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Critical Temperature of Short Cylindrical Shells Based on
: Improved Stability Equation
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Abstract: The nonlinear strain-displacement relations in genera! cylindrical coordinates are simplified by
Sander’s assumptions for the cylindrical shells and substituted into the total potential energy function for
thermoelastic loading. The Euler equations are then applied to the functional of energy, and the general
thermoelastic equations of nonlinear shell theory are obtained and compared with the Donnel equations. An
improvement is observed in the resulting equations as no length limitations are imposed on a thin cylindrical
shell, The stability equations are then derived through the second variation of potential energy, and the same
improvements are extended to the resulting thermoelastic stability equations. Based on the improved
equilibrium and stability equations, the magnitude of thermoelastic buckling of thin cylindrical shells under
different thermal loading is obtained. The results are extended to short and long thin cylindrical shells.
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Introduction

The theoretical developments of the elastic buckling of
shells may be attributed to the works of Donnel ( 1950;
1958), who evaluated the critical buckling load of a short
cylindrical shell that is frequently used in industry. The
prime importance of his formulation consists of simplicity
and the closed-from solutions that he obtained for critical
loads for some loading conditions that frequently occur
in practical design problems. These formulations include
the effect of imperfections and present the analysis for
a short cylindrical shell under axial compression and
external pressure while ignoring the shear force in

circumforential direction and the rotations [ and f,

These assumptions lead to results that are acceptable for
short cylindrical shells where the transverse shear force
and rotations are small and can be ignored. The
equilibrium and stability equations that he obtained were
essentially based on the force summation method and
have become the basis of many other developments for
the shell buckling theory such as treatments presented
by Donnel (1976), Koiter (1977; 1980), Flugge (1973)
Morley (1959), and Brush and Almroth (1975). The
analyses presented in these papers are restricted to the
mechanical loads such as axial compression, lateral
pressure, twisting moments, or combinations thereof.
The method of solution is generally based on
trigonometric approximation for the displacement
components and substitution into the stability equations
and setting the determinant of coefficients to zero. The
prebuckling stresses are the associated membrane
stresses for each individual loading. Thermal buckling of
cylindrical shells based on Donnel equations are given by
Johns (1962), Chang and Cord(1970) and for the shell of
revolution by Bushnell (1971). Thermal buckling of short
cylindrical shells fixed between two disks that are
allowed to move in the direction of shell axis, where the
disks are kept at low temperatures and the shell at a
high temperature, is considered by Lukasiewicz (1980).
In this article the improved equilibrium and stability
equations are obtained and employed to compute the
critical thermoelastic buckling load of cylindrical shells
under radial thermal loadings, axial temperature
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difference, and critical uniform final temperature for
simply supported shells.

Analysis: A thin cylindrical shell of mean radius R and
thickness h with L is considered. The normal and shear
strains at a distance z from the middie Pianes of the shell
are (Donnel, 1976):

£ =&, +zk.
&y = &g, +2ky
Vo =Veon TR (1)
Where the & Sare the normal strains, )/ S are the shear

strains, and k, are the curvatures. The subscript m
refers to the strain at the middle surface of the shell. The

indices x and @ refer to the axial and circumferential

directions, respectively. According to the Sander’s
assumption (Sanders, 1963), the general strain-
displacement relations can be simplified to given the
following terms for the strains at the middle surface and
the curvatures in terms of displacement components:

Egn=U, +0O5W ¢
Egy =(Vo +W)/ R+(v—w,)* /2R

Von =Ug/ RV W v+ W W)/ R

k.\' = —w)..\'.\'
kg =(Vg—wWgp)/ R
ky=(v, 2w )/2R e3)

where u ,v and w are the displacements and (,) indicates
a partial derivative. The Hook's law in terms of forces
and moments per unit length is
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N, =(g,,+ve,,)—Fdl, /(1-v)
N, =g, +ve,,)—Eal, /1-v)
Ny =Ng =C1-v)y,,/2
M, =Dk, =vky)—Edl, /-v)

