Pakistan Journal of Applied Sciences 2 (3):356-365, 2002
© Copyright by the Science Publications, 2002

A Preliminary Correctness Evaluation Model of Object-Oriented
Software Based on UML

S. Wesley Changchien, Jau-Ji Shen and Tao-Yuan Lin
Department of Information Management, Chaoyang University of Technology
168 GiFeng E. Rd., WuFeng, Taichung County, Taiwan, R.O.C.

Abstract: Concurrent engineering is a philosophy that attempts to take into account of all the activities of
a product life cycle early in the design stage. In the manufacturing industry, approximately 70% of a
product’s manufacturing and assembly costs are determined during the design stage. Similar to the software
industry, system analysis and design has significant influence on later activities of the software development
life cycle. Object-oriented approach has been the main stream for software development, and Unified
Modeling Language (UML) integrates most of the object-oriented modeling methods and has become the
standards. This paper incorporates the CE concept into the evaiuation of object-oriented software
development and proposes a Hierarchical Aggregation Model (HAM) to early evaluate the object-oriented
software design quality based on UML. There are three advantages of using this model. First, this model can
help reduce the project risk, cost, and time span, and eventually improve the software quality early in the
software development life cycle. Secondly, this model facilitates the use of the standards of object-oriented
modeling language, UML, which makes proposed model more applicable to real software development,
Thirdly, this model is easy to implement, that can potentially be imbedded in CASE tools to directly support

the project manager's decision making.

Key Words: Concurrent Engineering, Software Development, Object-oriented Software Metrics, UML

Introduction

In the manufacturing industry, approximately 70% of a
product’s manufacturing and assembly costs are
determined during the design stage (Grady and Oh,
1991). In other words, if designers have sufficient
knowledge about how design will affect manufacture and
assembly in the later stage, the cost and risk across the
product development life cycle will be significantly
.reduced. Similarly, if a methodology can take into
account later activities in the software development life
cycle early in the system analysis and design, it has the
potential to improve the developed software quality.
Concurrent Engineering (CE) is the philosophy to realize
this concept.

Tom DeMarco (1987) asserts “You cannot control what
you cannot measure.” In order to effectively evaluate
how CE is implemented on software development, the
software measurement of system analysis and-design is
hence a key point. In general, for software development
there are three issues to be examined that are process,
product and resource. Based on the CE concept, in this
paper we focus on the product especially the system
analysis and design to evaluate the software correctness
early in the software development life cycle. Currently,
UML (Unified Modeling Language), which integrates the
major object- oriented modeling methodoliogies, has
become standards and been more and more adopted by
the software industry and hence is a basis for evaluating
object-oriented software design.

With UML, the key objective of this paper is to propose
an preliminary evaluation model, hierarchical aggregation
model (HAM), for object-oriented software using CE
concept. This model can help the project manager
evaluate the software product quality in terms of
correctness early in the object-oriented software
development life cycle.

Literature Review: In the 1990's, object-oriented
technology is the main stream for software development,

356

During this period, there is a good number of
object-oriented modeling methodologies proposed &and
each methodology has its own modeling notation. UML,
which integrates the major methods, provides the-source
data for evaluating object-oriented software design using
CE approach. In the Following, we review the related
literature in CE, UML, and software development
measurement.

Concurrent Engineering (CE): The traditional activities i

of a product development cycle are usually implemented
sequentially and independently. Any problem occurring
in the later stage will require modification or repeat of
prior activities. This consequently results in excessive
time and cost of product development due to the isolated
activities. Approximately 70% of a product’s
manufacturing and assembly costs are determined
during the design stage based on the experiences in the
manufacturing industry (Grady and Oh, 1991). "CE is a
systematic approach to the integrated, concurrent design
of products and their related processes, including
manufacture and support. This approach is intended to
cause the developers, from the outset, to consider all
elements of the product life cycle from conception
through to disposal, including quality, cost, schedule, and
user requirements” defined by Winner (Winner, 1988).
IBM, AT&T and Hotpoint implemented this concept
successfully and benefits include reducing 30%-70% of
the development time and 20%-90% time to market,
increasing overall quality 200%-600%, productivity
20%-115%, and sales 5%-50%, etc. (Madhat and Rook,
1997). The literature shows that CE has been effectively
applied to the product design in the manufacturing
industry. Motivated by the CE concept, this paper
presents a concurrent design evaluation method for
object-oriented software design.

