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Performance of Order Selection Criteria for Short Time Series
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Abstract: The order of fitted time series models is unknown and constitutes, in effect, additional unknown
parameters for which suitable: values have to be estimated from the observed data. The approached
pioneered by Akaike and Parzen involving the use of an order selection criterion provides a remarkable
breakthrough which transforms the order selection problem from one of hypothesis testing to that of
estimation. Different authors use different methods of determining the order of their fitted time series
models. Various order selection criteria will be used in a simulation study on fitted short time series
models and the performance of each of the order selection criteria in estimating the correct order are

investigated.
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Introduction
A number of approaches to determining the value of
(p.q) forthe ARMA( D ,q ) model from the observed

data have been suggested. In the case of AR model
fitting the analogy with multiple regression analysis
may be followed and the problem is approached via
hypothesis testing, that is test the null hypothesis that
the model is AR( p ) against the alternative hypothesis

that it is AR( p +1), and continue increasing the value
of p until the test gives a non significant result.

However, the hypothesis-testing procedures are only
suitable when the models under the null and
alternative hypothesis are prescribed a priori (Bhansali,
1993).

The approached pioneered by Akaike (1970) and
Parzen (1974) involving the use of an order selection
criterion provides a remarkable breakthrough which
transforms the order selection problem from one of
hypothesis testing to that of estimation.

Whittle (1963) introduced an order selection technique
based on residual variance plots. In this technique, it is
assumed that the true model is autoregressive of finite
(but unknown) order and an AR( p ) model is fitted to

the data. If a value of p smaller than the true order is
choosen then the (unbiased) estimated residual

variance, 62 is expected to be larger than the true

€

. . 2 . -
residual variance, O since the additional terms

g’
omitted from the model wouid explain a further part of
the variance of X, . On the other hand, once the value
of p reaches the true order any further increase in p

will not significantly reduce the residual variance.
Hence, if a sequence of models of increasing order are

fitted, 6‘§ evaluated in each case, and then plotted
against p , the graph is expected to decrease at first
and then level out at the point where p approaches
the true order. Jenkins and Watts (1968) also used this

technique and suggested that the same technique can
be applied to order selection for MA models and ARMA
models. .

A more refined version of the residual variance plots
was developed by Akaike (1969) for AR order selection.
In Akaike's procedure, autoregressive models of
increasing order were fitted. For each order p,

p=01, ..., m where m is a preassigned upper

bound, the value of an order selection criterion (based
on the estimated residual variance and the order p is

calculated and the estimated order is the value of p

that minimises the order selection criterion. As well as
Akaike's original order selection criterion, other order
selection criterion have been proposed by Akaike,
Schwarz, Hannan and Quinn, and Parzen and these are
described below.
Order Selection Criteria
Akaike's FPE and AIC: Akaike (1969) proposed the
order selection criterion defined by

N+p.
FPE(p)=—25?
N 14

where N is the number of observations to which the
model is fitted, and (A)'i is the maximum likelihood

estimate of the variance of the residuals based on the
p th order model. The value of P at which the FPE

attains its minimum is the estimated order of the
model. The expression FPE stands for "final prediction
error”. The motivation for this terminology can be
found in Priestley (1981).

Akaike (1974) introduced a new expression calied AIC
(Akaike's information criterion). This general criterion
can be used for statistical model identification in a wide
range of situations and is not restricted to the time
series context. When a model involving
P independently adjusted parameters is fitted to data,

the AIC is defined by,
AIC( p) = -2 log (maximum likelihood) + 2 p
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For an AR model, this criterion becomes

~2
AIC(p)=N log(G,) +2p
Again, increasing order, p, of autoregressive models
were fitted. The procedure suggests the choice of the
p that minimises AIC( p) for p =0,1, ... ,m, where

m is a preassigned upper bound to the order.
The FPE and AIC are asymptotically equivalent
procedures as far as the determination of p is

concerned since asymptotically AIC(p )=~

Nlog( FPE(p)) (Akaike, 1979,Priestley, 1981). FPE

criterion was originally introduced for autoregressive
order determination only, the AIC criterion is quite
general and can be applied to all the standard models
including MA and ARMA models. For example, for the
ARMA model, the AIC criterion is

AIC(p’ CI) = (N~p) '09(62) + 2(p +q+ 1)

The orders of the AR and MA operators are determined
by computing the AIC criterion over a selected grid of
values of p and g and choosing those values of p

and ¢ at which AIC attains its minimum. The AIC

criterion has largely superseded the FPE procedure and
is generally accepted as one of the most reliable
procedures for order determination.