My =Dk, +vk,)- EdL, 1—v)

My =M, =I1-v)k, ' 3)

Where y and M are related to o, through the shell
thickness’according to the first-order shell theory is the

elastic modules, v is the Poisson’s ratio @ is the
coefficient of thermal expansion, Also:

hi?2
T,=[""7de, T, = [ Tedz
Dand ~h/2 —h/2
C=EW(-v}),D=ER 1X1-V") @)

The total potential energy of the, shell is the sum of

membrane strain energy Um, the bending strain energy

Ub and the thermal strain energy UT expressed as:

U=U,+U, +U, (5)
where

U,=RC/2 j (6% n+6%an + 2ve, 0, + (1=V)y*can | 2Jdcc)
U, =RDI2[[[K% +K +2vK K, + A1 ~V)K s Jdxc)
Uy =-REx (=) [[(€,p #6000, + (K., + Ky )Ty Jdsch + RE* ra-vff[r*axd:

(6)
Assuming that the cylindrical shell is under thermal
stress alone, the total potential energy is a function of
the displacement components and their derivatives and
can be written as:

U=MF(u,v, Wl U,V Vo, W W, W, Wao W )Xz

Minimizing the functional of potential energy leads to the
Euler equations:

F doF 0 aF

u xdu, 00au,

oF 0oF & oF

22X X

00 v,

F oF o&F 626F+626F & &F

v &ow, How, & w, AOw, O ow,,

Upon substitution from Eqgs. (6) into (7) and using Egs.
(2) and (3),the equilibrium equations for general thin
cylindrical shell are obtained as:
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RN +Ng, =0
RMem +Na6 +1/ RM,B +A4x0,x ‘(Neﬂe +ngﬂx) =0 8

RM A2RM My~ RN ~RRNE, 4Ny BB, +B,) Nyl =0

Where
B.=w, and Fo =0 )R ©)

are the rotation in the x-and @ directions. It is to be
noted that the first and the third equilibrium equations
(8) are identical to the Donnel equations. The second
equilibrium equation (8) has extra terms compared to

-the Donnel equations. Here we recall that the transverse

shear force in the circumferential direction is:

o, =M0.a /R+M.\'H..\' | (10)

Comparison shows that in the Donnel equations for short
cylindrical shells the shear force in the circumferential

direction and rotations ﬂxand ,39 are ignored. These
approximations are justified for short cylinders these
assumptions are no longer sufficient and the inclusion of
these terms adds to the accuracy of the results.

The stability equations of thin cylindrical shells can be

derived by the variational formulations. If Vis total

potential energy of the shell, the expantion of Vabout
the equilbrium state into the Taylor series yields:

AV=5V+%5’V+—31-'5’V+... (11)

The first variation &Fis associated with the state of
equilbrium. The stability of the original configuration of
the shell in the neighbohood of equilbrium state can

determined by the sign of second variation §2V as
follows:

* The equilbrium is stabble if &% >0for all virtual
displacements.

¢ The equilbrium is unstable if 52V<Ofor at least one
admissible set of virtual displacemen}ts.

* The condition §°V'=0 is used to drive the stability
equations for many practical buckling problems.

The external load acting on the original configuration is

considered to be the critical buckling load if the following

variational equation is satisfied :

2
8(8V)=0 (12)
This rule provides the govering equations that determine
the lowest critical load.
Consider the state of stable equilbrium of a general
cylindrical shell under thermal load that is designated by

Uu,,v,and W,. The displacement components of the
neighboring state are:

u=u, -+,

u=u, +u,
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W=, +w, (13)
Similarly, the components of forces and moments
related to the neighboring state are related to the state
of equilibrium according to the relations:

N, =N +AN, M =M, +M
N; =Ny +AN, M, =M, + A\,
NxB = NXGO +ANx9 Mxe = ngo + AM""B

o ANV, A,

(14)

“express the linear portion of In terms

of U, V|,and W] they become:

Na=Clea+veq) M, =DK,+vk,)

