deep-
Space missions. A comprehensive survey of the
application of coding to deep-space communication is the
decade of the 1960’s drew to a close was given in a
paper by Forney. For a more recent review of the
subject, the article by Wicker is all excellent sources.
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