Pakistan Journal of Applied Sciences 2 (3):416-421, 2002

© Copyright by the Science Publications, 2002

Dynamic Indexing Algorithms For Structuring Linear Data

Imran Razzaq, Muhammad Sher
Department of Computer Science, International Islamic University, Islamabad, Pakistan

Abstract: Dynamic Indexing Algorithms provides a useful tool for structuring (in the form of tree) linear data
structures (in the form of linear array) and also enclosing them with some Meta information. The main goal

is to present an algorithm (based on some algebraic fori
format on basis of static conditions and dynamic condi

mulas) that can arrange the linear data in a structural
tions too.

Keywords: Upper bound, Lower Bound, Current Index, and Original Index, Content.

Introduction

In most of the file formats information is stored without
any Meta information (- w3c) (- Beniot Marshal, 1999)
and any logical structure (- w3c) (- Beniot Marshal,
1999) (- Sean Mc Grath, 1999). The objective of this
paper is to provide algorithm that can retrieve
information from linearly arranged or indexed data
strings and enclose them with Meta information (- w3c)
(- Beniot Marshal, 1999) and arrange it in a tree
structure.

Initially all the information is arranged linearly in the
form of linear array and indexed linearly. When
converting this information to tree structured organized
hierarchy, and then there is possibility of repetition of a
single element. The repetition of a single element is
based on two approaches.

» Static Repetition

» Dynamic Repetition

Static Repetition: In static repetition an element in the
tree can repeat itself for predefined number of times.
e.g. In a database of billing system, the number of bills
are predefined.

Dynamic Repetition: In dynamic repetition an element
in the tree can repeat itself for Number of iterations
depending upon certain condition(s) e.g. in a database
system of telecom bills the number of cails in each bill
can vary and based on some dynamic conditions.

When converting a linear array of data to tree structured
(intelligible format ref) Meta enclosed

format, an element (- w3c) can repeat itself either
dynamically or statically or not. So we need
onealgorithm to traverse a tree data structure with
dynamic and static element repetition behavior and
another algorithm to re index the index of linear array of
data, during each iteration of repeating element, so that
in next coming iteration, next block of data is retrieved.
These two algorithms collectively perform the structuring
of linear data via dynamically indexing the data, so this
algorithm is named as dynamic indexing algorithm.
Document Philosophy: Before we discuss the
possibilities of structuring of linear lists or arrays of data,
we must know about the electronic document philosophy
and what really the term Document means in the digital
world.

By and large, an “electronic document” consists of three
distinct components

« Data Content

« Logical Structure

» Presentation

Data Content: The data content part of the electronic
document represents the words themselves, it's the

416

abstract data, no presentation, and no other information
about how to present this data is included.
Logical Structure: The logical structure of the
electronic document represents the document type and
organization of its contents, and describes, what the
information is (what this data means, i.e. meta
information) how this information relates to the other
pieces of information of the document and different
constraints on the data it can posses.
Presentation: The presentation of the electronic
document describes the way the information is presented
to the reader, on a piece of paper, browser screen and
via the voice synthesis. Also, which fonts or voice
inflections are used for each piece of information and so
on? Presentation contains all the rules that are applied to
the abstract data to generate its rendition.
Now a word processor - especially WYSIWYG (what you
see is what you get) word processors entwines content
and presentation in a very tight embrace. Using such
tools we create documents with a specific output in
device in mind - typically a paper of particular width and
height. As for structure - capturing what the information
really is - the concept is hardly present at all.
The only structural information stored relates to the
creation of the final paper output - details about page
margins, font sizes, and so on. (- Sean Mc Grath, 1999)
Linear Data Formats: The traditional word processors
and printing frame works create electronic document in
format contains contents and presentation in very tight
embrace e.g. Microsoft Word, Hyper Text Markup
Language, Adobe Portable Document Format and so on.
In these document formats the content data that is
displayed in document is stored in a linear array of
strings including presentation information (how that
information will be displayed). Beside this linear data
there are also some other contents like graphics, image,
drawing etc.
Now the contents, these document contains do not have
any Meta information (ret) and the logical coherence or
relationship between the data. The main emphasis in
such type of documents is on renderings of documents
rather than processing the information they contain. For
example the main usage of HTML documents is to render
the information over web, for PDF documents is the
rendering the document for printing frameworks etc.