Ny =Ugy +V61) .~ M, =DK,+K,)

Ny =N,, =g W M, =M, =D1-vK,, (15)
and

No=Cle,, +ve,)—EaT, I(1-v)

Ny =Cleg +ve, o) —Eal, /(1-v)

N, = %(I—V)}’xeo

M,y = DKo +VKy)~EdlL, /(1-)

My, = DKy, +VK ;) —EdT, [(1-v)

Mgy =D0-VK.5 oo

Using Egs. (13) for the displacement components of a
neighboring state of stable equilibrium and employing
the decomposed linear part of strain displacement
relations, the linear strain relations for the equilibrium
state (0) and the first variation (1) are obtained as:

€. =€,+e, B =By + B

€ =€y ey K =K,+K,

€y =€gtey Ky=Ku+K,

ﬂx =ﬂ10 +Pq Ko=K4 +K g (17)

Substituting for the strains and curvatures from the
linearize strain-displacement relations yields:

gxl =exl =u1’x le =_M)1.xx

n=a =g +W)R  Kp=(,—W,0)/ K
Y =€ =va +uw /R Kxg] =(V1,x _2w1.x9)/R
ﬂxl = ﬂm :(Vl _M)IB)/R
Equations (18) are written in terms of the displacement

components, which upon application of Euler equations
result in the stability equations:

W,

Lx

(18)
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RN, +Ny =0

RNy . +Noo +VRM 4+ Mg . ~(Npfly +Nppf8,) =0
RA/{M +2Mm5,1,,“9 +Maﬂﬂ/ R-N,

—[RNxOﬂxl,x +Nx90(Rﬂﬁl,x + xl,B) +Noo 91;0 =0 (19)

A comparison of these equations with the Donnel stability
equations reveals that while the first and third equations
are identical, the second equation includes extra terms
that are ignored in the Donnel equations because they
are small for short cylinders. Including these terms
removes the length limitations imposed by Donnel
equations. It should be noted that these terms improve
the accuracy of the predicted design critical loads.

Thermal Buckling, Short Cylindrical Shelis: For short

cylindrical shells the transverses shear force 04 and

rotations 3. and [are ignored and the equilibrium and
stability equations reduce to the Donnel equations, Upon

substitution for M.and Mi_ their equivalencies of strain
from Egs. (15) and’finally if terms of displacements from
Egs. (18), the uncoupled forms of the Donnel equations
are obtained as:

Vi =—v/ Ry, +1/Rw,_,

V' =1/ R'W, 5o~ (2+V)/ Rw,
DV, +C(1-V*)/R?

u}l,mt
~VINM o +2/ RN, 5 + Ny oo/ E1=0  (20)

These equations are related to the thermal stresses

through the prebuckling terms such as N x0 through Egs.
(16) In the next section three types of thermal bucklings
are discussed and the critical temperatures are
calculated.

Critical Initial - Final Temperature: Consider a
cylindrical shell of length L, radius R, and thickness h
with both ends simply supported. The initial uniform

temperature of the shell is assumed to be T ,, if the shell
is simply supported and -the axial displgcement is
prevented, the temperature can be uniformly raised to a

final value T¢ such that the shell buckles. To find the

critical AT=T, =T, the prebuckling thermal stresses
are: »

Ny =—Eal(l-v)[ "Tdz=—pAT 21)
where

p=Ech/(1-v). For this type of loading
Ngo = N_\.go =0 .from the edge conditions:
w=w,. =0 (22)
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Assume the solution in the form:
w, =C sinmxsinng (23)
where m=mR/Land C, is a constant. Coefficient.

Substituting Egs.(21) into third of Egs. (20) yields:

DV'w +CA-V)/ RW ., + ATV, . =0 (24)
Substituting the solution w from Eq .(23) vields:
—2  2,p2y? 2 —2
s DI (127 Cn @)
m R™ Jm" +n*IR?Y?

