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Legendre Functions Direct Method for Solving Linear
Differential Equations

H. Parsian
Department of Physics, University of Bu Ali sina , Hamadan, Iran

Abstract: A direct ‘method for solving linear differential equation under initial values using Legendre
function is presented. An operational matrix introduce for operator of differential equation and it reduce
into a set of algebraic equations. Illustrative examples are included to demonstrate the validity and

appilicability of the technique.
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Introduction

Linear Differential Equations (LDE) have received in
dealing with various problems of dynamic systems. An
differential equation can not be solved exactly always
and there is various numerical methods for solving it.
The main characteristic of this technique is that it
reduces differential equation to a set of algebraic
equations, thus greatly simplifying the problem.The
approach is based on converting the LDE into set of
algebraic equation by choosing the answer function as
the series of

D(x) = {4, (x),8,(x), 82 (x), & (x), 8, (%), 65 (x),..}

and operational matrix L for differential operator L .
The elements

9.(x),8,(x), 8, (x), 8 (x), 8, (x), §s (X),...

are the basis function, orthogonal
interval [a,b]. This technique is to be used for
variational problems by various basis functions, to
applications of Walsh Functions (Chen and Hsiao,
1975}, block pulse functions {(Hwang and Shih, 1985),
Laguerre Functions (Hwang and Shih, 1983), Legendre
Functions (Chang and Wang, 1983} and (Razzaghi and
Yousefi, 2000), Chebyshev Functions (Horng and
Chou, 1985} and Fourier series (Razzaghi and
Razzaghi, 1988).

In the present paper, we introduce a direct
computational method to solve LDE under ipitial
values. This method consists of reducing the LDE into a
set of algebraic equations by first expanding the
candidate function as Legendre Functions with
unknown coefficients. The operational matrix of
differentation of ) , variable X, numbers and some

of other function are given. The Legendre polynomials
of order m are orthogonal with respect to the weight

function @(x)=1 on the interval [-1,1]. Then the
differential equation Ty(x)=0 reduce into Lq;(x)zo ,in
which L matrix operator of differential operator L and
0=10,0,0,...,0] is the column matrix, and finally from

solving L=0, exact solution for LDE obtained.
Properties of Legendre Functions

on a certain

Legendre functions: Legendre Polynomials is the
solutions of DE below
(1=x")y"(x) = 2x)'(x) + n(n+ Dy(x} = (1)

These are a set of orthogonal functions with respect to
the weight function gx)-(on the interval [-1,1] and

satisfy the following recursive formulas(Chen and
Hsiao, 1997):

n+l n
XP,, (x) = (m)l’"ﬂ (x) +(mJP",|(I) a=123 .

(1~ x*)P(x) = nP,_, (x) — nxP, (x)
Pra) - FL(x)=(2n+1)F,(x)

(2}

Function Approximation: A
over {-1,1] may be expanded as

function ) defined

¥ =P ) 3)

where . _ 2”;' <y(x),P.(x)>s In which <, >
denotes the inner product.

If the infinite series in (3) is truncated, then (3) can be
written as

W) =S e, P x) @

Matrices Definition
Column Matrices: If we definite C and P(x) as

N x 1 matrices below

T
C=[co,cl,cz,c3,c4,...,c,\,_]] 7
P{X) =[P.(x), B(x), P, (), P, (x), P, (x),e0, Py, (0] ()

then (4) can be written as
N-| T
yx) =Y e P(0)=C P

The numbers and x” can be defined as

1=[1,0,0,0,0,...0,0]Pn=t".P ©
X = [0,1,0,0,0,,.,’0,0]P L =X T .P .
x* = [%,0,%,0,0,...,0,0]P, ‘ =X2T P
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X =

@y g 2% (4n+ L 2m) m+a)! 0. 2V N2 Ly
p(2m 1) 790 (Zmadm D mny * s""O’W m-Eyy

2mT
P(_);)=X " . P(x)

Im+l

X
0, S2metiomet) 22 (43 2 D me e 1) 2V N1 2m )+ 2 | P
T (2me3)) Uy (2m+2n43)Km-n)l arty (2m+l+N)!(n—¥)I
2maT -
(x) =X . P(x)
Where 1, X, .. are Nxicorresponding operational
matrices.
Differentation Matrix:
i
(&) =o"

Differential of the function yydefined in (4} can be
obtained as

d N1 N-d

Ey(x) = ZC"R:(X) = Z Cn
(PL(x)+(n-DP,.,(x))