To implement CE, Swink (1998) recommends two
aspects, which are to improve cross functional
integration and to improve design analysis and decision

|

making. Therefore, the proposed HAM uses
cross-functional aspect to improve decision making early
in software development process.
b Unified Modeling Language (UML): In the past
decade, there is a great number of object-oriented
- methodologies purposed. Among those, there are three
popular methods, OMT (Rumbaugh) (1991; 1997), Booch
1 (1995; 1994), and OOSE (Jacobson et al., 1992), each
method with its own value and emphasis. OMT is good
. for analysis, Booch emphasizes on design, and Jacobson
facilitates behavior analysis. And each method has its
' own modeling notation. These three methods now have
contributed and been integrated into UML such that
standards can be used for software designers. Booch,
Rumbaugh, Jacobson, Meyer, Harel, Wirfs-Brock, Fusion,
Embly, Gamma, Shlaer-Mellor, Odell have all partaken in
the UML growth (Eriksson and Penker, 1998; Quatrani,
1998). This paper takes advantages of UML's standards
on which the developed CE approach to object-oriented
software evaluation model is based. -
Software development measurement: Since Rubey
and Hartwick proposed software measurement in 1968,
a good number of research has been conducted (Briand
et al., 1996; Gonzalez, 1995 and Henry and Kafura,
1981). Fenton (1991) classifies the software metrics
objective into internal, external and less objective
metrics. Henderson-Sellers (Henderson, 1996) takes one
step further to describe the relation of internal and
external in detail (Fig. 1). Both of internal and external
characteristics can be measured or estimated directly.
There are three ways of estimating external
characteristics by internal measures. If the internal
characteristics can be measured directly, paths A and B
can estimate the external characteristics by internal
characteristics. A uses correiation techniques and B uses
underlying conceptual model (ex. Macall Quality Model)
for estimation. If the internal characteristics can not be
measured directly, path C first estimates the internal
characteristics, then path AC employs correlation
technique to estimate the external characteristics. In
general, the internal characteristics include software size,
structure, etc., while external characteristics include
reliability, correctness, usability, etc. This research aims
to propose a method to evaluate the external
characteristics from estimated or measured internal
characteristics.
Although there are many quality factors in software
development, controlling all of the factors is, however,
not practical. Goal-Question-Metric (GQM) (Fenton and
Pfleeger, 1996) is developed to solve this problem. When
a team starts a software project, firstly it must set its
goals for the project, secondly it must answer the
questions of each goal, and thirdly it must decide what
metrics must be measured in order to answer the
questions. Therefore GQM can help the software
developer identify what quality factors must be
measured. This concept motivates us to develop our
HAM:
Similarly, in object-oriented software measurement there
have been a good variety of software metrics proposed
in the literature (Chidamber and Kemerer, 1998; 1994,
1991; Harrison et al., 1998 and Li, 1998). Chidamer and
Kemerer (1998; 1994 and 1991) have presented a good
number of literatures, Their proposed theory is
developed based on Bunge’s (1977 and 1979) ontology
theory and Roberts relational system. Chidamer and

Changchien et al.: A Preliminary Correctness Evaluation Model of Object-Oriented

Kemerer (1994) purposed six class-based design
metrics, whose definitions are described below.

1. Weighted Methods per Class (WMC): Consider a class
C,, with methods My,, M, that are defined in the
class. Let ¢y,,C, be the complexity of the methods.
Then WMC of C is defined as:

n

S

i=1

WwWMC =

if all method complexities are considered to be unity,

then WMC equals n, the number of methods,

2. Depth of the Inheritance Tree (DIT): Depth of
inheritance of the class is the DIT metric for the
class. In cases involving multiple inheritance, the DIT
will be the maximum iength from the node to the root
of the tree. ’

3. Number of Children (NOC): NOC is the number of
immediate sufclasses subordinated to a class in the
class hierarchy.

4. Coupling between Object Class (CBO): CBO for a
class is a count of the number of other classes to

- which it is coupled. -

5. Response for a Class (RFC): RFC=| RS| where RS is
the response set for the class. R

6. Lack of Cohesion in Methods (LCOM): Consider a
Class C1 with n methods M;, M,,..., M,. Let {I;}be the
set of instance variables used by method M; . There
are n such set {I,},....{I,.}. Let P = { (I, L)) | Iin
=oYand Q={ (L, L)1 Lnl e} Ifallnset
{1,},...,{1,} are e then'let P = o.

