Pakistan Journal of Applied Sciences 2(3): 277-280, 2002

© Copyright by the Science Publications, 2002

Numerical Solution of the Salt Diffusion Equation
for Non-Stirred Bathing Solutions

IA. A. Siyal, ?P. B. Leeds-Harrison, %E. G. Youngs, °F.C. Oad and *Z.A. Abro
17. A. Bhutto Agricultural College Dokri, Larkana, Pakistan
2Cranfield University at Silsoe, MK45 4DT, United Kingdom

3Sindh Agriculture University Tandojam, Pakistan

Abstract: A numerical solution of the salt diffusion equation for non-stirred bathing solution is presented.
Theoretical calculations of the salt diffusion from a slab into a non-stirred bathing solution showed that
there is no effect of non-stirred bathing solution on the rate of diffusion if the ratio of macro and
micropore volumes () is less than unity. Since under field conditions the value of g for aggregated soils is
much less than one. Therefore it is suggested that the analytical solution of the diffusion equation for well-
stirred bathing solution can be used under field conditions where bathing solution is non-stirred.
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Introduction

Modelling of solute transport in aggregated soils is
complicated due to their bi-modal pore size distribution
(Biggar and Nielsen, 1967; Youngs and Leeds-Harrison,
1990). To model such systems a bi-continuum (or dual
porosity) approach is often used, in which the porous
medium is considered to comprise two pore regions: (i)
macropore region around aggregates which provides
passage for leaching water and (ii) the micropore
region within aggregates (Deans, 1963; Coats and
Smith, 1964). All the solute in the soil is considered to
be held in the soil micropores. The micropores are
therefore considered as a source or sink for the solute
(Green et al., 1972; De Smedt and Wierenga, 1979).
The solute transport between two pore regions is only
by diffusion (Passioura, 1971). Thus rate of diffusion
of salts from micropores greatly affects the salt
leaching efficiency during reclamation of the salt
affected soils.

Many models have been suggested for modelling the
solute transport under laboratory and field conditions.
Most of these models are based on the salt diffusion
equation for well-stirred bathing solutions suggested by
Crank (1975). However, when aggregates are packed
in a column, or in a real soil, the bathing water cannot
be considered as being well-stirred. When a salt laden
aggregate is placed in a  non-stirred solution, the
concentration in the bathing water near the aggregate
rises quickly, while further away from the aggregate
the concentration can still be very low. The rate of
diffusion of the solute from the aggregate will therefore
be different from that occurring if the bathing solution
is well-stirred. Hence it is important to investigate this
difference. This paper provides a numerical solution to
the diffusion equation for aggregates in a non-stirred
bathing solution. Due to the complex geometry of the
macropores in packing of spherical aggregates,
boundary conditions are not simply defined so that
numerical analysis of the diffusion equation is difficult.
However, boundary conditions are well defined for sait
diffusion- in a slab. Thus an analysis of the diffusion
process in a slab for the non-stirred situations was
used as an indication of the relative behaviour that
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might be obtained in the spherical and other aggregate
shapes.

Theory: Consider one-dimensional diffusion of solute
in a slab. We wish to calculate how the distribution of
solute changes with time in a slab of thickness 2a. The
slab is divided into 2N layers each of thickness 4x so
that Nax = a and consider the changing concentration
at intervals of time 4t (Fig. 1)
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Fig. 1: Notation for the Concentration as a Function
of Time in an Element of a Plane Sheet
Plotted Against Time.

We consider the concentration C,n at node n,m where
X = nAx and t = mAt

The concentrations at points x
(n+1) ax at time t = mAt are:
Cn-l, mr Cn, m and Cn+1, m

The concentrations at time ¢
points are:

(n-1) 4x nax and

(m+1)At, at these

Co-1, m+1, Co, me1 @Nd Chat, mst

At time t = mAat, we write the rate of change of solute
concentration as:
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and at time t = (m+1) )4t

(_ag ) _ De Cn—],m+1 + Cn+1,m+1 - 2Cn,m+l
nm+l

ot Ax?
(2)
We also write:
(aCj _ Cn,m+1 - Cn,m
or nm+1/2 At
(3)
If we suppose that: _
a nrl/2 a nm (4)
then equation 3 can be written as:
G =Gon _ Goan*Coan=2
N ’ A
(5)
or
D_ At
C'n,m+1 = Cn,m + 8—2 (Cn—l,m + Cn+1,m - 2Cn,m )
(6)

Suppose T = De.dt/Ax?, then equation 6 can be written
as:

Cn,mH = C:un +Tt‘n-l,m +C11H,m —2(;1111)
(7

When making calculations with equation 7, instability
occurs when Dat /ax* > 2 resulting in negative
concentrations at the nodes in the slab. Hence the
value of Dedt/Ax? is taken as 2 as an upper limit
(Crank, 1975). Then equation 7 can be written as:

C +C

C _ “n-lm n+lm

nm+l 2
(8
Thus we can calculate G, m+; at time (m+1)at when we
know the solute distribution at time mat. This can be
repeated at all nodes.
Calculation For Diffusion In a Slab Immersed in a
Non-Stirred Bathing Solution: Suppose the slab is
divided from its centre to its outer boundary (interface)
by N4 nodes of width 4a and the bathing water by Ns
nodes of width Ab. Thus @ = N, 4a and b = Ng 4b. The
initial concentration in the slab at ¢ = 0 is C, and that
of the bathing solution is zero as shown in Fig. 2

Fig. 2: Slab and Bathing Water Divided into Various
Nodes  for Determining the Solute
Concentration at Each Node .

