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Conservation of “Partial Angular” Momentum
with Applications on Water Waves
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Abstract: An extension of the conservation equation for angular momentum is established for fluid
dynamical purposes. The three components of the angular momentum vector, described in a Carte-
sian coordinate system, are divided into pairs of “partial angular momentum"”
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Introduction

In fluid dynamics, angular momentum is hardly in use
at all. The aim of this paper is to make the angutar
momentum concept more useful for fluid dynamical
purposes. This is achieved by dividing each component
of the angular momentum vector into two partial angu-
lar momenta, and estahlish conservation theorems for
each of them in a similar way as for partial energy,
which was established in Naeser (2002).

The anguilar momentum of a laminar, unidirectional
flow is due to fluid velocities in one single direction.
When turbulence or waves are generated, e.g. by the
Kelvin-Helmhoitz instability, angular momentum {as
well as energy) is transferred by internal forces from
the unidirectional flow to multidirectional flows by a
process that conserves anguiar momentum. It implies
that an angular momentum vector, initially due to fluid
velocities in a single direction, will be due to velocity
components at right angles to the original direction
too. Here, the aim is to establish the additional equa-
tions needed to make the transfer information avail-
able. Thereby we learn what is needed to transfer
angular momentum from velocities of one direction to
another by internal forces.

Lagrangian Conservation Equation: Conservation
equations for six partial angular momenta P12, P13, Pay,
P23, P31 and P33, based on the three orthogonal direc-
tions xy, xz and x3 of a right-handed Cartesian coordi-
nate system, are established. They treat the angular

momentum of a fluid with density P2, inside a closed
material surface A surrounding a volume V. For this
system, partial angular momentum is defined as

Py = J‘xii‘J-pdV

if
I

Here /# j . They can take the vaiues 1, 2 and 3. The

dot above x denotes total time derivative, which is also
written D/Dt. From this definition, it is easily verified
that 2 component of the angular momentum vector
can be written

(1)

Ly =F-pP;, )

provided {J, j, k} are {1, 2,3} {2,3,1}0r {3, 1, 2}.
Conservation equations for Py are developed by treat-
Ing each component of Newton's 2™ law separately,
Since Newton's 2" |aw treats a specific mass, Lagran-
gian conservation equations are obtained. They are
finally transformed to Eulerian form for an incom-
pressibie fluid.

Initially, Newton’s 2™ |aw g adopted on an infinitesi-
mal mass dm with density £ and volume dV inside a
closed surface dA. The external forces are split into
gravity forces and surface stresses. For the sake of
simplicity the xj axis is defined vertical, so that the

acceleration of gravity g is in the negative x 5 direction.
Then the /™ component of Newton’s 2™ law reads

—5j3gpdV+dFj =J'c'jpdV_

The Kronecker delta &; = 1 when / = j, Eise & = 0.
The first term of (3) is the force of gravity, while df; is
the component of the stress forces on the surface of
dV in the direction of i;, which is the unit vector along
the x; axis,

Now, (3} is multiplied by x.

(3)

(4)

By definition, the mass of a material volume dm=p av
is constant. Hence the right hand side of (4) can be
divided into two terms:

(5)

The term in the brackets is denated dPy, as It is an
infinitesimal part of Py defined in (1). When (5) is in-
serted into (4), it reads

D ..

Ed]:j =xx;pdV — 8 3x,8pdV + x;dF; | (6)
The stress force component acting on a small part da
of the surface g4 of gV, is

682

x5 pdV :—DD—I(x,-ijpdV)-—x,-ijpdV _
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df; =i, ™
where @ is the stress tensor, i; the unit vector in the
direction of the x; axis and n a unit vector normal to
da that is pointing out of dV. By integrating over daA,
Gauss’ theorem implies that the / component of the
surface forces on d@V is obtained:

dF; -—-ij (V-o)dV . (8)

The integration sign is omitted in (8), since dV is infini-
tesimal so that the integrand can be regarded as a
constant.

In order to be used in (6), (8) must be multiplied by
x;. Afterwards, the term on the right hand side is di-
vided into two terms:

xdF; =V -(xi;-0)dV —(i;-0)-VxdV | (g
Hence the integral of the forces (to the left) equals the

integrals over V (to the right). By applying Gauss’
thecrem on the first term on the right hand side,

Jx,-dFj = J.(x,ij 'O')'ndA— I(ij U)Vx,dV (10)

F;

On the right hand side of {10), the first term is the
moment of the component of the surface stresses in

the direction of i;. In the second term, Vx; =i;.

Hence the integrand is oy Since i # j, the general

stress tensor, as given in Landau and Lifshitz (1966)
eqns. {15.2) and (15.3), can for this purpose be re-
duced to

‘o-nda,

-

o %
6xj Ox

where uis the coefficient of dynamic viscosity.