According to the discussions of the six class based design

metrics (Chidamber and Kemerer, 1994), it is found that.’

WMC, DIT, and RFC are related to system design

complexity. Therefore, they are the internal

characteristics can potentially be used to evaluate
external characteristics, such as correctness for object
orient software design.

LCOM=|P|-|Ql,iflP|>le|
=0,otherwise

Proposed Evaluation Model: The main difference
between traditional software development approach and
CE approach is that CE incorporates the knowledge or
concerns of later activities early in the software
development life cycle. As shown in Fig. 2, CE approach
introduces a software design evaluation model to reduce
the software development risk in terms of correctness
early in the software development life cycle.

Hierarchical Aggregation Model (HAM): Card (1990)
mentions the relation between system design complexity
and error rate and concludes that high complexity will
lead to high error rate. Clearly, the complexity is a
critical factor that affects the correctness of a software
product. Therefore, the proposed HAM hopes to support
the manager to use the object-oriented design metrics,
complexity, to estimate the correctness of a developed
product early in the software development life cycle. The
correctness in the proposed approach is defined as “the
probability that a developed software functions correctly
based on the metrics contributing to the complexity of

357

Changchien et al.: A Preliminary Correctness Evaluation Model of Object-Oriented

the software design” Based on the CE concept,
considering the downstream processes’ problems in the
system analysis and design stage can reduce the
probability that errors may occur. In short, in the design
stage this model can preliminarily evaluate the
developed object-oriented software quality in terms of
correctness.

Prior to defining the HAM model, two basic assumptions

must be made:

Assumption 1: Early in the system analysis and design

stage, the future operations of the software can be

precisely understood and predicted.

User requirement volatility is a common problem in

software project development. But in order to reduce the

risk due to wuncertain requirements, sufficient
communication with user and precise determination the
future operations in analysis and design stage is
necessary. Therefore, based on the above assumption
the proposed method assumes that the project manager
can precisely understand the future operations of the
software. Under the determined standérd operations, the

HAM can evaluate the software correctness early in

design stage.

Assumption 2: The system design complexity affecting

the downstream processes of the software development

life cycle is the major factor concerned which affects the
developed software correctness.

Based on the relation between system design complexity

and error (Card, 1990), this research assumes the

inferiority of the software correctness is mainly due to
the increase of complexity of software design.

The concept of HAM is to take user’s aspect to interpret

object-oriented software correctness. From the user's

aspect, software is expected to provide high correctness
when each standard operation is practicaily performed.

Thus the software correctness depends on all the

correctness of the standard operations being performed

on the software. From the design aspect, if all entities in
the standard operation can be controlled, the operation
correctness can be estimated. In object-oriented
software design, Class (C) is the basic entity. Therefore,
metrics measured based on classes are the basis for the
proposed HAM. HAM hierarchically decomposes an
object-oriented software into four layers; OOP, UC, SD,

C, defined as follows.

Definition 1:

a. SD (Sequence Diagram) is a set of Classes ordered in
a specific sequence according to how classes are
triggered to perform the corresponding task (user’s
standard operation). :

b. UC s a set of all SD’s belonging to the corresponding
function. When a function is modeled using UML, it
can be regarded as a Use Case (UC). Each function
consists of a number of tasks, hence a UC is
composed of a number of Sequence Diagrams to
perform those tasks.

c. OOP is a set of all the Use Cases contained in the
Object-Oriented software Product. Each OOP is
composeddof a number of functions. Therefore an
OOP consists of a number of Use Cases.

HAM employs the probability that a software executes

properly to derive the finished software correctness. In

Definition 2, the OOP correctness is defined by

aggregating the correctness of the components of the

four layers as described in Definition 1 (Fig. 3).

Definition 2: For a given M, and Class i,

358

Class Correctness for Classi= 1tot i
cc, =1-|FE(m,) (1)

where

Class Diagram i belongs to Sequence Diagram k. :
M; is an object-oriented metrics j that contributes to the
system design complexity.]
FE, the function of probability that errors may occur, is
a function of M,

t is the last class being triggered in SD,.