The change in the concentration -at any node in the
slab after time (m+1)At can be written as:
D At ‘
Cn,m+l = Cn\m + (Aa)2 (Cn—-l,m + Cn+1‘m - 2Cn‘m)
9
But at the centre of slab &/éx = 0 so that C.im = Ci, m
and equation (9) can be written for node 0 as:
DN
G =C0,m + ( Aa)2 (2C1,m _2C0,m) v
(10)

At the interface (boundary between the slab and
bathing water), the flux (per unit area) of salt F
moving out of the slab and entering into the bathing
water is given by Crank (1975):

E
e, %Ca_p s _

=-F
Ox 0x ' (11)

where C, is the solute concentration of the slab at x =
a, Cg is the solute concentration in the bathing water,
D4 and Dg are the effective diffusion coefficients of the
solute in the slab and bathing water respectively and ¢
is the porosity of the siab. Equation 11 expresses the
fact that solute enters one medium at the same rate as
it leaves the other and takes into account the reduced
volume of solute in the porous material.

We can also write for the change in the concentration
of the slab at the interface:

&?NAJ" _2DA CM—l,m _CN,,,m F

a M M D, w2

Similarly the change in concentration of the bathing
water at the interface is given by:

,m+1

%’N.,l,m _ 2DB CNA+l,m _CIV',,,m F

a Ab D, a3

Making F the subject of these equations then equating
the results of F from equations 12 and 13, we have:

&b,
Aa

(CNA m CN‘,—l.m)
(14)

ot 2 = (CN‘,+I.m “Cym )—

M(M) Dy
Ab
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Suppose T = D.dt/Ax?, then equation 6 can be written

as: - .
Cos =Cy+ )

nm n n —2(;1;11

+C”H
' 7

When making calculations with equation. 7, instability
occurs when D4t /A2 > V» resulting in negative
concentrations at the nodes in the slab. Hence the
value of Dedt/4x? is taken as Y2 as an upper limit
(Crank, 1975). Then equation 7 can be written as:

+C
2 (8)

Thus we can calculate C,, m+: at time (m+1)4t when we
know the solute distribution at time mat. This can be
repeated at all nodes.

Calculation For Diffusion In a Slab Immersed in a
Non-Stirred Bathing Solution: Suppose the slab is
divided from its centre to its outer boundary (interface)
by Na nodes of width da and the bathing water by Ns
nodes of width 4b. Thus @ = N4 4a and b = Ng 4b. The
initial concentration in the slab at ¢t = 0 is C, and that
of the bathing solution is zero as shown in Fig. 2
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Fig. 2: Slab and Bathing Water Divided into Various
Nodes for Determining the Solute
Concentration at Each Node

The change in the concentration at any node in the
slab after time (m+1)4t can be written as:

C,.=C,, + 248 (c
)

nm (Aa)2
But at the centre of slab &L/ox = 0 so that C.im = Cy, m
and equation (9) can be written for node 0 as:

Co DAN (2C1,m - 2C0,m)

n,m+l1 = n-tm + Cn+1,m - 2C

2
(8) (10) _
At the interface (boundary between the slab and
bathing water), the flux (per unit area) of salt F
moving out of the slab and entering into the bathing
water is given by Crank (1975):

oC
eD,—% =D, %Ch _

Ox Ox (11)

where C, is the solute concentration of the slab at x =
a, Cg is the solute concentration in the bathing water,
Da and Dg are.the effective diffusion coefficients of the
solute in the slab and bathing water respectively and ¢
is the porosity of the slab. Equation 11 expresses the
fact that solute enters one medium at the same rate as
it leaves the other and takes into account the reduced
volume of solute in the porous material.
We can also write for the change in the concentration
of the slab at the interface:

&jNAqm _2DA CN«‘L’" —CN.:I,'" F
a ml M D, 2

Similarly the change in concentration of the bathing
water at the interface is given by:

Com +

,m+1 =

~F

x}\h,m _ ZDB CN_,|+l,m _CN,,,nl i
a Ab D, a3

Making F the subject of these equations then equating
the results of F from equations 12 and 13, we have:

(22r2) ~C.a)

a(:N_, "
ot

gAa + Ab
2
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Y]

_ &b,
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(CN,,Am - CN,.—Lm)
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Re-arranging the above equation

Nom 2D, . B 2D, _—
o "('.\‘,,.m + Ab(EAa*-Ab)((V'V'H"' CA\*..m) M(EA”_"M)(('.V‘.M C.\',—Lm)

; (15)
which is a finite difference form to use for the

calculation of change. in concentration at the interface.

