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Abstract: Error backpropagation training algorithm (BP) which is an iterative gradient descent algorithm
is a simple way to train multilayer feedforward neural networks. Despite the popularity and effectiveness
of this algorithm, its convergence is extremely slow. The main objective of this paper is to incorporate an
acceleration technique into the BP algorithm for achieving faster rate of convergence. By interconnection
of Fixed Structure Learning Automata (FSLA) to the feedforward neural networks, we apply Learning
Automata (LA) scheme for adjusting the learning rate based on the observation of random response of
neural networks. The feasibility “of proposed method is shown through simulations on three legrning
problems: Exclusive-or (XOR), approximation of function sin(x), and digit recognition. These problems are
chosen becayse they possess different error surfaces and collectively present an environment that is

suitable to determine the effect of proposed method. The simulation resuits show that the adaptation of

learning rate using this method not only increases the convergence rate of learning but it increases the

possibility of bypassing the local minima .
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Introduction

Backpropagation algorithm is a systematic method for
training multilayer neural networks (Rumelhart et al.,
1986). Despite the many successful applications of
backpropagation, it has many drawbacks. For complex
problems it may require a long time to train the
networks, and it may not train at all. Long training
time can be the result of the non-optimum learning
rate. It is not easy to choose appropriate value of
learning rate for a particular problem. The learning
rate is usually determined by trial and error using the
past experiences. If the learning rate is too small,
convergence can be very slow, if too large, paralysis
and continuos instability can result. Moreover the best
value at the beginning of training may not be so good
{iater. Thus several researches have suggested
algorithms for automatically adjusting the learning rate
as training proceeds.

Arabshahi et al., (1992) proposed an error back-
propagation algorithm in which the learning-rate is
adapted. In this algorithm, learning-rate is a function
of error and changes in the error. They proposed that
the learning-rate be adjusted using a fuzzy logic
control system, in which the error and changes in error
are the inputs -and changes in learning-rate is the
output of fuzzy logic controller. Kandil et al., (1996)
used optimum, time-varying learning-rate for
multilayer neural network by linearizing the neural
network around weight vector at each iteration. Parios
et al., (1994) proposed an accelerated learning
algorithm for supervised training of multilayer neural
networks named adaptive error back-propagation
(ABP) algorithm. In their proposed algorithm the
learning-rate is a function of the error and the error
gradient. Cater (1987) suggested having different
learning rate for different pattern. Franzini (1987),
Vos! etal.,, (1987), Te Sauro and Janssens (1988),

Jacobs (1988) and Jutten et al. (1991)have proposed

other schemes for adaptation of learning rate.
Often the mean-square error surfaces for
backpropagation algorithm are multimodal. The

learning automata is known to have well established
mathematical foundation and global optimization
capability (Narendra and Thathachar, 1989). This latter
capability of learning automata can be used fruitfully to
search a multimodal mean-square error surface.
Recently Menhaj and Meybodi (1995 and 1996) have
used variable structure learning automata (VSLA) to
find the appropriate Ilearning rate for the
backpropagation training algorithm. In this approach a
learning automata is associated the whole network to
adapt the appropriate learning rate. It is shown that
learning rate adapted in such a way not only increases
the rate of the convergence of the network but it
bypasses the local minimum in most cases.

In this paper, we use Fixed Structure Learning
Automata (FSLA) to adjust the learning rate of the BP
training algorithm in ‘order to achieve higher rate of
convergence and also higher rate of escaping from the
local minima. By interconnection of learning automata
to the feedforward neural networks, we apply learning

. automata scheme for adjusting the learning rate based

on the observation of random response of the neural
networks. The feasibility of proposed method is shown
through simulations on three learning problems:
exclusive-or (XOR), approximation of function sin(x),
and digit recognition. These problems are chosen
because they possess different error surfaces and
collectively present an environment that is suitable to
determine the effect of proposed method. Simulation
results on these problems show that adaptation of
learning rate using this method not only increases the
convergence rate but it increases the likelihood of
bypassing the local minima. It must be noted that our
studies show that FSLA approach performs much
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better than the VSLA approach reported in (Menhaj
and Meybodi, 1995).