For a Sequence Diagram Kk, : k
Sequence Diagram Correctness for Sequence Diagram
k=1tor .

[’ E
spc, =T]cc, (2)

i=1

Where

Sequence Diagram k belongs to UCm.

r is the total number of classes involved in UCm,
For a Use Case m, - ;
Use Case Correctness UCC,, = for Use Case Diagram m=
ltop

i (PSD, XSDC,)
P (3)

where

PSD, is the probability that users may execute this
sequence diagram k of UC,,.

p is the total number of use cases involved in OOP.
Object-Oriented Product Correctness for object-oriented
metricsj = 1ton -

OOPC, = i(PUCm xuce,)

=]

(4)

‘where

PUC,, is the probability that Use Case m is used.

n is the total number of object-oriented metrics
considered.

The structure of hierarchical aggregation of correctness
is shown in Fig. 3. Note that in Definition 2, only an
object-oriented metric j that contributes to the system
design complexity is considered correctness evaluation
and ignore the correlation. If there are more
object-oriented metrics considered in the software
project, with weighted average method, OOPC may be
defined as the aggregation of correctness of all the
metrics.O0OPC =

n
>, Yoorc)) (5)
j=1

where

W, is the weight of M;

Procedure of implementing the proposed HAM: To
implement the HAM, focusing on preliminary correctness
evaluation the procedure includes five steps:

1. Accomplish Class Diagrams, Sequence Diagrams and

Use Case Diagrams using UML at analysis and design
stage.

2 Identify the object-oriented metrics that contribute to
the system design complexity.

3 Obtain the probability function of error (FE),
. probabilities of PSD, PUC, and weights.
44, Calculate and aggregate all the correctness

(Equations 1-5) for each design alternative.
5. Analyze the results and select the best design
1 alternative or provide recommendations for redesign.
In step 1, constructed Class Diagrams, Sequence
' Diagrams and Use Case Diagrams following UML at
analysis and design stage are the resources to estimate
' the software correctness. In Step 2, software project
' manager has to make decision of what object-oriented
metrics that contribute to the system design complexity
. need to be included in the measurement. How does the
. project manager choose the metrics? There are a
- number of papers proposed on object-oriented class
" design metrics (M), For instance, manager can use GQM
- (Fenton and Pfleeger, 1996) to select the suitable
metrics. This paper adopts a metrics suit by Chidamer
and Kemerer (1994)and applies WMC, DIT and RFC for
demonstration because they directly relate to class
complexity. In Step 3 we obtain the required data FE(M),
PSD, PUC and W. Regarding the probability function of
error FE(M), the appropriate empirical curve may be
obtained by experiments and curve fitting. To simplify,
this paper assumes a probability function of error below
for illustration (Fig. 4).

FE(M):eZ(M—Mm“) O< M<K Mmax , (6)

In Equation 6, M., denotes the assumed maximum
values of M based on the experiences of the developers
involved in the software project being considered, and
they have to be preprocessed first such that they
increase in the same direction. To use this function, we
&‘ust set up the proficient boundary (PB) of class metrics
(M) to derive the value of A. The PB of a project team is
to mark the proficiency level in the downstream
development processes within a specified tolerance of
error. PSD and PUC means the probabilities that
sequence diagrams and use cases will be operated in
practice, respectively. These probabilities may be
estimated according to prior statistics, experienced
users, and system analysts and designers. However, the
total of PSD for each UC and the total of PUC for each
OOP must equa! 1. Step 4 calculate all the correctness
required for analysis in the last step. The final OOP
correctness will be an early indication of how a system
can function correctly. Since at this stage, only system
analysis and design has been completed, the preliminary
evaluation of the expected software quality may provide
valuable references for the decision maker especially

when the system is a highly risky and costly project.

Changchien et al.: A Preliminary Correctness Evaluation Model of Object-Oriented

An Illustrative Example: The HAM has been
demonstrated on two alternative designs of the same
software project for supporting the project decision
making early in the software development process. In
the examples, we compared two design proposais of a
simple sales information system in terms of software
correctness. Here we follow the implementing procedure
mentioned in Section 3.2 to describe the illustrative
example.