=€ (U, 0T U, 11 U, o 1T 10)P(x)
=c".0.pr(x)

where U, ; and I~ are the NN operational matrices

m N m-1 N-|
FEECRPNACLIES )
(Pro (@) +(2n=DF, ()
SIS (TP S VIO s R VISP § S R SO VN
=c’ 0" .P(x) . ()
Matrbc: x"y =c’.x"y
The term xy(x) can be definite as

N-1 Nl
(=)= e, B (x) =Y,

n+l n
[_ P (x)+ mPn—l (-x))

2n+1
T + -
=C (U, . 174U, .17).P(x)
n4l In+l
T
=C" . XY. P(x) (8)

Where I is the Nx N operational matrix can be defined

as

010 0
0 01 0

p

that can be defined as

[0 0 0 000
1 00 0 00
010 0O 00
I_: a - - - - -
0 00 0 0 0
0 00 00
0 0 0 01 0
and
-1 0 0 ]
Uy = 0 :
0 2n-1 0
P, 0 :
LO 0 2N—3_

The first row and column of these matrices are n=¢.

d? =¥ = ¥t
e ORPWXAC %};c,

(PL,(x)+(2n=1P,_ (x))

T - -.3 -.5,2
=C Ul #U,, s 171 40, 6. [T 1) P

=c’.p?.p(x)
finally

0 00 0

000 - 010

000 - 00
000 - 00090

The term x?y(x) can be defined as
N-l

¥’ y(x) = chsz,, (x)
—

=" (U, 17 ) RR®x)

24l 20+l
=c’ . x’v. p(x) (9)
and also
x’y(x)ch.( Uz,,_+.l.l++ Uﬁ.l_ ) .p(x)
=c’.x’v. p(x) (10)
finally

ry=¢" (U dTH UL X ) "Ry
2n+|

2n+l

=c’. x™y.p ‘ (11)

Matrix: x"y' = ¢’ x"y
The term xy'(x)can be definite as
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W)=Y cxPB, (=3¢,

H=o a=o

(xP,(x) + 2n-1)xP,_ (x))

xy' =c” xp(x)

=c’ W, 1. xp(x)+c’u,, . 171,
XP(x)+C” U, 5. J170° XB(X) + ..

=c’ .p. xv. P(x)

=c’. xv. p(x) (12)
The term x?)'(x) can be definite as

0= e, (P G)+@n-1xP, )

=c”.0. oM. P(x)
=c" x2y.p(x) (13)
and also
Nt
2y @)=Y e, (& PL(x)+@n-1)x*P, ()

=c”.0. o’ e(x)
=c” x}v.p(x) (14)
finally
N-1
2"y (x)= e, (" P, (x) +(2n—1Dx"P, , (x))

=’ . o)™ P(x)

=c” x"v.p(x) (15)
Matrix: x’"y" =c’ . x"y
The term xy"(x) can be definite as

N-1 " N-I
0'(x)=Y ¢, xF, (x)=D.¢c,

n=e H=o
(xPy,(x)+ 2n-DxPL (%))
=c’ xpm=c’ .0’ xp,, =c” 0% xV. P(x)
=c’ . xy. P (x) (16)
The term »? y"(x} can be definite as

N-l "
x*y"(x)=> ¢, x*P, (x)

n=e

=S, (PP () +@n-1x’PL, (%)

n=o -

=c’ . x*e(x)=c".p. (x)?. p(x)
=c’.x*v.p(x) (17)

The term x™p"(x) can be definite as
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N N-1

X"y'(x)=Y.c,x"P, ()= D¢,

(x P2, () + @n~Dx" P, ()

=c”.0%. N ™. p(x)

=c’ . x"y". p(x) (18)

and finally term ,» a y(x)€an be definite as
"

J

dln N-1
x" —y(x)=) c,
7 V) Z
wd” om d™
(x FPH_Z(X) + (2” - l)x anq (I)J
=" .0".(xn)" .P(x) (19)

Direct method of Legendre Functions: Consider -
the differential equation with the given initial values

Lyxy=0 + yx )=y, n=123_..M
where Mis the order of differential equation. With
choosing y(x)=CT. P(xy and to find L operational

matrix corresponding to L , we have

c’.Lp(x)=0, c'P(x,) =y, (20)
Where 0=[0,0,0,....0]" is a NxImatrix. With in mind that
P(x) is a set of orthogonal functions, then
c’.=0,c".p(x,)=y,