The rest of the paper is organized as follows: Section 2
briefly presents the basic backpropagation algorithm.
The fixed structure learning automata is introduced in
section 3. Section 4 presents the proposed method.
Simulation results and discussion are given in section
5 and 6. Section 7 concludes the paper.
Backpropagation Algorithm: Given a set of
input/output pair of data {(Xp, Tp) Ip=1,2,...,P},
standard learning rule for multilayer feedforward
neural net is the backpropagation algorithm which can
be summarized as follows. Consider a feedforward
neural network with L layers (i.e. Ow layer denotes the
input layer, L« layer represents the output layer and
there are L - 1 hidden layers), where the number of
units in ke layer is répresented by N[k]. The network
first uses the input vector X, (which is equal to U [0])
to produce its own vector U[L] and then compares this
with the desired output, or target vector Tp. If there is
no difference (E 0), no learning takes place,
otherwise the weights are changed to reduce the
difference. The error from output layer is propagated
to hidden layers and the error for every units is
estimated. Backpropagation algorithm is given as
(Hush and Horn, 1993) (Fig. 1). In this algorithm u is
the learning rate ; f and f' denote the activation
function and the derivative of activation function,
respectively.

Learning Automata (LA): The automatons approach
to the learning involves the determination of an
optimal action out of a set of allowable actions. These
actions performed on abstract random environment.
The environment responds to the action by producing
an output, belonging to the set of allowable outputs,
which are probabilistically related to the input action
(Narendra and Thathachar, 1989). The term
environment as commonly defined refers to aggregate
of all external conditions and influences affecting the
life and development of an organism. Narendra and
Thathachar (1989) defined mathematically an
environment by a triple (a, C, B), where g={a1, Oy e

. ar} represents a finite input set, C={cy, cy, -
Cr} shows a set of probabilities, where each element of
of C corresponds to one input action o, and B_= {By,
B>} represents a binary output set.

Procedure StandardBackPropagationAlgorithm
Initialize the weights to small random values
repeat

for ali training pair (X, T) in training set do
Call FeedForward
Call ComputeGradiant
End for
Call UpdateWeights
until termination condition Satisfied
End Procedure
Procedure FeedForward
for Layer = 1 to L do
for Node = 1 to N [Layer] do
Activation = 0
forI = 0to N [Layer - 1] do
Activation=Activation + W[Layer, Node, I] * U
[Layer-1,1]
End for
U [Layer, Node] = f (Activation);

..y

End for
End for

' End Precedure
- .Procegure ComputeGradiant
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“for Layer = Lto 1 do
for Node = 1 to N [Layer] do
E[L, Node] =0 ;
- if Layer = L then
E [L, Node] = U [L, Node] - T [Node];
else
form =1 to N [Layer + 1] do
E [L, Node]= E [L, Node] +E [Layer + 1, m] *
(U [Layer + 1, m]) * W [Layer 1, m, Node]
" End for
End if
End for
End for
End Procedure
Procedure UpdateWeights
for all W [Layer, J, 1] do
Wkt [Layer, 3, 1] = WX [Layer, J, I] - u* G [Layer,
13, 1 :
End for
End Procedure

Fig. 1: The Standard Backpropagation Algorithm

The automaton takes in a sequence of inputs and puts
out a sequence of actions. The automatans
mathematically defined by (¢, a, B, F(., .), H(, .)),
where ¢ is a set of internal states, B a set of input
actions, o a set of outputs, F(. ,.):¢xB—>¢ isa
function that maps the current input and current
state into next state, and H(., .) : ¢ 5o in a
function that maps the current state into the current
output. In such an automatons the input and current
state determine the next state as well as the current
output. The automatons and environment connected in
a feedback arrangement as shown in the Fig. 2.

Fig. 2. The Automata and its Environment

The output of environment p(n) forms the input to the
automatans and the action of automatans o(n)
provides the input to the environment. If the
probability of the transition from one state to another
state and probabilities of correspondence of action and
state are fixed, the automatons is said fixed-structure
automata and otherwise the automatons is said
variable-structure automata. We summarize some of
fixed-structure learning automata which are used in
this paper in the following subsections.

The Two-state Automata : L2,2: This automata has

two states, ¢jand ¢, and two actions ay and oy, as

shown in Fig. 3. The automata accepts input from a set
of {0, 1} and switches its states upon encountering an
input 1 (unfavorable response) dnd remains in the
same state on receiving an input O (favorable
response). . .
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Fig. 3: The Two-State Automata

An automata that uses this strategy is refereed as
Ly » where the first subscript refers to the number of

states and second subscript to the number of actions.
The environment is characterized by the set of
penaity probabilities {cl, c2} where c (i = 1, 2)
corresponds to the probability of getting a response B

= 1 from the environment when the input is o The

simple strategy used by automata implies that it
continues to perform whatever action it was using
earlier as long as the response is good but changes to
the other action as soon as the response is bad.