The following are major disadvantages of linear

document formats. .

+ The contents and presentation are tightly mixed up
so, these documents are generated with keeping a
specific output in mind.

+ The information they contain is not intelligible. i.e. it

Razzaq and M. Sher: Dynamic Indexing Algorithms for Structuring Linear Data

+ The information cannot be queried.

+ The information cannot be processed.

Structural Document Formats: The structural

document formats contains their contents, the actual

information, in hierarchical data model (- w3c) (- w3c) (-

Beniot Marshal) (- Sean Mc Grath, 1999) in which the

element consists of data and Meta information and

elements also contain distributed and sub-elements. Thus

the whole document is organized in the form of tree of

elements.

Such types of documents fulfill ali the characteristics of

electronic document philosophy. The examples of such

documents are XML, SGML... These types of documents

separate the contents with presentation and also

preserve the structural information of document. There

are primarily two applications of such type of structurai

documents like XML/SGML etc.

-Document Application (applications’

information that is primarily

consumption.)

«Data Application (manipulate information that is

primarily intended for software consumption.)

Document Application: The first application of

structural document would be document publishing it has

following features

« Independent of the delivery medium

+ Edit and maintain documents in structural documents
and automatically publish them

« The ability to target multiple media

« Maintain a common version of the documentation in
a media-independent format, such as XML

manipulate
intended for human

Fig. 1: Rendering XML Data

Data Applications: One of the original goais of
structural document e.g. XML was to give document
management access to the software tools that had been
used to manage data, such as databases. With structural
document, the loop has come to a full circle because
structural document brings a publishing kind of
distribution to data. This leads to the concept of “the
application as the document” where, ultimately, there is
no difference between documents and applications.
Indeed, if the structure of a document can be expressed
in e.g. XML, as illustrated in Fig. 2.

Upper Bound

Lower Bound

Fig. 2: XML Document Application

So can the structure of a database, as illustrated in Fig. 3.

1g. 3 ata Application

Transforming Information From Linear Data
Structures: When transforming the information from
linear data formats to structural data formats (in other
words constructing logical structural tree (- w3c) (- w3c)
(- Beniot Marshal) (- Sean Mc Grath, 1999) of document)
we need first of all Meta Information and the it's children
and some for it's children. For example the following
document hold Students record and we want to convert
it to a XML document.

Structural Format

Linear Format

0 - Name <students>

1 - John <student>

2 - Class <name> John </name>
3-M.Sc <class> M.Sc </class>

4 - Reg# < Reg#>218< /Reg#>
5-218 <Subjects>

6-1 <Subject>

7 - Math <Title> Math </Title>
8-25 <GPA> 2.5 </GPA>
9-p <Status> P </Status>
10-2 </Subject>

11 - Stat <Subject>

12-0.5 <Title> Stat </Title>
13-F <GPA> 0.5 </GPA>

<Status> P </Status>
</Subject>
</Subjects>
</Student>

As we noted in the above example that if we want to

417

Razzaq and M. Sher: Dynamic Indexing Algorithms for Structuring Linear Data

construct the tree given at right side from the linear data

from left side.

Then two tasks will be performed

» The tree traversal with dynamic and static repetition
of a node or element (as subject repeats and students
repeats)

+ The content retrievali mechanism that can retrieve

contents for specific node or element.

Now the user will specify the single instance of each
element in hierarchy and wili associate some properties.
If an element is to be repeating then user will specify its
upper bound and lower bound. Upper bound specify the
starting index and lower bound specify the ending index
of contents interval in which the elements can contain
contents. For next iteration that interval will move
forward. e.g. in the above example we can see that the
upper bound of subject element must be 6 and lower
bound must be 9., Now the subject can contain any
content in between these bounds and for next subject

instance we will move this bound to 10 to 13 so the next
instance of subject can contain next piece of subject
data.

So in dynamic indexing algorithm there are following
three building blocks.