In order to avoid confusion, please beware that the
omission of the stress terms due to compression does
not imply that the Lagrangian theory is restricted to
incompressible fluids, but that the compression terms
do not apply to the transfer of angular momentum.
After integrating (6) and exchanging the last term of it
by the right hand side of (10}, (6) reads

I x;pdV — 5j3xigpdV

O =i

if (i #J), (11)

i

12
oydV (12)
Voo

Term 2 and 3 on the right hand side, give the total

moment of the external force components in the direc-
tion of i;. By denoting the external moment My, and
the two remaining terms ©;, a conservation equation

for partial anguiar momentum on Lagrangian form is
obtained as

Py =My +0;. (13)

Here Gy is found by inserting for oy from (11) Into the
two remaining terms of (12). By exchanging X; by w,

+ I(x‘-ij o) -nd4 -
A
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ou )
ar; o,

Oy = | wu;p-p dav

P
So ®jy Is a function of viscous stresses and Reynolds
stresses.

By inserting (13) into (2), then
Ly=My-M (15)

This is the ordinary conservation equation for angular
momentum, since the right hand side is the moment of
external forces. The two ®y cancel, because @y is
symmetrical. It implies that they are internal transfer
terms for angular momentum between a pair of P,. So
shear forces of one sort or another, transfer angular
momentum between a pair of partial angular mo-
menta, while only normal pressures contributes to the
energy transfer terms given in Naeser (2002).

Please beware that @y is also nonzero for a laminar
flow that is not parallel to any axis. For such cases, it
reflects the increase or decrease of the partial angular
momenta as the center of mass is moving. The rate of
change of a pair of transfer terms are equal under
such circumstances. Therefore the angular momentum
is conserved as it should when external moments are
absent.

Eulerian Conservation Equation for Incompressi-
ble Fluids: In order to get {13} on Eulerian form,
the left hand side of it is split into a partial time differ-
entiation term and a convective term, By defining

Py = PXiX; (16)

the following equation is valid for the fluid inside the
volume V surrounded by a fixed surface A:

. d,
Fy = j“‘*’pu v
; dt

(14)

(17)
For an incompressible fluid
P:j py
""—dV+ \A qudV {18)
V

where v is the velocity vector. Since V-v=0, (17)
and (18} imply

Py

y —dV+ IH’Vp‘ydA . (19)

where and nisa unlt vector normal to dA that is point-
ing out of V. We define

QU = _J.ﬂ prdA .

A
It is the flow of partial angular momentum to the sys-
tem through A.
According to this, the conservation equation for partial
angular momentum c¢n Eulerian form for a incom-
pressible fluid is obtained by exchanging the left hand
side of (13) with the expression from (19) and (20):

(20}
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oF;

5 - My +Oy+ 0y (21)

By this, the equations that govern the conservation of
partial angular momenturn are established. In the
following section, some consequences of partial angu-
lar momenturn conservation arg shown using simple
methods.

Consequences of Water Wave Dissipation: A two-
dimensional situation is studied. Regqular, deep water
Stokes (1847) waves that are traveling in the direction
of iy are treated. To the second order, for waves with

circutar frequency @ and wave height H, the energy
per unit surface area is

E(w)=1pgH?, (22)

and, according to Naeser (1979), the angular momen-
tum (wave spin) per unit surface area is

E(w)
S (a)) = —

2 2w (23)
relative to a moment point at the mean water level.
index 2 is included in (23} to show that the wave spin
is a vector in the direction of ia.

In addition to wave spin, a horizonta! current U{xs)
may contribute to the angutar momentum, while con-
tributions from turbulence are neglected. Hence we
adopt an Eulerian system containing the water in a
rectangular part of an infinitely long wave channel,
with waves traveling in one direction, while the cur-
rents may move in the same direction as the waves at
some depths, and in the opposite direction at other
depths.

In the following it is shown how waves and currents
contribute to P13 and P3;. We start with the currents.
As they are horizontal, they only contribute to Psy. If
the current profile is known, P4, can be calculated. But
there is no need for that here, apart from recognizing
that Ps; < O for a flow in the direction of I;, since the
moment point is located at the mean water level.

The simplest way to calculate the mean value of the
partial angular momentum of the waves per unit sur-
face area due to the vertical velocity component, is by
a Lagrangian approach. It is found - by integrating
through a wave period T ~ the contribution from all
fluid elements that are below a wave crest at x; = 0
when £ = 0:

T0
Py=p j jw(x3)[x(x3)+.us CaMldrsdt | (oa

0-h

Here x(x3) is the x;-coordinate relative to the center of
the circular paths of the fluid elements, u(xs:) and
w(xs) the sinusoidal horizontal and vertical velocity
components, h the water depth and Us(x3) the Stokes
drift which is a second order horizontal flow caused by
the waves. Further, as deep water wave theory is
adopted, h is supposed to be large enough to fulfill the
deep water requirement. To the second order of deep
water Stokes waves,

T o
Py=p J. j%coHe"‘x3 sinwt
0-h (25)
X [% He® sinax + U s (x3 M ldesdt

where k is the wave number. Second order harmonic
terms are omitted, since they merely contribute to
fourth order terms. Integration of (25) yields
E(w)

Ry=—" 26

3= _ (26)
According to (2), {23) and (26), the other partial angu-
lar momentum of the waves is

Py =By-5, =L@ _E@)_
2w 2w

It vanishes because the contribution from the Stokes

drift cancels the contribution from the linear terms.