1. Obtain the use case diagrams, class diagrams and
sequence diagrams of the two design alternatives
that can provide information for later measurement.
In Fig. 5, we show the same Use Case Diagram for
the two design alternatives. Fig. 6 and 7 are the
Class Diagrams for the two design alternatives. Fig.
8, is the Order Sequence Diagrams for design
alternatives 1. Other sequence diagrams for
alternative 1 and those for alternative 2 are omitted.

2. The selected metrics in the example include WMC,
DIT and RFC (Chidamber and Kemerer, 1994). (The
definitions of the metrics please refer to Section 2.3)

3. First calculate the M's from class diagrams, the
results of design alternatives are shown in Table 1.
Secondly define the EF’s. The ranges of M's are
obtained based on the experiences of the software
developers involved in the analysis and design
process as WMC(0,25), DIT(0,15), and RFC(0,50)
and PB are 10, 5, 25, respectively. Thirdly, we
according to users' operational experiences and
system requirements define PUC’s as order 35%,
payment 35%, Customer data 15%, and prbduct data
15%. PSD’s are shown in Table 2. Fourthly, define
the weight (Wj's) for WMC, DIT and RFC which are
0.4, 0.25 and 0.35, respectively in this example.

4. Calculate all data using equations in Definition 2. The
results of CC, SDC, UCC, and OOPC are shown in
Tables 3 and 6, respectively. At last, the correctness
of the two design alternatives 1 and 2 are aggregated
and the resuits are 0.83334 and 0.80163,
respectively.

5. After comparing the results of the two design
alternatives, it is found that design alternative 1 is
better than 2. Two resuits are close possibly due to
the simple illustrative example. As project size goes
larger the differences between two alternatives may
become significant. Review the original data of
system analysis and design of the two alternatives. It
is found that alternative 2 uses more complex classes
“order” and “payment” to achieve the same function.
However, class inheritance exiting in the class
diagram of alternative 1 has resulted in the increase
of design complexity. HAM final results indicate that
alternative 1 slightly superior than alternative 2 with
better software correctness. In conclusion, the HAM
suggests design alternative 1 which can avoid
unnecessary risk for our project.

359

Changchien et al.: A Preliminary Correctness Evaluation Mode} of Object-Oriented

Internal objective External
measures, e.g., size, characteristics, e.g.,
structural complexity quality, effort, cost
AC
Size, etc,, Estimated [t EStimated
Estimators >

Measured Measured

Requirem ents

—— e ——— e —— e e —— — — — —

v -
' Ve -

H D evelopm ent H Integration

H —— e —— e Test

' M aintenance I

' Vot

: ‘s Im plem entation . .
: — ' Test

H H |

H D esign . i

' V erify . |

: ' |

L] o,

: Flanning | H :

' .

' V erify : v | -

. | e I

: Specification I M |

' : ——— . [—))

: V erify i l_T:_ — e — — — —d Operations R otirem ot
: T e S NS — m ode

. HE

. l vl ¥

: h 4 | I Changed

E | N requirem ents

.

'

V erify :E V erify
I
........ T
5 (T mditionalA pproach) .
Y H
.
Requirem ent, SA , SD .
— . HAM H
| R evise C omrectness '
: Evaluton '
| x
]
i
I ‘
TTTT e e e e e e v — o — — Laterprocesses in softw are developm ent life cycls

(CE Apprwach)

Time
Fig. 2: The Differences Between Traditional and CE Approaches to Software Development Life Cycle

360 ’

Changchien et al.: A Preliminary Correctness Evaluation Model of Object-Oriented

[610) 4

uc, uc, uc,

O —

SDll SDu S 1n S rl SDPZ SDpr,
|] | | |
Cin Cin Clr,l Cpll szx Cpr,n
L L 4 A 4 L 4 L 4 L 4
Ci Ci Clqz Cpn Cpll Cpr"l
v v v v v
v v v v v v
(’llln Clll” Clr,x,,‘ CPlfpn P, ¢ Prytye,