The Two-action Automata with Memory : Lyy 5.

This automata has 2N states and two actions and
attempts to incorporate the past behavior of the
system in its decision rule for choosing the sequence of
actions. While the automata L2’2 switches from one

action to another on receiving a failure response from
environment, Loy > keeps an account of the number
[

of success and failures received for each action. It is
only when the number of failures exceeds the number
of successes, or some maximum value N, the
automata switches from one action to the another. The
procedure described above is one convenient method
of keeping track of performance of the actions a, and
a.,.

5 As such, N is called memory depth associated with

each action, and automata is said to have a total
memory of 2N. The state transition graph of this
automata is shown in fig. 4.

Q-
2

Q0 9o
N-1 N

Favorable Response (B = 0)

Qi

s’ | N+2 N+

S T e TR v
Untavorable Response (§ = 1)
Fig. 4. The State Transition Graph for '-2N,2

For every favorable response, the state of automata
moves deeper into the memory of corresponding
action, and for an unfavorable response, moves out it.
This automata can be extended to muitiple action
automata and this automata is named '-KN,K

automata.

The Krinsky automata: This automata behaves
exactly like L2N,2 automata when the response of the

environment is unfavorable, but for favorable
response, any state &, (fori=1,..., N) passes to the
state ¢; and any state 3 (fori = N+1, , 2N) passes

to the state LI This implies that a string of N
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consecutive unfavorable responses are needed to
change from one action to the another.

The Krylov Automata: This automata has state
transition that are identical to the Ln,2 automata when
the output of the environment is favorable. However,
when the response of the environment is unfavorable,
a state ¢i (i #1, N, N+1, 2N) passes to a state ¢;+; with
probability 0.5 and to a state ¢..; with probability 0.5.
When i =1 or i =N+1, ¢; stays in the same state with
probability 0.5 and moves to ¢i+1 with the same
probability. When i = N, automata state moves ¢n-; to
¢2n  and with the same probability 0.5. When i = 2N,
automata state moves ¢an-1 tO ¢n and with the same
probability 0.5.

The Proposed Method: In our proposed method, we

‘use the fixed-structure learning automata for adjusting

the learning-rate. The interconnection of learning
automata and neural network is shown in Fig. 5. The
neural network is the environment for the learning
automata. The learning automata according to the
amount of the error recieved from neural network
adjusts the learning rate of the backpropagation
algorithm. The actions of the automata correspond to
the values of the learning rate and input to the
automata is some function of the error in the output of
neural network.

Fig. 5: The Interconnection of LA with Neural Network

A function of error between the desired output and
network output is considered as the response of
environment. A window on the past values of the
errors are swiped and the average value of the error in
this window computed and compared to a threshold
value. If the difference of the average value in the two
last steps is less than the threshold value, the
response of the environment is favorable and if the
difference of average value in the last two steps is
greater than the threshold value, the response of the
environment is unfavorable.

Algorithms of Fig. 6 and 7 describe how fixed structure
learning automata can be used for determination of
learning rate of backpropagation algorithm. In the first
algorithm a single learning automata is responsible for
determination of the learning rate for the whole
network, whereas in the second algorithm a separate
learning automata has been used for each layer
(hidden and output layers). Simulation results show
that using separate learning automata for each layer of
the network produces better results than when we use
a single learning automata. These two algorithms have
been tested on severa! problems and the results are
presented in the following section. In these algorithms
at each iteration one input of the training set is
presented to the neural networks, then the network’s
response is computed and the weights are corrected.
The amount of the correction is proportional to the
learning rate.
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Simulation: In order to evaluate the performance of
the proposed method simulations are carried out on
three learning problems: Exclusive-or (XOR),
approximation of function sin(x), and digit recognition.
The results are compared with results obtained from
standard BP and variable structure learning automata
based algorithm reported in (Menhaj and Meybodi,
1995 and 1996).