The initial concentration at the interface at time t = 0
can be calculated as:

CNAvO _CN,1+L0 =€(CNA'L0 _CN.,,O)

(16)
Since CNJH'0 =( and CNA_L0 =] at t=0
£
V% 1te (17)

The change in concentration of the bathing water at
the central node N, + Ngis given by:

Gyt =Cvan, +% (xmwﬂw _ZCWNBM)
(18)

Example: As an example of using these equations,
consider a slab of unit cross sectional area (1 mm?)
and thickness of 10 mm having porosity of 0.25 being
leached in bathing water having unit area and
thickness of 10 mm.- The diffusion coefficient of solute
in the slab is 0.035 mm?%*/min and that in the water is
0.104 mm?/min (the values chosen are similar to those
usually observed under field conditions). The initial
solute concentration and mass in the slab are 1
mg/mm? and 2.5 mg respectively, while the bathing
solution is initially salt free. The total pore volume of
the slab is 2.5 mm3. The ratio between the bathing
water to slab pore volume (B) is therefore 4, The
numerical solution of the diffusion equation for non-
stirred bathing solution was obtained using an Excei
spreadsheet while Mathcad programme was used for
weli-stirred bathing solution. ]

The calculated change in mass of the solute in the slab
is shown in Fig. 3 -
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Fig. 3:Change in The Mass of Solute in the Slab With
Time for Non-Stirred Bathing Water Compared
With that for Well-Stirred Bathing Water (B
4, ¢ 0.25, A = 10 mm, B 10 mm, Da
0.035 mm?%min, Dg = 0.104 mm?/min)

where it is compared with that for a well-stirred
bathing solution. Numerical results for the non-stirred
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and well-stirred solutions showed only a small
difference over the time period. When the bathing
water is well-stirred, 58% of the solute mass diffused
in 1000 minutes and 72.5% of the solute mass in 2000
minutes, whereas in the case of a non-stirred bathing
solution, 56% of the solute mass diffused in 1000
minutes and 70% of the solute mass in 2000 minutes.
Effect of g on the Rate of Diffusion in Well-Stirred
and Non-Stirred Solutions: The change in solute
mass of a slab for different values of g (the ratio of
macro and micropore volumes) was calculated by
solving the diffusion equation numerically for well-
stirred and non-stirred bathing water. The results are
shown in Fig. 4
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Fig. 4:Relative Solute Mass Remaining in the Slab
Plotted Against Time Showing The Effect Of
Various § Values on the Rate Of Diffusion When
a Slab Is Placed in Well-Stirred and Non-Stirred
Solutions. (¢ = 0.25, A= 10 mm, D, = 0.035
mm?2/min, Dg = 0.104 mm?2/min): The Broken
Lines Represent When the Solution is Well-
Stirred

The results for the mass remaining in the slab show
that when g is greater than 1 there is only a small
difference in the rate of diffusion for the two situations.
When g is smaller than 1, then they are effectively the
same. Since in a real soil the micropore volume is
usually much greater than the macropore volume, the
value of g is therefore much less than 1. Thus it can be
inferred that the rate of diffusion in soil is not affected
if the solution in macropores is non-stirred. Therefore
the analytical solution of the diffusion equation for
well-stirred solution suggested by Crank (1975) can be
used under field conditions.

Discussion and Conclusion

The results calculated theoretically in this paper for the
diffusion of salts out of a slab showed that the mass of
salt transferred to the bathing water is practically the
same for well-stirred and non-stirred bathing water
when the ratio of the volume of the bathing water to
that of the pore space inside the aggregate (8) is less
than unity. We can tacitly assume that this is
approximately the same for other aggregate
geometries, in particular for spherical aggregates,
when the packing makes calculations difficult because
of the complex geometry of the macropore spaces.
Theoretical calculations showed that the analytical
solution of the diffusion equation for well-stirred
solutions presented by Crank (1975), which is
relatively simple, can be used for non-stirred bathing
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solutions when ratio of macro and micropores is less
than unity as usually observed under field conditions.

Symbols

a distance from centre to the surface in slab

b distance from the surface of slab to centre of th
bathing water - .

Co initial solute concentration in the slab

D. effective diffusion coefficient

Da diffusion coefficient in the slab

Dg diffusion coefficient in the bathing water
F solute flux density.

N4 number of nodes in slab

Ns number of nodes in the bathing water

n node number

At time interval

Aa thickness of layer in the slab

T dimensionless time (DeAt/Ax?)

€ volume of the bathing water / pore volume in
the slab
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