Fig. 3: The Hierarchical Aggregation Model for Evaluating Correctness

FE

M

Fig. 4: Probability Function of Error Vs. Metrics

customer

Fig. 5: Use Case Diagram for the Two Design Alternatives

361

Changchien et al.: A Preliminary Correctness Evaluation Model of Object-Oriented

order
gorderno
Otustomer : customer
custom er orderdetail :order detais
Gcustomer no wtotal
otmployee : em ploy ee
*add() . | edate
.edity) "__\1 Gpayment payment
i .
:::a(:ch() ! Sreaten) EE—
ree()
person - ®post() *add()
gname o~ . ®edit()
ld e 0.0 el
s ex 1 = /,/ ®search()
<phone ; g “post()
Q:.d:ress :).'"i: ovee //\/ ®edit detail()
< / ~ N -
- e | odep 7 . Ty
®create() " osalary 1) . LES
Sfree() N
®add()
Sedit()
Sdel()
®gearch() 1 payment
®post() invoice no
<details : payment details
stustomer : customer
date
Gtmount
otashier i employes
i 1
payme.nl details S reate()
onvoiceno Siree()
order : order / ::dd()
. dit()
®create() | qu(;
:r;de()) ®search()
(®post()
®edit() " ®gount amount()
::eu) ®edit paydetail()
earch()
®post()
Fig. 6: Class Diagram For Design Alternative 1
order
Sorder e custom er
Gcustom er . custom er > ustom er no
worder details cham e
ototai <pid
salesmamn . employee 09::“'
odate <> ress
<Payment i payment \ <ofax
&oproduct : product -~
// reate()
®create() 0. .* Sree() -
Sfre o () ®add()
2 dd() ®edit()
e dit() ::"() R
g ei() earch()
Wsearch() ®post()
employee ®post() 3
ohame 0.+ ®add details () PN
<id T %del details () N 1
s ex ! Sedit detaiis () payment
gPhone e ®post details () ~ ; i
caddress |7, ®scarch details () 1 .:g'o",\:,o,'fe: Srder
<:/"_" ®search product(.| g€ustomer: custom er
z‘:p <date
Gemount
wsalary T gcashier : employee
1 \ ’ detail
:'crea(;e() —_— opiy detal
Tee T] ®create()
i 7] s
“*3dd()
®gei() e dit()
“search() ®del()
®post() ®search()
®post()
®count amount()
add paydetail()
®edit paydetail()
®delpaydetail(}
®search paydstail()
“post paydetaii()

order details

order : order
wproduct : product
Samount

odelivery date
pdelivery quantity

®create()
Sfree()
®add()
®edit()
®gel()
®search()
®post()

Fig. 7: Class Diagram For Design Alternative 2

362

L
product

wproduct no

oname

wstocks
<Hunit price

®create()
ree()
®replenish()
®sales()
®add()
®edit()
®del()
®search()
®post()

product

cproduct no
Ghame
stocks
Hunit price

®create()
®free()
“®replenish()
®sates()
®add()

e dit()
®del()
®search()
®post()

Changchien et al.: A Preliminary Correctness Evaluation Model of Object-Oriented

O ‘
I :order :customer :order details : product .employee

| 1: add () | '
L
2:search()

| ! I
l | | |
3: customer info I | | x
4: customer info] i ’
| -
l l

I 1

i i

I |

| |

| |

|

51: select customer

6: search()

-
: employ ee info 7: employ ee info

8: select employ ee

i
|
10: edit detail() :
11: add() |
| 12: search() I
| 13: product info |
14: product info |
15: product info | e i |
<
| B
| |
16; select product l i
. 17: post() ! N
18 post() — I |
! > | |
| U | |
i T | | | 1
| | | | l |
| l | | | J
| 1 | | | 1
Fig. 8: Order Sequence Diagram For Design Alternative 1
Table 1: The M’s of the Two Design Alternatives
' Alternative 1 Alternative 2
WMC DIT RFC WMC DIT RFC
customer 5 1 5 7 0 7
order 8 0 15 13 0 16
pay 9 0 17 13 0 ‘16
Order detail 7 0 8 0 0 0
product 9 0 9 9 0 9
employee 5 1 5 7 0 7
pay detail 7 0 8 0 0 0
person 2 0 2 0 0 0

Table 2: The PSD’s of the Two Design Alternatives

UC PSD

Order order40%edit order25%0del 10%CIsearch25%
Payment pay 70%0edit 5%0de! 5%CIsearch20%
Customer data add 40%edit 20%01del 10%0search30%
Product data add 40%0Oedit 30%Cde! 10%Csearch10%