The critical temperature depends upon m and n. Denoting

yz(l_rtz~+n2/R2)2/;1 Eq. (25) reduces to:

AT=Dy +c(1v*)/Ry (26)
Minimizing ATwith respect to 7 gives:
7 =[c(-v?)/DR*)" 27)

where C and are constants defined in Egs. (3) Substituting
into Eq. (26) vield the critical temperature difference as:

AT __EW/R___ h [ 1-v 17 @8
crit ﬂ[3(l _ vz)]l.Z Ra 3(1 + V)

For v= 0.3 we have

AT,,=042%/Ra (29)

This value for critical temperature can be compared with
the relation given b Johns (1962). considered a
cylindrical shell stiffened by solid rings under uniform
temperature. The critical initial ~ final temperature that he
obtained is

AT, =kh/Ra (30)
For simply supported cylindrical shells, k = 5.3 Johns,
1962). Comparing the factor k = 5 given by Johns with
0.424 of Eq. (29) Shows that the critical limit proposed
John is 12 times higher. This factor is reasonable due to
the Johns assumption.

It is further noticed that critical temperature for short
cylindrical shelis does not depend upon the shell length.
Critical Radial Temperature: Assume linear
temperature Variation across the shell thickness as:

ar@)=Al(z+h/2)/ h
Where z measures from the middle plane of the shell.

For simply supported edges the prebuckling axial force
in the shell is:

N_, =—EahAT/2(1-v)

(31)

(32)
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With a similar method, the critical temperature difference
between inside and outside surfaces is:

AT, = ~T,),,,=[41-)/31+9)] *h/ Ra
Forv = 0.3:

AT, =0.8481/Ra

crit
Critical Axial Temperature: Consider a cylindrical shell
of length L under axial temperature difference and with
simply supported edges, where the motion of the edges
in the axial direction is prevented. Assume a linear
temperature variation in the axial direction x:

(33)

(34)

T)=ATYL

ey 35)
Where

AT =T(L)-T(0). The prebuckling axial force is:

N, =—Foh/(—) ATxL=—p\Tx/L (36)

Substituting this into the third of the stability equations
gives:

DV*w, +EW Row, ., +ATx LV*w, =0 (37

Expanding T (x) from Eq. (35) into a Fourier series,
keeping only the first two terms, assuming a series

solution for w 1with two terms as:

2 —
w, = a, sinn@sinmx (38)

m-1
and substituting Eq. (38) into Eq. (37) results in two

equations for ajand
simultaneously if Eq.

that should be solved

(37) is to be satisfied. The

determinant of the resulting two equations for ay and a;
yields the following relation for the critical axial
temperature difference:

I
. . 1 -
(1/4)(K111R111 + Alnplu)-i Jiﬁz (KlnPZn + PanZn )2 - '22PlnPZnK lnl‘ 2nJ

A'E‘}‘fl = 22&)!"132"
(39)
where:
kn, =D(m +n*/k*)* + Ehm" IR?
—2 —2
D, =(m +1n* | RBY’m
m=maR/L (40)

Equation (39) is used to obtain the critical temperature.
For a cylindrical shell with R = 1000 mm, h = 5 mm,

_6 o
=119 X10 1/ C, and v=03, the critical
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temperatures for two values of L/R are given in Table 1.
The value of m in Eq. (39) is either 1 or 2; and the
values of n, the associated circumferential waves at
which the buckling appears, are also given in Table 1.

It is noted that when L/R is increased, the number of
circumferential waves n is decreased. Also, when L/R is
increased, the critical axial temperature is also increased.

Table 1: Critical Temperature for Axial Loading

L/R n AT,
0.5 11 270.48
10 3 320.79
Conclusion

The theory of thermal buckling of cylindrical shells has
many applications - in industrial design problems.
Frequently, the thermal loading encountered in buckling
design problems of cylindrical shells include simple
temperature distributions between inside and outside
surfaces, initial final temperature differences, and the
axial temperature distributions are commonly practiced in
design problems. The simple design formula presented in
this paper should provide an effective means for analysis
of practical problems of thermal buckling of cylindrical
shells.
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