Procedure OnelLA_BPAlgorithm
Initialize the weights to small random values
Initialize the parameters of learning automata
repeat
for all training pair (X, T) in training set do
Call FeedForward
Call ComputeGradiant
End for
Call UpdateWeights
Call ComputeResponseOfEnvironment
Call AdjustLearningRate
until termination condition satisfied
End Procedure

Fig. 6 : Backpropagation algorithm with a single LA

Procedure TwolLA_BPAlgorithm
Initialize the weights to small random values
Initialize the parameters of two learning
automatons
repeat
for all training pair (X, T) in training set do
Call FeedForward
Call ComputeGradiant
End for
Call UpdateWeights
Call ResponseOfEnvironmentForOutputLayer
Call AdjustLearningRateOfOutputLayer
Call ResponseOfEnvironmentForHiddenLayer
Call AdjustLearningRateOfHiddenLayer
until termination condition satisfied
End Procedure

Fig. 7 : Backpropagation Algorithm with Two LA

XOR : The network architecture used for solving
problem consist of 2 input units, 2 hidden units, and 1
output unit. Actions in these simulations are selected in
interval [0, 1] with equal distance. Fig. 8 compare the
effect of different automata on the performance of
learning. This Fig. shows that the fixed structure
learning automatons are more effective than variable
structure automatons, which are reported in (Menhaj
and Meybodi, 1995 and 1996).

For all automatons in this simulation the memory
depth of 4, and the threshold of 0.01, and window size
of 1 is chosen. For the Tsetline automata the number
of action 4 and for linear reward-penalty automata the
reward and penalty coefficient 0.001 and 0.0001 are
chosen. Note that for this application Krylov automata
is the best automata for adaptation of learning rate.
In Fig. 9 a Lkn,k automata is associated to output layer
and a Lknx automata to the hidden layer. For this
simulation, number of action of 4, the memory depth
of 4, window size of 1 and threshold of 0.001 are
chosen for both automatons.
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a) Standard BP with Learning Rate of 0.7
b) One Learning Automata

¢) Two Learning Automatons

F(x) SIN (x): This is a function approximation
problem. A training set of 20 samples is selected
uniformly over period 0..2x. Simulations are carried
out for different networks: a 1-5-1 (Fig. 10) network
and 1-10-1 (Fig. 11) network. For both networks a
FSLA is used for adaptation of learning rate. For these
simulations number of action of 4, memory depth of 4,
threshold of 0.001, and window size of 1 are chosen.
In (Menhaj and Meybodi, 1996). was reported that a
1-5-1 network for this example that fails to train the
network when using the standard BP algorithm can be
trained when variable structure learning automata is
incorporated in the BP for the adaptation of the
learning rate. We have also obtained the same result
when FSLA is used (Fig. 10 and 11).

8 x 8 Dot Numeric Font Learning: We have ten
numbers 0, ... , 9, and each represented by a 8 x 8
grid of black and white dot as shown in Fig. 12
(Sperduti and Starita, 1993). The network must learn
to distinguish these classes. The network architecture
used for this problems consists of 64 input units which
are connected to 6 hidden units which are connected
to 10 output units.
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Fig. 12:

Fig. 13 compare the effect of different automata on the
performance of learning. This Fig. shows that the fixed
structure learning automatons are more effective than
variable structure automatons, which are reported in
(Menhaj and Meybodi, 1995 and 1996) For all
automatons in this simulation the threshold of 0.01
and window size of 1 is chosen. For the Tsetline
automata the number of action 4, the memory depth
of 4 and for Krinsky and krylov automatons the
memory depth of 4 are chosen. For linear reward-
penalty automata the reward and penalty coefficient
0.001 and 0.0001 are chosen. Note that for this
application Krylov automata is the best automata for
adaptation of learning rate. Fig. 14 shows the effect of
association of different automatons to different layers
on the performance of learning. In this simulation a
Tsetline learning automata is associated to the hidden
layer and the effect of association of different learning
automatons are shown. For all automatons in this
simulation the threshold of 0.01 and window size of 1
is chosen. For the Tsetline automata the .number of
action 4, the memory depth of 4 and for Krinsky and
TsetlineG automatons the memory depth of 4 are
chosen.
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Table 1 shows the effect of association of different
automatons to different layers on the performance of
learning For all automatons in this simulation the
threshold of 0.01 and window size of 1 is chosen. For
the Tsetline automata the number of action 4, the
memory depth of 4 and for Krinsky and krylov
automatons the memory depth of 4 are chosen. The
error of standard BP after 3000 epochs is 0.734397.
The plot for each simulation is averaged over 200
runs. For more simulations refer to (Beigy et al., 1997)

Table 1
Hidden Output Error After Epochs For
Layer LA Layer LA 3000 Error of 0.01