Shibata (1976) has investigated the asymptotic
properties of Akaike's AIC and his investigation shows
that the estimate is not consistent but overestimates
the order asymptotically, with a non-zero probability.
In spite of this result Akaike's AIC criterion is widely
used. There are two reasons why Shibata’s result is not
an important result in practice. Firstly the result is an
asymptotic result. Secondly the underlying process is
unlikely to be an exact autoregressive model in
practice and the fitted autoregressive model is being
used as an approximation.

As discussed by Bhansali (1993), the FPE criterion may

be viewed as a special case, with 0l=2, of an extended
criterion,

FPE,(p)=63(1+ap/N),

in which O is a positive constant. The AIC criterion

may also be generalised to the following criterion
(Akaike, 1979).

AIC,(p) =Nlog(6%)+ap,

in which O is a positive constant. For a fixed O the AIC

O and FPEQL are closely related. AIC and FPE do not
estimate  p consistently, but asymptotically the

probability of selecting p correctly increases as O

increases (Bhansali, 1988). However, Hurvich and Tsai
(1993) observe that if N is small but the ratio m/N is
negligibly smal! where m is the upper bound, AIC may
select a highly non-parsimonious model.

Akaike's BIC: Akaike (1979) has developed a
Bayesian extension of the minimum AIC procedure

called BIC and the order selection criterion is defined
by

BIC(p)=Nlogé* —(N -p)log(l--]%)+plogN+ plog{p"(“} —1}}
32

~3
14

where, as before, 6‘?, is the estimate of the variance
of the residuals based on the p th parameter model

and 61, is the raw sample variance of the
observations. When p is small relative to N, the

approximation {-(N-p)log[1-(p /N)]} = p may be
used, so that

22
BIC(p) = Nlog&:, +(p+ plogN)+ plog{p"[?—f—l}}
[0
I4
The last term on the left is independent of N and an
approximate expression for BIC that will be used in the
simulation study is

BIC(p)~ Nlog(éf,) + p{l +log N}

The term p{l +log N} has the effect of increasing

the weight attached to the "penalty term" (which takes
account of the number of parameters in the model),
and consequently the minimisation of BIC leads, in
general, to lower model orders than those obtained by
minimising AIC. Shibata (1976) has shown that the AIC
criterion tends to overestimate the true order of an
autoregressive model, but that the estimated order
obtained wusing the BIC criterion may well
underestimate the true order.

Schwarz's Criterion: Schwarz (1978) suggested the
order selection criterion

S(p)=Nlogs’ + plogN,

which is similar to Akaike's BIC in terms of its
dependence on logN. In fact, if the approximate
expression for BIC is used, this relationship can be
written

BIC(p)~S(p)+0O(p),
where O( p) denotes a term which is functionally
independent of N.

Hannan-Quinn's Criterion: The order selection
criterion proposed by Hannan and Quinn, HQ(p), is of

the same type as that proposed by Akaike, namely
based on the minimisation of log 6’?, + pCN, where

CnN is a quantity dependent on N. However, it was

proposed so that it would be strongly consistent for the
estimated order and so that Cy decreases as fast as

possible. The Hannan-Quinn criterion is
HQO(p)= Nlogc'rf, +2pcloglogN, c¢>1

Hannan and Quinn (1979) commented that it is not
reasonable to expect any definite conclusion on which
criterion is the best. If N is large and an autoregression
is thought to be a good approximation then the use of

HQ( p) would have something to recommend it. This
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might not be true in other circumstances. The method
provides some compromise between procedures such
as Akaike's BIC with Cpn N1 logN designed, in a
Bayesian analysis, for a true autoregressive situation
and procedures such as Akaike's AIC designed for
fitting an autoregression where the true structure may
be more general.

Parzen's CAT: Parzen (1974) proposed a different
order selection criterion which he calls CAT (criterion
for autoregressive transfer function). This criterion
takes the following form

1

y4
=) =), p=123,.,
CAT(p) = N,leci G’
—1+(/N), p=0,

where 6'5. is the unbiased estimate of the innovation

variance when an AR model of order j is fitted to the
data. The value p is chosen as that value for which

CAT(p)

calculation of CAT( p) is slightly different from the

other criteria and it is not used in the simulation study.
Also, Parzen (1974) pointed out that CAT and AIC often
give identical results.

attains its minimum value. However,

Results and Discussion

Simulation: To compare the performance of the
various criteria discussed previously on small and
moderate size sample, realisations of the processes
listed below were generated. These are autoregressive
processes from Coates and Diggle (1986), Stoica
(1990), Swanapoel and van Wyk, (1986) and Newton
and Pagano, (1984).

