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Calculation of the Effective g-factor in Two Dimensional Systems
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Abstract: The effective Lande-g factor of two dimensional systems is calculated on the basis of the
effective parameters approximation. By a simple diagram method, it is shown that the effective g-factor
only takes even integer values. The calculations are carried out both in the absence and presence of the
Landau level broadening.
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Introduction and the correlation effect as the mechanisms that alter
Since the discovery of Quantum Hail Effect (Klitzing et the effective mass, the g-factor and the local magnetic
al., 1980) the question of effective Landé-g factor, ",  field as well. We calculate g* in 2D systems by a simple
in two dimensional (2D) systems has become more diagram method. It is shown that |g"| only takes even
important. The enhancement of the g-factor in 2D integer values such as +2, +4, +6,... and so on.Decimal
systems was first proposed by Janak (Janak, 1969) to values of g* which have been observed experimentally
explain the measurement made by Fang and Stiles are not allowed in an ideal 2D system. According to the

(1968) in which the effective g-factor of silicon metal- conclusion of the present investigation an explanation
oxide semiconductors (MOS) systems was found  of the observation of the decimal g values in 2D
considerably larger than the free electron value g=2. systems must be sought elsewhere such as the change

Suzuki and Kawamato (1973) applied Landau's theory of the effective mass from the buik value, the change
of Fermi liquid to calculate the effective g-factor of of the effective magnetic field { local magnetic field ) or

interacting electrons in silicon inversion layers. Ando  not achieving the ideal two dimensionality.
and Uemura (1974) calculated oscillatory enhancement
of the g-factor caused by the electronic exchange Materials and Methods

interaction. Lakhani and Stiles (1973) reported In the presence of an external magnetic field
é:(o,o, B) along the z direction, the one electron

considerably large values of the g™ (~6). Nicholas et al
(Bucholas and Brurmmel, 1982; Nicholas et af., 1988) ; ) ] o )
measured the effective g-factor in GaAs-GaAlAs Hamiltonian of the 2D system in SI units is written as
systems. They reported g” values such as 6.2 and 3.3. H=H +H =H +H,,..+H, +H,
Although in bulk semiconductors side the effective g- 2 (p —eBx)

factor depends strpngly_on the fundemental energy =&+i"_."g|ﬂ”|ga+r(,.)+ V. +¥,
9ap, Ey, and the spin-orbit splitting, A, of the top most 2m 2m i

(2.1)

valance band (Wilson and Feher, 1961; Duncan and where H, is the kinetic energy operator for a free
Schneider, 1963; Pidgeon et al., 1967; Hermann and electron without spin, Hzeemsn is the Zeeman potantial,
Lampel, 1971; White er ar., 1972; Weisbuch and He, is the electron-lattice interaction which is mainly
Hermann, 1977} the reason of the enhancement of g- the potantial V(r) coming from the background
factor in 2D systems must be more peculiar than the impurities (Aoki, 1987) and H.. is the electron-electron
bulk semiconductors. 2D electron systems can be intrection term which covers the exchange potantial V,,
realtzed in several classes of systems, One example is and the Hartree electrostatic potantial V4. In the
the MOS systems, another example is the Zeeman potantial, g is the Landé-g factor of the free

semiconductor herterostructures such as GaAs-Al,Ga,.
«As systems, Reviews of 2D systems are given (Ando et 2m
al., 1982; Aoki, 1987). The common property of the 2D is the spin number.

eli

system is that the observation of a high mobility ~10%- We treat H'(= Hm, + H“) as a small perturbation.

10° cm?/Vs (whereas the corresponding bulk value is

about 10° cm?/Vs). So the collision time and the In the absence of H', the eigenvalues corresponding
is (Landau and Lifshitz,

effective mass in 2D must be different from the to H.(= +H
corresponding bulk values. Because of the importance (=H,
of the exchange and the correlation effects in 2D 1962),

Zeeman )

systems, the collision time and the effective mass will 1 gly |B

be different from the bulk semiconductors. Therefore E =( + Vo, + 217817

the behavior of g" must also be different from the bulk 2 ‘ 2

semiconductors. The theoretical caiculations given I (2.2)
above are based on the assumption that only the g° _ L 5

changes in 20 and the effective mass is the same as - (l+ )ha)c * hw('

the bulk value. In this study we consider the exchange
80

electron U, = £ is the Bohr magneton and o = +1



‘. broadening,

. for metals
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where / = 0,1,2,... is the Landau index, @ is the

'~ cyclotron angular frequency, m is the free electron
- mass and g is the free electron Landé-g factor which is

equal to 2. Here the (+) sign corresponds to spin-down
electron and (-) sign to spin-up one. The energies in

F eq.(2.2) form a equidistant discrete energy spectrum
| with a level separation ha) So for a free electron

(g=2) the energies for spin up and spin down cases
read the forms: -

EM=lho, (2.3a)

E({)=(+Dho, (2.3b)

Next we consider the perturbing Hamiltonian in
" eq.(2.1):

H = He‘, + H“_ =V(@r)+V, +V, (2.4)

. The effect of V(r) is three-fold. First it causes a

broadening (Aoki, 1987) in Landau levels given in
€0.(2.2). Secondly it aiters the mass of the electron
and thirdly it may change the cyclotron radius of the
electron (Shklovskii et al., 1984). The third correction
is almost negligible for shallow impurities. It can be
shown that for an ideal 2D sytem the Landau level

r is small compared to HAw, and

independent of /. For each level, T is the same (Aoki,
1987) and given by,

I he,

\} wc z'0

where 15 is the scattering relaxtion time in the absence

(2.5)

. of the magnetic field. Therefore for an ideal 2D system,

for strong magnetic field and low temperatures

i w,7, >>1, the Landau subbands are well separated
' {Aoki, 1987) and then the broadening effect of v(r) can

also be neglected.