Epochs

Tsetline Tsetline 1.075709
Tsetline Krinsky - : 1466
Tsetline Krylov 1.654468
Tsetline TsetlineG 413
Krinsky Tsetline 1863
Krinsky Krinsky 935
Krinsky Krylov 724
Krinsky TsetlineG  2.467577
Krylov Tsetline 1049
Krylov Krinsky 594
Krytov Krylov 1.494493
Krylov TsetlineG  2.344173
TsetlineG  Tsetline 1031
TsetlineG  Krinsky 1089
TsetlineG  Krylov 918
TsetlineG  TsetlineG 1029
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LA Based Schemes and Local Minima: In this
section, we examine the ability of the learning
automata based schemes to escape from local minima.
For this propose, we chose a problem in which local
minima are occurred frequently (Gori and Tesi, 1992).
This example considers the sigmoidal network for the
XOR boolean function with the quadratic cost function
and the standard learning environment The training
set of this problem is given in table 2. The network
which is used has two input nodes x and y, two hidden
units, and one output unit. In this problem, if hidden
units produce the lines a and b the local minima has
been occurred and if hidden units produce the lines ¢
and d the global minima occurred (Frasconi et al .,

1992).
Table 2
Pattern X y Desired output
A 0 0 0
B 1 0 1
C 1 1 0
D 0 1 1
E 0.5 0.5 0

Fig. 15 shows ‘these configurations. The error surface
of the network as a function of weights wz,1,1 and wy,1,1

is given in Fig. 16.
/ line C

e

line d

A

<05
//

B

L X
lineb line @

Fig. 15: Lines Produced by Hidden Units of Neural
Network

Fig. 16: Error Surface as a Function of Weights Wz 1 1
and W1,1,1
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Depending on the initial weights, the gradient can get
stuck in points where the error is far from being zero.
The presence of these local minima is intuitively
related to the symmetry of the learning environment.
Experimental evidence of the presence of local minima
is given in Fig. 16.

Table 2

Algorithm Not Converged

Converged
BP 20 0]
SAB 20 0
SuperSAB 20 0
VLR 18 2
FuzzyBP 18 2
Tsetline 18 2
Krinsky 14 6
Krylov 17 3
Lr-p i6 4
Tsetline-TsetlineG 18 2
Tsetline-Krylov 18 2
Tsetline-Krinsky 15 5
Tsetline-Tsetline 15 5

To show how well the LA based adaptation algorithm
escapes local minima we test eight different LA based
algorithms, 4 from class A and 4 from class B and
compare their results with the standard BP and five
other known adaptation methods: SAB(Jacobs, 1988),
SuperSAB(Jacobs, 1988), VLR method(Menhaj and
Hagen, 1995), and fuzzy BP(Arabshahi et al., 1996)
((Arabshahi et al., 1992). The result of simulation for
20 runs are summarized in table 1. Note that for
standard BP and also for standard BP when SAB or
SuperSAB method is used to adapt the learning rate
none of the 20 runs converges to the global minima.
Among the non-LA based methods the fuzzy BP and
VLR methods method perform the best. For each of
these methods 2 out of 20 runs converges to global
minima which is comparable to some of the LA based
schemes we have tested. The best result is obtained
for Krinsky scheme from class A for which 6 runs out
of 20 runs converge to global minimum. The next best
result belongs to Lge scheme. Fig. 17a through 17¢
show some typical runs. Each run uses a random initial
point near the local minima. In these Fig. the initial
point is denoted by letter ‘B’ and the converged point
is denoted by letter ‘A’. The curves in these figures are
obtained by projecting the error surface on axis w,1,1.
The reason for such a good performance of LA based
schemes is that in the standard gradient method, the
new operation point lies within a neighborhood
distance of the previous point. This is not the case for
adaptation algorithm based on stochastic principles, as
the new operating point is determined by probability
function and is therefore not considered to be near the
previous operating point. This gives the algorithm
higher ability to locate the global optimum. In general,
the LA approach has two distinct advantages over
classical hill climbing methods: 1) the parameter space
need not be metric and 2) since the search space is
conducted in the path probability space than
parameter space, a global rather than a local optimum
can be found.
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Conclusion

In this paper, we have proposed the use of FSLA for
adaptation of learning rate of BP algorithm. We have
demonstrated through simulations that the use of FSLA
for adaptation of learning rate of BP algorithm not only
increases the rate of convergence by a large amount,
but it is possible to compute a new point that is closer
to the optimum than the point computed by BP
algorithm. In the all problems we studied so far, the
conver?ence of BP which uses FSLA or VSLA for
adaptation of learning rate is faster than the standard
BP. All the simulations show this important fact that
use of FSLA performs much better than the use of
VSLA for adaptation of learning rate.
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