Hence the angular momentum of the system of waves

and currents is separated, sc that Pi3 includes all wave
spin, while P3, includes all angular momentum of cur-
rents. Therefore the transfer term ©;3 equals the
transfer of angular momentum between waves and
currents.,

Through the vertical boundaries in either end, the
transport of partial angular momentum due to vertical
velocities vanishes, because ¢ and w are 90° out of
phase:

0. (27)

T 0
O3 =-p .[ Iu(x3)XW(x3 Yz dt=0 o
0-h

Here X is the x;-coordinate of the boundary.

The next to be calculated is the transfer term 3. The
orbital terms of the Stokes waves do not contribute to
it. So, only currents may contribute. A current ((x3),
whether it is generated by wind or not, implies a trans-
fer per unit surface area that according to (14) is

0
ﬂdU(x3) i
—h ks

because the boundary condition at the bottom implies
that U{-h ) = 0.

According to (29), a velocity gradient of U implies
amplification of vertical velocities. Hence an internal
frictional loss of angular momentum from the horizon-
tal current is transferred to angular momentum of
vertical velocities. Below the depths of significant wave
motion this implies interactions with turbulence, but
nearer the surface, amplification of waves is an aiter-
native. In particular the wind generated surface cur-
rent is a good candidate for transfer of angular mo-
mentum to waves by ©,3, as shown in Naeser (2001).
In this way a source to the wave spin of wind-
generated waves is obtained, When turbulence is taken
into consideration, the wu; term of (14) will contribute

®l3 =- 3°< -uU(0) , (29)
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too. Hence when (29) is interpreted, u should be
treated in the usual way as “turbulent viscosity”.

It is worth to notice that when waves are absent, ex-
ternal wind forces act through the moment point, since
it is located at the surface. But regardless the absence
of torques from the wind, the current that the wind
generates obtain angular momentum. Therefore a flow
has to be added in order not to violatd (15). Waves is
one solution to the problem, as the wave spin is oppo-
site to the currents’ contribution. A weak return flow at
large depths may soive the problem too. So which of
the alternatives is correct? Conventional angular mo-
mentum does not distinguish between the two possi-
bilities. But as we have seen, partial angular momen-
tum does, as the shear stresses generate vertical
velocities.,

When the wind blows, one would imagine that angular
momentum can be fed intc the waves through the
surface by M3, i.e. directly from the air to Pia of the
waves, But the mean value of the vertical surface
forces cancels gravity and bottom pressure every-
where, whether a wind is blowing or not, So M3 = 0
on an average. Therefore all wave spin has to be
transferred from the currents to the waves by ®a.
Hence the importance of shear currents, as suggested
by Valenzuela (1976) and Belcher et al. (1994), is
demonstrated.

In the absence of shear currents, (13} and (26) imply
that

ZM = constant
w

w

provided the directional distribution does not change.
Hence when the wave energy is reduced by internal
dissipation, the remaining wave energy should be
expected to be downshifted to lower frequencies in
order to keep the sum constant. Experimental evi-
dences of these phenomena are shown in Naeser
(2000), where these processes are described in more
detail.

(30)
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Conclusion

I would like to point cut the difference between the
transfer terms for angular momentum and energy, the
latter presented in Naeser (2002). We have seen that
angular momentum utilizes shear forces (Reynolds
stresses included) for internal transfer, while energy
utilizes normal pressures for their internal transfer. So
in this respect they are complementary and together
they utilize the entire stress tensor for transfer pur-
poses. When instabilities grow, both normal and shear
forces are present. Hence both energy transfer and
angular momentum transfer take place. Therefore a
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study the angular momentum in fluid flow appears
to be just as important as the study of energy. Both
sets of equations have to be fulfiled, and they may
give different information as seen in the examples with
the waves.

In the section where waves are’ studied, the transfer
term is central. In the absence of a surface current it
was found that the transfer term vanishes when g is
constant in space. Then the wave spin of water waves
is constant. Thereby the downshifting, that is described
in Naeser (1979; 1981 and 2000), is finally proved to
be a dissipative phenomenon explained by conserva-
tion of partial angular momentum.

The importance of a shear flow during wave generation
by wind is demonstrated without the complicated
mathematical tools that usually dominate such analy-
ses. Since the wave spin has to be transferred to the
waves from the horizontal current, the integral given in
(29) gives the rate of change of wave spin, when His
interpreted as a sum of laminar viscosity and “turbu-
lent viscosity”. From {23) the relationship between
energy and spin is given for surface waves. Hence
when the input of wave spin is known, the growth of
the waves at a given frequency can be calculated.

In conclusion: The partial angular momentum and the
partial energy provide new and powerful means to
solve fluid dynamical problems. I leave the challenge
of finding other applications and better methods to the
reader.
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