The term H,, =V_+VF, is the most important term

- which gives rise to the exchange and the correlation

effects. In metals the energies corresponding to Ve,

" and Vy have been calculated in detail (Pines, 1963). It
has

been shown that exchange energy,
£, =—(2-3)eV while the correlation energy is
. almost the same for all metal: ¢ ~ =0.258¢¥V . So

corre

Seorr

=~ 0.1, Therefore &orr €AN be neglected

when it is compare to z.. We believe that this is also
true for 2D systems. and the exchange energy is the

. dominant part of the energy E ! corresponding to the

perturbing potantial H':
E'=zg, (2.6)

The exchange energy in a 2D system was first
calculated by Stern (1972). He calculated the exchange

~energy in Si inverion layers. The exchange energy at
- the Fermi level was found to be at the order of ~ 10

meV. Therefore as will be discussed in section 3, for an
ideal 2D system, for a high enough magnetic field it is

. possible to make s, smaller than the Landau level
- separation her, and hence the energies given in
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eq.(2.2). So the effect of H' in total Hamiltonian can
be lumped in the effective mass, m"; the effective
Landé-g factor, g°; and the effective magnetic field
{local magnetic field), B*. We will call this approach the
effective parameters ( m*, g°, B® ) approximation. In
this approximation with an analogy to eq.(2.2) the
eigenvalues corresponding to eq.(z.l) are

EM =+ - & ho' (2.78)
2 4

EM= (l'+l)hcu: +& o {2.7b)
2 4

where a):_ = J‘f is the effective cyclotron angular

frequency.
Next we define the dimensionless energy, r—l’— which is
lfu‘

the conventional filling factor w. From eq.(2.7) the

lots of E(T)
plots o fm):

la°| give us the diagram in Fig.1.

and ’;_‘“ for different / values against
e,

E they
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Fig.1: The plots of ’,LT’ and 4 for different ! values

1o, iy,

against g7

As it is seen from fig.1, for certain values of (g7 two
different Landau leveis (1) and E(»L) will have the

same energy or will be correlated to each other.
Namely, an electron with the energy FE(T) will be

correlated to the electron with the energy E (sL) . The

correlation corresponds to the crossing points of two
dlfferent Landau levels in the figure. At these crossing
points |g”| only takes even integer values such as 0, 2,
4, 6,... and so on. In addition the average |g°| values
corresponding to the same energy will be an even
integer also: <g’>= 2n ( n=1,2,32,...). In Table.1 we
give the list of allowed (9" values and associated <g'>

£
corresponding to same ha =W
3
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Table 1: The List of Allowed |g"| Values and Associated <g”> Corresponding to Same v =5

*

v _ gl <g >
1 2 2
3/2 4 4

2 2 6 4
5/2 4 8 6

3 2 6 10 6
7/2 4 8 12 . 8

4 2 &6 10 14 8
9/2 4 8 12 16 10

5 2 6° 10 14 18 10

So far we have not conidered Landau level broadening.
(Nicholas et al,, 1988; Englart and von Klitzing, 1980)
experimentally determined the width of the Landau
levels, which were independent of Landau level
indexes. The present study also assumes that each
Landau level has the same broadening, I.
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Fig 2: The plots of %’- and —him‘ﬂ for different /
values against {g”| in the presence of the Landau level
; r_. 1
broadening (nw; =3)

oy [ .
In Fig.2 the plots of M—l and -L“ for different
heaw, hew,

values against 1g" are given on the basis of the
i L -1

asssumption that o T

As it is seen, the crossing of two broadened Landau

tevels occur in shaded diamond shaped (rhombus)

areas who's centars correspond to the crossing points

of figure 1. It is also noted that the different g* values

corresponding to the same energy are evenly

distributed about the central points. They lie in range

2n-Ag" and 2n+Ag" where Ag" is ﬁ— Then the

average of g" values in each rhombus, g;v, will be
equal to 2n again:

g, =2n (1=1,2,3,...) (2.8)

With a similar argument we discussed earlier, the
average of g:n, values corresponding to the same

energy will be an even integer again. Therefore the
Landau level broadening doesn't change the average g
values which are even integers.

Results and Discussions

The effective Landé-g factor of two dimensional
systems has been calculated on the basis of the
effective parameters ( m*, g°, B*) approximation. The
validity of this approximation depends on the smallness

of the Landau level broadening and the exchange
energy compared to the Landau level separation ﬁa)‘,.
From eq.(2.5), the ratio of Landau Iével broadening I
to the spacing of the Landau levels, ﬁ(oc is expressed

L R~ I i = =
as T In Si MOS systems m 0.2mp, =8

he,

ps. For B= 20 T we get fiw_ =11 meV and r'~1 mev,
For GaAs-Al,Ga;. As systems ( m='0.067m0, =60 ps ),
B= 20 T gives /i, = 33 meV and r=0.73 mev. The

exchange energy, Zex, IN Si inversion layers was
calculated by Stern {1972), The exchange energy at
the Fermi leve! was found to be at the order of ~ 10
meV. Therefore for high enough magnetic fields it is
possible to make &, and I smaller than the Landau

level separation h(oc and hence the landau energies

of the unperturbed Hamiltonian. In this study we dig
nat concentrate on the effective magnetic field (or the
local magnetic field which is the true magnetic field at
the position of the electron). We expect a larger

effective magnetic field which makes ha)‘_ larger than

the applied magnetic field values. A more complete
repert of this work will be published in the future.
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