363

Changchien et al.: A Preliminary Correctness Evaluation Model of Object-Oriented

Table 3: The CC’s of the Two Design Alternatives

Alternative 1 Alternative 2
WMC DIT RFC WMC DIT RFC
customer 0.953584 0.960189 0.984151 0.936904 1.000000 0.980945
order 0.926435 1.000000 0.960189 0.841511 1.000000 0.956348 -
payment 0.914230 1.000000 0.952136 0.841511 1.000000 0.956348
Order detail 0.936904 1.000000 0.979107 1.000000 1.000000 1.000000
product 0.914230 1.600000 0.977091 0.914230 1.000000 0.977091
employee 0.953584 0.960189 0.984151 0.936%04 1.000000 0.980945
payment detail 0.936904 1.000000 0.979107 1.000000 1.000000 1.000000
person 0.970713 .1.000000 0.987977 1.000000 1.000000 1.000000
Table 4: The SDC’s of the Two Design Alternatives
WMC DIT RFC WMC DIT RFC
Order-order 0.580243 0.921963 0.803137 0.338645 1.000000 0.752152
Order-edit 0.638105 1.0600000 0.829213 0.458452 1.000000 0.817334
Order-del 0.867982 1.600000 0.940128 0.708140 1.000000 0.914602
Order-search 0.867982 1.000000 0.940128 0.841511 1.000000 0.956348
Payment-payment 0.516591 0.921963 0.732721 0.370415 1.000000 0.769787
Payment-edit 0.679700 1.000000 0.834480 0.421986 1.000000 0.799983
Payment-del 0.856546 1.600000 0.932244 0.708140 1.000000 0.914602
Payment-search 0.856546 1.000000 0.932244 0.841511 1.000000 0.956348
Product-add 0.835817 1.000000 0.954707 0.835817 1.000000 0.954707
Product-edit 0.835817 1.600000 0.954707 0.835817 1.000000 0.954707
Product-del 0.914230 1.000000 0.977091 0.914230 1.000000 0.977091
Product-search 0.914230 1.000000 0.977091 0.914230 1.000000 0.977091
Customer-add 0.909323 0.921963 0.968553 0.877790 1.000000 0.962254
Customer-edit 0.9209323 0.921963 0.968553 0.877790 1.000000 0.962254
Customer-del 0.953584 0.960189 0.984151 0.936904 1.000000 0.980945
Customer-search 0.953584 0.960189 0.984151 0.936904 1.000000 0.980945
Table 5: The UCC’s of the Two Design Alternatives
Alternative 1 Alternative 2
WMC DIT RFC WMC DIT RFC
Order 0.695417 0.968785 0.857603 0.531263 1.000000 0.835742
Payment 0.609735 0.945374 0.787690 0.484099 1.000000 0.815850
Customer 0.867183 1.000000 0.963661 0.867183 1.000000 0.963661
product 0.922601 0.933431 0.973233 0.895524 1.000000 0.967861

Table 6: The OOPC/’s of the Two Design Alternatives

Alternative 1 Alternative 2

WMC 0.725271 0.619783
DIT 0.959971 1.000000
RFC 0.866386 0.867785
Conclusion

Currently, object-oriented approach is a very important
software development methodology for both the
academia and industry. However, there are few amount
of research proposed -focusing on how to improve the
quality of software project development. This research
attempts to incorporate the CE concept into
object-oriented software deveiopment. The paper
proposes a Concurrent Engineering Hierarchical
Aggregation Model for preliminarily Evaluating
Object-Oriented Software. With this model, the
object-oriented software developer can preliminarily
evaluate the software quality in terms of its correctness
early in the analysis and design stage.

There are three advantages of using this model. First,
this model can help manager reduce the project risk,
cost, and time span, and improve the product quality
early in the software development life cycle. Secondly,
this model facilitates the use of the standards of

364

object-oriented modeling and design methodoiogy, i.e.,
UML, that makes HAM more applicable to real software
development. Thirdly, this model is very easy to
implement. Since the measurement is conducted directly
from the UML models of the software project, no
additional work needs to be performed. Therefore, the
HAM can potentially be imbedded in software
engineering tools that can support decisions such as the
selection of outsourcing team during the software
development process. This is significantly important due
to the rapid growth of acquirement of highly costly and
risky software development. However, the proposed HAM
functions fundamentally based on software characteristics
and their influences across the software development life
cycle. A successful software development consequently
lies in these important characteristics which result in ease
of development, ease of maintenance, reliability, and use
friendliness, etc. In conclusion, this research proposes a
new CE preliminary evaluation model for which can help
improve the software quality early in the analysis and
design stage.