+ Repetitive Tree Traversal Algorithm

+ Dynamic Indexer Algorithm

+ Index Retriever Algorithm

Repetitive Tree Traversal Algorithm: The repetitive
tree traversal algorithm is an algorithm that can traverse
the tree with capabilities of repeating a particular node
for a number of iterations either specified statically or
dynamically. When processing each node it will invoke
“Index Retrieval Function” based on some algorithm
described later to retrieve the contents that it will
contain. And for repetition of a node, during each
iteration, it will invoke "Dynamic Indexer Algorithm” to
re-indexing the contents, so that next set of contents is
retrieved. The Algorithm in pseudo code is described as
follows

Repetitive Tree Traversal Algorithm
Note: The following is the pseudo code representing the complete algorithm of repetitive tree traversal, which is based
on ordinary tree traversal algorithm and on stack rather than recursion.
ParentNode represents the Parent of current node and CurrNode represents the current node that’s being processed.
The ChildNode represents the child node of the current node. The RootNode represents the root node of the tree of

nodes to be processed.

The FirstChildIndex attribute of tree node represents the first child of the node and NextSiblingIndex represents the
index of next child of its parent node. ChildrenList provide all the facilities of a list and maintains all the children of a

node.

//start from root

ChildNode ¢ GetNode (CurrNode = NextSiblingIndex)

Step -1 ParentNode ¢_ NULL;
Step - 2 ChildNode ¢_ NULL;
Step - 3 CurrNode ¢_ RootNode;
Step - 4 Do
Begin
// Process the Node
Step -5 ProcessNode(Parent, ChildNode);
//get all the children of the CurrentNode
//========================
//Get the first child
Step - 6 If CurrNode =» FirstChiidindex = -1 then
return TRUE
EndIf
Step -7 ChildNode & GetNode (CurrNode ~»_ FirstChildIndex)
Step - 8 ChildrenList =» Empty ()
Step -9 Repeat while ChildNode {= NULL
Begin
ChildrenList -» Add(ChildNcde)
If ChildNode = NextSiblingIndex = -1 then
" ChildNode & NULL
Else
EndIf
End While

Razzaq and M. Sher: Dynamic Indexing Algorithms for Structuring Linear Data

//push all the values from the ChildrenList to stack in reverse order

// it contains the further child elements so process them first

// it dont contains the child element so insert it in the tree

Step - 10 Repeat Step - 4 for I = ChildrenList_Size =1, ----, 2,1, 0
Stack -»Push (ChildrenList -»_GetNode (I)
3
//pop one by one
Step - 11 Do Repeat -
Begin
ChildNode & __ stack =»Pop()
Step - 12 If ChildNode = NULL then
Begin
// stack is empty
CurrNode « NULL
ChitdNode & NULL
break
End If
Step - 13 FLAG = DoRepeat(ChildNode)
Step - 14 If FLAG = TRUE || ChildNode_¢=IsRepeating == FALSE)
Begin
If ChildNode ¢ IsRepeating != FALSE)
Stack_Push (ChildNode)
End If
Step - 15 If ChildNode =» FirstChildIndex != -1 then
Begin
ParentNode ¢ CurrNode
CurrNode ¢ ChildNode
break
End
Eise
Begin
ProcessNode(ChildNode, Node)
End If
Step - 16 If ChildNode = NULL then
CurrNode «NULL
End If

End While ChildNode !'= NULL

End While CurrNode t= NULL

In the above algorithm the ProcessNode function is called
to process a particular node of the tree. In the
ProcessNode the Index Retriever Formula is used to
retrieve the Content data for the node from the linear
data list. This formula is described in following section.
The DoRepeat function in the tree traversal algorithm
basically indexes the linear data list so that for a
particular iteration of a repeating node the appropriate
data content must be retrieved. This Algorithm is
described in following section.

Dynamic Indexer Algorithm: The dynamic indexer
algorithm indexes the linear array of contents so that the

419

exact contents must be retrieved by the content retrieval
during the processing of the Dynamic Tree Traversal
Algorithm (described above).

The Repetitive Tree Traversal Algorithm invokes the
DoRepeat function to check for the repetition of the
particular node, in DoRepeat function the Dynamic
Indexer Algorithm is executed which first of re-indexes
the linear array of data contents so that the for the
current iteration of node, the respective block of data
must be considered and all the retrieval of data must be
done from that block.

TR

Razzaq and M. Sher: Dynamic Indexing Algorithms for Structuring Linear Data

Dynamic Indexer Algorithm

The Dynamic Indexer Algorithm checks for the re
the linear data array.