Illustrative Examples:

Example 1:
Consider the given LDE under initial value

Y0 +2y(x)=0 + y(@=1
Using Eq. (4)-(19), we get

Table 1: Estimated and Exact Values of y(x)

X Estimated Exact
-1.0 0.36787 0.36787
-0.8 0.44932 0.44932
-0.6 0.54881 0.54881

-0.4 0.67032 0.67032
-0.2 0.81873 0.81873
+0.0 1.00000 1.00000
+0.2 1.22140 1.22140
+0.4 1.49182 1.49182
+0.6 1.82212 1.82212
+0.8 2.22554 2.2255%4
+1.0 2.71828 2.71828

c’pr2c’=0, c"p(0)=0 (21)
With choosing ¥ =9, and solving (21), The estimated
and exact values of y(x)are given in Tablel.

Example 2:
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Consider the given LDE under initial values
V@) -plxy=0 p0y=0, W}=1

Using Eq. (4)-(19), we get

c".poc’=0, c'pg.0, cTP)=1 (22)

With choosing N =9, and saolying (22), The estimated
and exact values of y(X) are given in Table2.

Table 2: Estimated and Exact Values of y{x)

X Estimated Exact
+0.0 0.00000 0.00000
+0.1 0.08523 0.08523
+0.2 0.17132 0.17132
+0.3 0.25912 0.25912
+0.4 0.34951 0.34951
+0.5 0.44340 0.44340
+0.6 0.54174 0.54174
+0.7 0.64549 0.64549
+0.8 0.75570 0.75570
+0.9 0.87348 0.87348
+1.0 1.00000 1.00000

¢=[0,0.93910,0,0.59952,0,0.00093,0,0,0]
The estimated solution is
Y(x) = 093510 P (x)+ 0.59952 P, (x) + 0.00093 F, (x) 0 < x <1

exact solution is sinh x
sinh1

y(x)=

Example 3:
Consider the given LDE under initial value

Y(x)-xy(x) =0 ,3(0) =2
Using Eq. {4)-(19), we get

c’.p-c” xv=0,c” p(0) =2
With choosing N =9, and solving (23)

C= [2.3899 1,0,0.83166,0,0.07206,0,0.00365,0,0.0001 3]T
The estimated solution is

(23)

Hx)= 238991, (x) +0.83 1667 (x) + 0.07206%, (x) + 0.0036 5, (x) + 0.0001 %, (x)
-1<x<1

2
2

and exact solution is y(x)=2e¢? .

Example 4:
Consider the given LDE under initial value

V(@) =x"y'(x) + xp(x) =0,
Using Eq. (4)-(19), we get

Yy =1

c’.o-¢” x*vac” xv=0,c7 .P(0) =1
With choosing N =12, and solving (24)

(24)
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C=
[0.78402,0,-0.49001,0,-0.11025 ,0,-0.04976 ,0,—0.02847 ,0,~0.01846 of
The estimated solution is

(%) = 0.78402P,(x) - 0.49001P, (x) — 0.11025P,(x) - 0.04976P, (x) -
0.02847P,(x) - 0.01846P, (x) 0<xsl

and exact solution Is p(x)=+/1-x?

Example 5:
Consider the given LDE under initial values

YO (x) + y(x) - 360x* +720 =0
#(0)=0,y(1) = =36, y(-1) = -23,

$(0.5) = ~2.04688 , (~0.5) = —1.67188 (25)
Using Eq. (4)-(19), we get
el o1’ +c” 1oyt -360% 2 +720=0 (26)

c’p@)=0c” p(1)=-36,c” p(=1)=23c” 2(0.5)=
-2.04688 , C .P(—0.5) =-1.67188

With choosing ¥ =14, and solving (26)
C=(- 5.85714,-2.57142,-16.66666,-2.66666,-6.54544,-0.76190,0 06926

~4.x107 3.x10™ ~1. 107" 9.%10,-4.x10™ |.x10"% ~7.x10°" |
and exact solution is y(x) = x* - 6x° ~30x*.

Conclusion

The operational matrix of differentition legendre
function ,D, and other corresponding operators matrices
and orthogonality of legendre functions, are

used to solve LDE. The present method reduces a LDE
into a set of algebraic equation  and provide an exact
solution almost. This method can be expanded for many
LDE.
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