The following types of stationary autoregressive
processes were used

(a)AR(1), o, =0.2,0.4, 0.6 and 0.8 (Coates and Diggle);

(b) AR (2), o, =00, =0.2,0.4,0.6 and 0.8(Coates and

Diggle);

(C)AR (3), 0, =0.6, o, = 0.65 and O, = -0.63, (Stoica);

(d) AR(5), O =-1.7, 0L, = -2.4, Oy = -1.63,0, = -

0.872 and O 5 = -0.168,

(Swanapoel and van Wyk, and Newton and Pagano)
The performance of the following order selection
criteria on the above types of stationary autoregressive
processes were compared.

1. FPE

2. AIC

3. BIC

4, Schwarz's criterion (Schwarz)

5. Hannan and Quinn's criterion (HQ)

One hundred replicates of each type of processes, (a) -
(d), were generated and in each case samples size of
N=64 and N=256 were considered. The upper bound
for the order, m, was set at eleven. For each criterion
the frequency distribution was obtained. To reduce the
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impact of starting-up values, 100 presample
observations were generated for each replicate of each
of the autoregressive processes. Least squares
estimates were computed for each of the sets of data
using the last p of the 100 presample values in

addition to the N sample values when estimating the
parameters for an AR(p ) process. This was done

because this is equivalent to maximum likelihood
estimation if the last 4 of the 100 presample values

are treated as fixed initial vaiues.

The number of times (out of 100 replications) the
orders were estimated correctly for an AR(1) process
are given in Table 1 (a - d ) for a sample size of N=64
and in Table 2 (8 - d ) for a sample size of N=256. The
BIC gave the best results, the correct order was chosen
96% - 100% of the time for the sample size of N=64.
The Schwarz’s criterion gave similar results (94% -
98% correct) followed by Hannan and Quinn's criterion,
FPE and AIC. The BIC and the Schwarz’s criterion gave
the best results (almost identical) for a sample size of
N=256 (99% - 100% correct for the BIC and 96% -
100% correct for the Schwarz’s criterion). This is
followed by the results for Hannan and Quinn's
criterion, FPE and AIC.

The results for an AR(2) process are given in Table 1(e
-h ) for a sample size of N=64 and in Table 2 (e - h)
for a sample size of N=256. The BIC and the Schwarz’s
criterion gave almost identical results (18% - 99%
correct for the BIC and 22% - 97% correct for the
Schwarz’s criterion) for a sample size of N=64. The
Hannan and Quinn's criterion gave better results than
the BIC and the Schwarz's criterion for AR(2) with

parameters O, =0, &,=0.2 and Q,;,=0, O,=04

whereas the BIC gave better results than the Schwarz’s
criterion and the Hannan and Quinn's criterion for

AR(2) with parameters O, =0, O,=0.6 and Q, =0,

Q, =0.8. Again, this is followed by the results for FPE

and AIC. Both the BIC and the Schwarz’s criterion gave
the best results (almost identical) for a sample size of
N=256 (69% - 98% correct for the BIC and 73% -
98% correct for the Schwarz’s criterion), followed by
Hannan and Quinn's criterion, FPE and AIC. In general,
the results for a sample size of N=256 are better than
the results for a sample size of N=64.

Again, the BIC and the Schwarz’s criterion gave the
best and almost identical results ( 94% correct for the
BIC and 91% correct for the Schwarz's criterion) for
the AR(3) process of a sample size of N=64 as shown
in Table 1(i). Similar and better resuilts were obtained
for a sample size of N=256 as shown in Table 2(i)
(96% correct for the BIC and 95% correct for the
Schwarz’s criterion).

None of the criteria performed well for the case of
AR(5); the results are given in Table 1(j) for a sample
size of N=64 and in Table 2(j) for a sample size of
N=256. However, both the FPE and the AIC gave the
best results (both 28% correct) in the case of the
sample size of N=64 and Hannan and Quinn's criterion
(80% correct) gave the best results in the case of the
sample size of N=256.
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Table 1: Frequency Table of Orders Estimated for AR Series Using Various Criteria (100 Replications) for Sample