References

Booch, G., 1995. object Solutions, Redwood city, CA:
Addison-Wesley.

Changchien et al.: A Preliminary Correctness Evaluation Model of Object-Oriented

Booch, G., 1994, Object-Oriented analysis and design
with application, 2nd, Redwood city, CA: The
Benjamin/Cummings.

Briand, L. C., S. Morasca and V. R. Basili, 1996.
“Property-Based Software Engineering Measurement,”
IEEE Transactions on Software Engineering, 22:
68-86.

Bunge, M., 1977. Treatise on Basic Philosophy: Ontology
I: The Furniture of the World. Boston: Riedel.

Bunge, M., 1979. Treatise on Basic Philosophy: Ontology
II: The Furniture of the World. Boston: Riedel,

Card, D. N. and R. L. Glass, 1990. Measuring Software
Design Quality, Englewood Cliffs, NJ: Prentice Hall.
Chidamber, S. R., D. P. Darcy and C. F. Kemerer, 1998.
“Managerial Use of Metrics for Object-Oriented
Software: An Exploratory Analysis,” IEEE Transactions

on Software Engineering, 24: 629-639.

Chidamber, S$. R. and C. F. Kemerer, 1994. ™A Metrics
Suite for Object Oriented Design,” IEEE Transactions
on Software Engineering, 20: 476-493.

Chidamber, S. R. and Q. F. Kemerer, 1991, “Towards a
Metrics Suite for Object Oriented Design,” OOPSLA,
197-211, .

DeMarco, T., 1987. Controlling Software projects, New
York, Dorset House,

Eriksson, H. E. and M, Penker, 1998. UML Toolkit, John
Wiley.

Fenton, N. E., 1991. Software Metrics: A Rigorous
Approach, London, Chapman and Hall.

Fenton, N. E. andS L. Pfleeger, 1996. Software Metrics,
ITP.

Gonzalez, R. R., 1995. “A Unified Metric of Software
Complexity: Measuring Productivity, Quality, and
Value,” J. of System Software, 29:17-37.

Harrison, R., S. J. Counsell and R. V. Nithi, 1998.,
Evaluation of the MOOD Set of Object-Oriented
Software Metrics,” IEEE Transactions on Software
Engineering, 24: 491-496.

“An'

365

Henderson-Sellers, B., 1996. Object-Oriented Metrics |
Measures of Compiex, Prentice Hall PTR. E
Henry, S. and D. Kafura, 1981, “Software Structure
Metrics Based on Information Flow,” IEEE Transactions -
on Software Engineering, 7: 510-518. :
Jacobson, I., M. Christerson, P. Jonsson and G. i
overgaard, 1992. Object Oriented Software °
Engineering, Addison-Wesley.]
Li, W., 1998. “Another Metric Suite for Object-Oriented
Programming,” The 3. of Systems and Software,
44:155-162. <
Medhat, S. S. and J. L. Rook, 1997. “Concurrent |
Engineering- -Processes and Techniques for the Agile 3

Manufacturing Enterprise,” 5th international“:
Conference on Factory 2000, 2. ;
O‘Grady, P. and J. S. Oh.,, 1991, “A Review of :

Approaches to Design for Assembly,” Concurrent
Engineering, 1: 5-11. :

Quatrani, T., 1998. Visual Modeling With Rational Rose
and UML, Addison Wesley.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W.
Lorensen, 1991. Object Oriented Modeling and
Design, Prentice-Hali, INC.

Rumbaugh, J., 1997. “Modelling & Design: Models
through the Development Process,” NewYork: SIGS,
J. of Object-Oriented Programming.

Swink, M. L., 1998. “A tutorial on implementing
concurrent engineering in new product development
programs,” J. of Operation Management, 16:103-116. "¢

Winner, RI. 1988. “"Ther Role of Concurrent Engineering:
in Weapons Systems Acquisition,” IDA Report R-338,
Institute of Defence Analysis, Alexandria, Virginia,
USA. ‘

	JAS.pdf
	Page 1