If CurrNode =» IsDynamic = TRUE then

petition of a node and also performs the respective re indexing of

Begin
// repeatition is static
If CurrNode =»Currlteration < CurrNode -»NoOflterations then
Begin
If CurrNode =2Currlteration == 1 then
Begin .
// the first iteration
Content ¢ GetContentByIndex (CurrNode =*UpperBoundry)
CurrNode =#Startindex ¢« Content =Originallndex
CurrNode_Currlteration++
return TRUE
End
Else
Begin
Repeat For I = UpperBoudry to LowerBoundry
) CurrContent ¢+ _ GetContent(I)
If CurrNode=»_Currlteration == 2 then
CurrContent-Stack=sPush(CurContent_Index)
End If
CurrContent=»_Index ¢ -1
End Repeat
NextStart ¢ GetOriginallndex
(GetContent(LowerBound)=»_Originailndex+1)
Increment & LowerBound - UpperBound + 1
Newlndex ¢ iUpperBound;
Repart for I = nextstart to NextStart + Increment
CurrContent ¢ GetContent (I);
CurrContent-»_Stack =»_Push({CurrContent_MIndex);
CurrContent-»_MIndex +_ Newlndex;
Newlndex++;
End Repeat
CurrNode=»_Currlteration++;
return TRUE;
End If
End If
Else
Begin
// it’s the last iteration
CurrNode-»StopIndex ¢ GetContentByOriginailndex
(GetContent(CurrNode_LowerBoundry)
//reinitialize the repeating
CurrNode=#Currlteration ¢ 1 .
Resumelndex (CurrNode=»_StartIndex, CurrNode=»_StopIndex)
return FALSE;
End
EndIf
Else
Note: Same work in Dynamic Repition but condition will not by no. of iteration but it can by any condition
End

In the above algorithm the Index Retriever Algorithm
retrieves the Content on a particular index, which is
described as follows.

Index Retriever Algorithm: The content in a linear
array maintains two types of indexes, first one is the

420

Original Index and second one is Modifiable Index or
Current Index. Now the Index Retriever Algorithm is
used for retrieving the contents based on both type of
indexes, current index and permanent index.

Following is the algorithm.

Razzaq and M. Sher: Dynamic Indexing Algorithms for Structuring Linear Data

Index Retriever Algorithm
The DocArray represents the list of contents that is a
linear array. It provides all facilities of a list.

Repeat ForI = 0,1,2, , DocArray-$Size

Begin
Content & DocArray-»_GetAt(l)
If Content=»_Index = Reqlndex then
return Content
End For

Retrun NULL

Same Algorithm is used to retrieve the content with
respect to original index .

The above three algorithms, Dynamic Tree Traversal
Algorithm, Dynamic Indexer Algorithm and Index
Retriever Algorithm collectively work to perform the
structuring of linear data. In this whole solution, the
Dynamic

Tree traversal Algorithm traverses the structural tree and
invokes the Dynamic Indexer Algorithm to update the
indexes of linear list of contents and uses the Index
Retriever Algorithm to retrieve the content for a
particular node.

421

Conclusions

These algorithms provide a successful and reliable
mechanism for structuring of data. This algorithm is used
in PDF to XML conversion solutions, in Databdse to XML
conversion solutions etc. But still certain enhancements
are expected in the algorithms for the improvement of
their efficiency.

Acknowledgements

The authors wish to thank Almighty Allah who enabled
them to do such type of research work. They will
acknowledge the technical help of Mr. Muhammad
Tauheed (Senior Manager, Elixir Technologies Pakistan)
and Prof. Dr. Khalid Rasheed (Head, DCS, I1IUI).

References

- W3C (World Wide Web Consortlum), “standard for
structured document formats e.g. XML",
www.w3c.org

- W3C (World Wide Web Consortium), “Standard for
traversing the tree-structured document formats
e.g. XML", www,w3c.org

- Beniot Marshal, “XML By Examples”, 1999.

- Sean McGrath, "XML By Examples”, 1999,

~ Adobe Systems Incorporated, “Portable Document
Format Reference Manual 1.3", March 1999,

	JAS.pdf
	Page 1