Size of 64 »
Criterion FPE AIC BIC Schwarz HQ
Estimated :
order
(a) AR(L), &, =0.2 1 65 65 96 94 85
2 15 15 3 4 9
3 7 6 1 2 3
4-11 13 14 0 0 3
(b) AR(1), O, =0.4 1 73 72 98 96 87
2 12 13 2 2 6
3 8 8 0 1 4
4-11 7 7 0 1 3
(c) AR(1), O, =0.6 1 73 73 100 98 84
2 6 6 0 1 7
3 7 7 0 1 4
4-11 14 14 0 0 5
(d) AR(1), O, =0.8 1 68 68 98 94 85
2 11 11 2 6 8
3 4 4 0 0 1
4-11 17 17 0 0 6
(&) AR(2), 0L, =0, 0L, =0.2 1 42 42 82 78 60
‘ 2 28 28 18 22 28
3 11 11 0 0 8
4-11 19 19 0 0 4
() AR(2), O, =0, 0L, =0.4 1 4 4 24 18 7
2 64 64 73 78 81
3 12 12 3 3 6
4-11 20 20 0 1 6
(9) AR(2), &, =0, 0L, =0.6 1 0 0 0 0 0
2 78 78 98 97 90
3 10 10 2 2 6
: 4-11 12 12 0 1 4
(h) AR(2), O, =0, C,=0.8 ! 0 0 0 0 0
2 78 78 99 97 91
3 7 7 1 3 6
4-11 15 15 0 0 3
(i) AR(3) 1-2 1 1 3 2 2
@, =0.6, &, = 0.65and Q. = -0.63,
3 71 71 94 91 82
4 13 13 2 4 8
5 6 6 - 1 3 5
6-11 9 9 0 0 3
(i) AR(5) 1-3 0 0 0 0 0
o, =-1.7,0, = -2.4, 0L, = -1.63, '
o, = -0.872 and
o 5= -0.168,
4 50 50 83 73 65
5 28 28 16 24 25
6 10 10 1 2 6
7-11 12 12 0 1 4
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Table 2: Frequency Table of Orders Estimated for AR Series Using Various Criteria (100 Replications) for Sample

Size of 256
Criterion FPE AIC BIC Schwarz HQ
Estimated order
(a) AR(1), O, =0.2 1 73 73 99 96 92
2 14 14 1 2 5
3 3 3 0 2 3
4-11 10 10 o 0 0
(b) AR(1), O, =0.4 1 81 .81 99 99 92
2 9 9 1 1 6
3 5 5 o] 0 2
4-11 5 5 0 0 0
(c) AR(1), O, =0.6 1 75 75 100 100 97
2 8 8 0 0 2
3 4 4 0 0 0
4-11 13 13 0 0 1
(d) AR(1), O, =0.8 1 84 84 100 98 95
: 2 6 6 o] 2 3
3 2 2 0 0’ 1
4-11 8 8 0 0 1
2 64 64 69 73 82
3 16 16 1 3 9
4-11 16 16 - 0 0 0
(f) AR(2), O, =0,0,=0.4 1 0 0 0 0 0
2 64 64 97 96 87
-3 17 17 3 4 10
4-11 19 . 19 0 0 3
(9) AR(2), 0L, =0, 0L, =0.6 1 0 0 0 0 0
2 74 74 98 98 89
3 12 12 2 2 10
4-11 14 14 0 0 1
(h) AR(2), oL, =0, O1,=0.8 1 0 0 0 0 0
2 74 74 98 96 91
3 12 12 2 4 7
4-11 14 14 0 0 2
(1) AR(3) 1- 0 0 0 0 0
o, =0.6, O, = 0.65and Q3= -0.63,
3 72 72 96 95 82
4 13 13 3 4 8
5 6 6 1 1 6
6 -11 9 9 0 0 4
(3) AR(5) 1-3 0 0 o 0 0
o,=-1.7,0, = -2.4, O3 = -1.63,
o, = -0.872 and
a 5= -0.168,
4 4 4 48 40 14
5 68 68 52 58 80
6 9 9 0 2 5
7 -11 19 19 0 0 !
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Different authors use different methods of determining
the order of their fitted time series models. For
example, Martin (1980) uses Akaike’s order selection
criterion, AIC in robust estimation whereas Swanapoel
and van Wyk (1986) use Hannan and Quinn’s order
selection criterion in spectral density function
estimation. Newton and Pagano (1984) use Parzen’s
order selection criterion, CAT. In the application
literature other, less formal, methods are sometimes
used. For example, Kane and Trivedi (1991) use
autoregressive models with the order equal to 33%,
50%, 67% and 80% of the data. They dismiss the use
of Akaike’s FPE with the comment “this criterion often
fails”.

In this simulation study, the BIC and the Schwarz’s
criterion gave almost identical results and FPE and AIC
also gave almost identical results as expected (see
Section on order selection criteria). In general, both
the BIC and the Schwarz's criterion gave the best
results for autoregressive order selection followed by
Hannan-Quinn's criterion, FPE and AIC. In conclusion,
it is best to use different order selection criterion for
estimating the order of fitted short time series models.
Other references to the works in which the order
selection techniques are reviewed include Hurvich and
Tsai (1989, 1993), Koreisha and Pukkila (1993),
Paparoditis and Streitberg (1991), Bhansali (1988) and
Hannan and Quinn (1979).
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